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CS 208: Automata Theory and Logic
Lecture 2: Finite State Automata
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Computation With Finitely Many States

Non-determinism
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Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)
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Finite State Automata
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– Introduced first by two neuro-psychologists Warren
S. McCullough and Walter Pitts in 1943 as a model
for human brain!

– Finite automata can naturally model
microprocessors and even software programs
working on variables with bounded domain

– Capture so-called regular sets of sequences that
occur in many different fields (logic, algebra, regEx)

– Nice theoretical properties
– Applications in digital circuit/protocol verification,

compilers, pattern recognition, etc.
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Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s
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Finite State Automata
Automaton accepting strings of even length:

Estart O

0, 1

0, 1

Automaton accepting strings with an even number of 1’s:

Estart O

0
1

1

0

Automaton accepting even strings (multiple of 2):

Estart O

0
1

0

1
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Finite State Automata

Estart O

0, 1

0, 1

A finite state automaton is a tuple (S,Σ, δ, s0,F), where:
– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× Σ→ S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

Example: The automaton in the figure above can be represented as
(S,Σ, δ, s0,F) where S = {E,O}, Σ = {0, 1}, s0 = E, F = {E}, and transition
function δ is such that

– δ(E, 0) = O, δ(E, 1) = 0, and δ(O, 0) = E, δ(O, 1) = E.
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State Diagram

Let’s draw the state diagram of the following automaton (S,Σ, δ, s1,F):
– S = {s1, s2, s3}
– Σ = {0, 1},

– δ is given in a tabular form below:

S 0 1
s1 s1 s2
s2 s3 s2
s3 s2 s2

– s1 is the initial state, and
– F = {s2}.

What does it accept?
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Semantics of the finite state automata
A finite state automaton (DFA) is a tuple (S,Σ, δ, s0,F), where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× Σ→ S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.
– A computation or a run of a DFA on a string w = a0a1 . . . an−1 is the

finite sequence
s0, a1s1, a2, . . . , an−1, sn

where s0 is the starting state, and δ(si−1, ai) = si+1.
– A run is accepting if the last state of the unique computation is an

accept state, i.e. sn ∈ F.
– Language of a DFA A

L(A) = {w : the unique run of A on w is accepting}.

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.
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Properties of Regular Languages

Let A and B be languages (remember they are sets). We define the
following operations on them:

– Union: A ∪ B = {w : w ∈ A or w ∈ B}
– Concatenation: AB = {wv : w ∈ A and v ∈ B}
– Closure (Kleene Closure, or Star):

A∗ = {w1w2 . . .wk : k ≥ 0 and wi ∈ A}. In other words:

A∗ = ∪i≥0Ai

where A0 = ∅, A1 = A, A2 = AA, and so on.
Define the notion of a set being closed under an operation (say, N and ×).

Theorem
The class of regular languages is closed under union, concatenation, and Kleene
closure.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
– Let A1 and A1 be regular languages.

– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite
automata accepting these languages.

– Simulate both automata together!
– The language A ∪ B is accept by the resulting finite state automaton,

and hence is regular.

Class Exercise: Extend this construction for intersection.
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Closure under Concatenation

Lemma
The class of regular languages is closed under concatenation.

Proof.
(Attempt).

– Let A1 and A1 be regular languages.
– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite

automata accepting these languages.
– How can we find an automaton that accepts the concatenation?
– Does this automaton fit our definition of a finite state automaton?
– Determinism vs Non-determinism
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Computation With Finitely Many States

Non-determinism

Ashutosh Trivedi Lecture 2: Finite State Automata



Ashutosh Trivedi – 14 of 20

Nondeterministic Finite State Automata

Michael O. Rabin Dana Scott
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Non-deterministic Finite State Automata

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

A non-deterministic finite state automaton (NFA) is a tuple (S,Σ, δ, s0,F),
where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

Example: Difference between a deterministic vs a non-deterministic
computation (above NFA on a string 010110).
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Non-deterministic Finite Automata: Semantics
A non-deterministic finite state automaton (NFA) is a tuple (S,Σ, δ, s0,F),
where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

– A computation or a run of a NFA on a string w = a0a1 . . . an−1 is a
finite sequence

s0, r1s1, r2, . . . , rk−1, sn

where s0 is the starting state, and si+1 ∈ δ(si−1, ri) and
r0r1 . . . rk−1 = a0a1 . . . an−1.

– Unlike DFA, there can be multiple runs of an NFA on a string.
– A run is accepting if the last state of some computation is an

accepting state sn ∈ F.
– Language of a NFA A L(A) = {w : some run of A on w is accepting}.
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NFA vs DFA

NFA are often more convenient to design than DFA, e.g.:
– {w : w contains 1 in the third last position}.
– {w : : w is a multiple of 2 or a multiple of 3}.
– Union and intersection of two DFAs as an NFA
– Some other examples
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Equivalence of NFA and DFA

Theorem
Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton.

Proof.
– For the sake of simplicity assume NFA is ε-free.
– Design a DFA that simulates a given NFA.
– Note that NFA can be in a number of states at any given time
– How are the states of the corresponding DFA?
– Define initial state and accepting states
– Define the transition function

Determinize the following automaton:

s1start s2 s3 s4

0, 1

1 0, 1 0, 1
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Extension

Exercise: Extend the previous construction in the presence of ε-transitions.
Hint: ε-closure of a set of states.
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Closure under Regular Operations

Theorem
The class of regular languages is closed under union, concatenation, and Kleene
closure.

Proof.
– We have already seen the closure under union as a DFA and as an

NFA.
– Concatenation and Kleene closure can easily be defined as an NFA

using ε-transitions.
– The theorem follows from the equivalence of NFA and DFA.

Ashutosh Trivedi Lecture 2: Finite State Automata


	Computation With Finitely Many States
	Non-determinism

