CS 208: Automata Theory and Logic Lecture 2: Finite State Automata

Ashutosh Trivedi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Ashutosh Trivedi - 1 of 20

Ashutosh Trivedi Lecture 2: Finite State Automata

Computation With Finitely Many States

Non-determinism

Ashutosh Trivedi - 2 of 20

Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)

Finite instruction machine with unbounded memory (Turing machine)

- Introduced first by two neuro-psychologists Warren S. McCullough and Walter Pitts in 1943 as a model for human brain!
- Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain
- Capture so-called regular sets of sequences that occur in many different fields (logic, algebra, regEx)
- Nice theoretical properties
- Applications in digital circuit/protocol verification, compilers, pattern recognition, etc.

Let us observe our mental process while we compute the following:

– Recognize a string of an even length.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.
- Recognize a string with well-matched parenthesis.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.
- Recognize a string with well-matched parenthesis.
- Recognize a # separated string of the form $w \# \overline{w}$.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.
- Recognize a string with well-matched parenthesis.
- Recognize a # separated string of the form $w \# \overline{w}$.
- Recognize a string with a prime number of 1's

Automaton accepting strings of even length:

Automaton accepting strings with an even number of 1's:

Automaton accepting even strings (multiple of 2):

A finite state automaton is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- S is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta: S \times \Sigma \rightarrow S$ is the transition function;
- $-s_0 \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

A finite state automaton is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta: S \times \Sigma \rightarrow S$ is the transition function;
- $-s_0 \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Example: The automaton in the figure above can be represented as $(S, \Sigma, \delta, s_0, F)$ where $S = \{E, O\}, \Sigma = \{0, 1\}, s_0 = E, F = \{E\}$, and transition function δ is such that

$$-\delta(E,0) = O, \, \delta(E,1) = 0, \, \text{and} \, \delta(O,0) = E, \, \delta(O,1) = E.$$

Ashutosh Trivedi - 7 of 20

State Diagram

Let's draw the state diagram of the following automaton $(S, \Sigma, \delta, s_1, F)$:

- $-S = \{s_1, s_2, s_3\}$
- $-\Sigma = \{0,1\},$

 $-\delta$ is given in a tabular form below:

S	0	1
s_1	s_1	<i>s</i> ₂
s_2	s_3	s_2
s_3	s_2	s_2

- $-s_1$ is the initial state, and
- $-F = \{s_2\}.$

State Diagram

Let's draw the state diagram of the following automaton $(S, \Sigma, \delta, s_1, F)$:

- $-S = \{s_1, s_2, s_3\}$
- $-\Sigma = \{0,1\},$

 $-\delta$ is given in a tabular form below:

S	0	1
s_1	s_1	<i>s</i> ₂
s_2	s_3	s_2
s_3	s_2	s_2

- $-s_1$ is the initial state, and
- $-F = \{s_2\}.$

What does it accept?

Semantics of the finite state automata

- A finite state automaton (DFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:
 - *S* is a finite set called the states;
 - $-\Sigma$ is a finite set called the alphabet;
 - $-\delta: S \times \Sigma \rightarrow S$ is the transition function;
 - $s_0 \in S$ is the start state; and
 - $F \subseteq S$ is the set of accept states.
 - A computation or a run of a DFA on a string $w = a_0 a_1 \dots a_{n-1}$ is the finite sequence

 $s_0, a_1 s_1, a_2, \ldots, a_{n-1}, s_n$

where s_0 is the starting state, and $\delta(s_{i-1}, a_i) = s_{i+1}$.

- A run is accepting if the last state of the unique computation is an accept state, i.e. $s_n \in F$.
- Language of a DFA A

 $L(A) = \{w : \text{ the unique run of } A \text{ on } w \text{ is accepting} \}.$

Semantics of the finite state automata

- A finite state automaton (DFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:
 - *S* is a finite set called the states;
 - $-\Sigma$ is a finite set called the alphabet;
 - $-\delta: S \times \Sigma \rightarrow S$ is the transition function;
 - $s_0 \in S$ is the start state; and
 - $F \subseteq S$ is the set of accept states.
 - A computation or a run of a DFA on a string $w = a_0 a_1 \dots a_{n-1}$ is the finite sequence

 $s_0, a_1 s_1, a_2, \ldots, a_{n-1}, s_n$

where s_0 is the starting state, and $\delta(s_{i-1}, a_i) = s_{i+1}$.

- A run is accepting if the last state of the unique computation is an accept state, i.e. $s_n \in F$.
- Language of a DFA A

 $L(A) = \{w : \text{ the unique run of } A \text{ on } w \text{ is accepting} \}.$

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Ashutosh Trivedi - 9 of 20

Properties of Regular Languages

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- Closure (Kleene Closure, or Star): $A^* = \{w_1w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$ In other words:

$$A^* = \cup_{i \ge 0} A^i$$

where $A^0 = \emptyset$, $A^1 = A$, $A^2 = AA$, and so on.

Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Properties of Regular Languages

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- Closure (Kleene Closure, or Star): $A^* = \{w_1w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$ In other words:

$$A^* = \cup_{i \ge 0} A^i$$

where $A^0 = \emptyset$, $A^1 = A$, $A^2 = AA$, and so on.

Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Theorem

The class of regular languages is closed under union, concatenation, and Kleene closure.

The class of regular languages is closed under union.

Proof.

Let A_1 and A_1 be regular languages.

The class of regular languages is closed under union.

Proof.

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.

The class of regular languages is closed under union.

Proof.

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.

Simulate both automata together!

The language $A \cup B$ is accept by the resulting finite state automaton, and hence is regular.

The class of regular languages is closed under union.

Proof.

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.
- Simulate both automata together!
- The language $A \cup B$ is accept by the resulting finite state automaton, and hence is regular.

Class Exercise: Extend this construction for intersection.

The class of regular languages is closed under concatenation.

Proof.

(Attempt).

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.
- How can we find an automaton that accepts the concatenation?
- Does this automaton fit our definition of a finite state automaton?Determinism vs Non-determinism

Computation With Finitely Many States

Non-determinism

Ashutosh Trivedi – 13 of 20

Nondeterministic Finite State Automata

Michael O. Rabin

Dana Scott

Non-deterministic Finite State Automata

Non-deterministic Finite State Automata

A non-deterministic finite state automaton (NFA) is a tuple (S, Σ , δ , s_0 , F), where:

- *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S$ is the transition function;
- $-s_0 \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Non-deterministic Finite State Automata

A non-deterministic finite state automaton (NFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S$ is the transition function;
- $-s_0 \in S$ is the start state; and
- $F \subseteq S$ is the set of accept states.

Example: Difference between a deterministic vs a non-deterministic computation (above NFA on a string 010110).

Non-deterministic Finite Automata: Semantics

A non-deterministic finite state automaton (NFA) is a tuple (S, Σ , δ , s_0 , F), where:

- *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^{S}$ is the transition function;
- *s*⁰ ∈ *S* is the start state; and
- $F \subseteq S$ is the set of accept states.
- A computation or a run of a NFA on a string $w = a_0a_1 \dots a_{n-1}$ is a finite sequence

$$s_0, r_1 s_1, r_2, \ldots, r_{k-1}, s_n$$

where s_0 is the starting state, and $s_{i+1} \in \delta(s_{i-1}, r_i)$ and $r_0r_1 \dots r_{k-1} = a_0a_1 \dots a_{n-1}$.

- Unlike DFA, there can be multiple runs of an NFA on a string.
- A run is accepting if the last state of some computation is an accepting state $s_n \in F$.
- Language of a NFA $A L(A) = \{w : \text{ some run of } A \text{ on } w \text{ is accepting} \}.$

NFA are often more convenient to design than DFA, e.g.:

- $\{w : w \text{ contains } 1 \text{ in the third last position} \}.$
- $\{w :: w \text{ is a multiple of 2 or a multiple of 3} \}.$
- Union and intersection of two DFAs as an NFA
- Some other examples

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Proof.

- For the sake of simplicity assume NFA is ε -free.
- Design a DFA that simulates a given NFA.
- Note that NFA can be in a number of states at any given time
- How are the states of the corresponding DFA?
- Define initial state and accepting states
- Define the transition function

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Proof.

- For the sake of simplicity assume NFA is ε -free.
- Design a DFA that simulates a given NFA.
- Note that NFA can be in a number of states at any given time
- How are the states of the corresponding DFA?
- Define initial state and accepting states
- Define the transition function

Determinize the following automaton:

Ashutosh Trivedi - 18 of 20

Exercise: Extend the previous construction in the presence of ε -transitions. Hint: ε -closure of a set of states.

Theorem

The class of regular languages is closed under union, concatenation, and Kleene closure.

Proof.

- We have already seen the closure under union as a DFA and as an NFA.
- Concatenation and Kleene closure can easily be defined as an NFA using ε -transitions.
- The theorem follows from the equivalence of NFA and DFA.