CS 208: Automata Theory and Logic Lecture 2: Finite State Automata

Ashutosh Trivedi

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

Computation With Finitely Many States

Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)

Finite instruction machine with unbounded memory (Turing machine)

Ashutosh Trivedi - 3 of 20

Finite State Automata

Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain!

Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain Capture so-called regular sets of sequences that occur in many different fields (logic, algebra, regEx)
Nice theoretical properties
Applications in digital circuit/protocol verification, compilers, pattern recognition, etc.

Calculemus! - Gottfried Wilhelm von Leibniz

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3 .

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3 .
- Recognize a string with well-matched parenthesis.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3 .
- Recognize a string with well-matched parenthesis.
- Recognize a \# separated string of the form $w \# \bar{w}$.

Calculemus! - Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
Recognize a string of an even length.

- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3 .
- Recognize a string with well-matched parenthesis.
- Recognize a \# separated string of the form $w \# \bar{w}$.
- Recognize a string with a prime number of 1's

Finite State Automata

Automaton accepting strings of even length:

Automaton accepting strings with an even number of 1's:

Automaton accepting even strings (multiple of 2):

Finite State Automata

A finite state automaton is a tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$, where:

- S is a finite set called the states;
$-\Sigma$ is a finite set called the alphabet;
$-\delta: S \times \Sigma \rightarrow S$ is the transition function;
$-s_{0} \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Finite State Automata

A finite state automaton is a tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$, where:

- S is a finite set called the states;
- Σ is a finite set called the alphabet;
$-\delta: S \times \Sigma \rightarrow S$ is the transition function;
$-s_{0} \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Example: The automaton in the figure above can be represented as $\left(S, \Sigma, \delta, s_{0}, F\right)$ where $S=\{E, O\}, \Sigma=\{0,1\}, s_{0}=E, F=\{E\}$, and transition function δ is such that

$$
\delta(E, 0)=O, \delta(E, 1)=0, \text { and } \delta(O, 0)=E, \delta(O, 1)=E
$$

State Diagram

Let's draw the state diagram of the following automaton $\left(S, \Sigma, \delta, s_{1}, F\right)$:

- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$
- $\Sigma=\{0,1\}$,
$-\delta$ is given in a tabular form below:

S	0	1
s_{1}	s_{1}	s_{2}
s_{2}	s_{3}	s_{2}
s_{3}	s_{2}	s_{2}

- s_{1} is the initial state, and
$-F=\left\{s_{2}\right\}$.

State Diagram

Let's draw the state diagram of the following automaton $\left(S, \Sigma, \delta, s_{1}, F\right)$:

- $S=\left\{s_{1}, s_{2}, s_{3}\right\}$
- $\Sigma=\{0,1\}$,
- δ is given in a tabular form below:

S	0	1
s_{1}	s_{1}	s_{2}
s_{2}	s_{3}	s_{2}
s_{3}	s_{2}	s_{2}

- s_{1} is the initial state, and
$-F=\left\{s_{2}\right\}$.

What does it accept?

Semantics of the finite state automata

A finite state automaton (DFA) is a tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$, where:
$-S$ is a finite set called the states;
$-\Sigma$ is a finite set called the alphabet;
$-\delta: S \times \Sigma \rightarrow S$ is the transition function;
$-s_{0} \in S$ is the start state; and
$-F \subseteq S$ is the set of accept states.

- A computation or a run of a DFA on a string $w=a_{0} a_{1} \ldots a_{n-1}$ is the finite sequence

$$
s_{0}, a_{1} s_{1}, a_{2}, \ldots, a_{n-1}, s_{n}
$$

where s_{0} is the starting state, and $\delta\left(s_{i-1}, a_{i}\right)=s_{i+1}$.

- A run is accepting if the last state of the unique computation is an accept state, i.e. $s_{n} \in F$.
- Language of a DFA A

$$
L(A)=\{w: \text { the unique run of } A \text { on } w \text { is accepting }\} .
$$

Semantics of the finite state automata

A finite state automaton (DFA) is a tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$, where:
S is a finite set called the states;
Σ is a finite set called the alphabet;
$\delta: S \times \Sigma \rightarrow S$ is the transition function;
$s_{0} \in S$ is the start state; and
$F \subseteq S$ is the set of accept states.
A computation or a run of a DFA on a string $w=a_{0} a_{1} \ldots a_{n-1}$ is the finite sequence

$$
s_{0}, a_{1} s_{1}, a_{2}, \ldots, a_{n-1}, s_{n}
$$

where s_{0} is the starting state, and $\delta\left(s_{i-1}, a_{i}\right)=s_{i+1}$.
A run is accepting if the last state of the unique computation is an accept state, i.e. $s_{n} \in F$.
Language of a DFA A

$$
L(A)=\{w: \text { the unique run of } A \text { on } w \text { is accepting }\} .
$$

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the following operations on them:

- Union: $A \cup B=\{w: w \in A$ or $w \in B\}$
- Concatenation: $A B=\{w v: w \in A$ and $v \in B\}$
- Closure (Kleene Closure, or Star):
$A^{*}=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0\right.$ and $\left.w_{i} \in A\right\}$. In other words:

$$
A^{*}=\cup_{i \geq 0} A^{i}
$$

where $A^{0}=\emptyset, A^{1}=A, A^{2}=A A$, and so on.
Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the following operations on them:

Union: $A \cup B=\{w: w \in A$ or $w \in B\}$
Concatenation: $A B=\{w v: w \in A$ and $v \in B\}$
Closure (Kleene Closure, or Star):
$A^{*}=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0\right.$ and $\left.w_{i} \in A\right\}$. In other words:

$$
A^{*}=\cup_{i \geq 0} A^{i}
$$

where $A^{0}=\emptyset, A^{1}=A, A^{2}=A A$, and so on.
Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Theorem

The class of regular languages is closed under union, concatenation, and Kleene closure.

Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A_{1} and A_{1} be regular languages.

Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A_{1} and A_{1} be regular languages.
Let $M_{1}=\left(S_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(S_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be finite automata accepting these languages.

Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A_{1} and A_{1} be regular languages.
Let $M_{1}=\left(S_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(S_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be finite automata accepting these languages.
Simulate both automata together!
The language $A \cup B$ is accept by the resulting finite state automaton, and hence is regular.

Closure under Union

Lemma

The class of regular languages is closed under union.

Proof.

Let A_{1} and A_{1} be regular languages.
Let $M_{1}=\left(S_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(S_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be finite automata accepting these languages.
Simulate both automata together!
The language $A \cup B$ is accept by the resulting finite state automaton, and hence is regular.

Class Exercise: Extend this construction for intersection.

Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.

Proof.

(Attempt).
Let A_{1} and A_{1} be regular languages.
Let $M_{1}=\left(S_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(S_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be finite automata accepting these languages.
How can we find an automaton that accepts the concatenation?
Does this automaton fit our definition of a finite state automaton?
Determinism vs Non-determinism

Computation With Finitely Many States

Non-determinism

Nondeterministic Finite State Automata

Michael O. Rabin

Dana Scott

Non-deterministic Finite State Automata

Non-deterministic Finite State Automata

A non-deterministic finite state automaton (NFA) is a tuple ($S, \Sigma, \delta, s_{0}, F$), where:

- S is a finite set called the states;
$-\Sigma$ is a finite set called the alphabet;
$-\delta: S \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{S}$ is the transition function;
$-s_{0} \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Non-deterministic Finite State Automata

A non-deterministic finite state automaton (NFA) is a tuple ($S, \Sigma, \delta, s_{0}, F$), where:

- S is a finite set called the states;
$-\Sigma$ is a finite set called the alphabet;
$-\delta: S \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{S}$ is the transition function;
$-s_{0} \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Example: Difference between a deterministic vs a non-deterministic computation (above NFA on a string 010110).

Non-deterministic Finite Automata: Semantics

A non-deterministic finite state automaton (NFA) is a tuple ($S, \Sigma, \delta, s_{0}, F$), where:
S is a finite set called the states;
Σ is a finite set called the alphabet;
$-\delta: S \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{S}$ is the transition function;
$s_{0} \in S$ is the start state; and
$F \subseteq S$ is the set of accept states.
A computation or a run of a NFA on a string $w=a_{0} a_{1} \ldots a_{n-1}$ is a finite sequence

$$
s_{0}, r_{1} s_{1}, r_{2}, \ldots, r_{k-1}, s_{n}
$$

where s_{0} is the starting state, and $s_{i+1} \in \delta\left(s_{i-1}, r_{i}\right)$ and $r_{0} r_{1} \ldots r_{k-1}=a_{0} a_{1} \ldots a_{n-1}$.
Unlike DFA, there can be multiple runs of an NFA on a string.
A run is accepting if the last state of some computation is an accepting state $s_{n} \in F$.
Language of a NFA $A L(A)=\{w$: some run of A on w is accepting $\}$.

NFA are often more convenient to design than DFA, e.g.:

- $\{w: w$ contains 1 in the third last position $\}$.
- $\{w:: w$ is a multiple of 2 or a multiple of 3$\}$.
- Union and intersection of two DFAs as an NFA
- Some other examples

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Proof.

For the sake of simplicity assume NFA is ε-free.
Design a DFA that simulates a given NFA.
Note that NFA can be in a number of states at any given time
How are the states of the corresponding DFA?
Define initial state and accepting states
Define the transition function

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Proof.

For the sake of simplicity assume NFA is ε-free.
Design a DFA that simulates a given NFA.
Note that NFA can be in a number of states at any given time
How are the states of the corresponding DFA?
Define initial state and accepting states
Define the transition function

Determinize the following automaton:

Extension

Exercise: Extend the previous construction in the presence of ε-transitions. Hint: ε-closure of a set of states.

Closure under Regular Operations

Theorem

The class of regular languages is closed under union, concatenation, and Kleene closure.

Proof.

We have already seen the closure under union as a DFA and as an NFA.

Concatenation and Kleene closure can easily be defined as an NFA using ε-transitions.
The theorem follows from the equivalence of NFA and DFA.

