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Finite State Automata
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Deterministic Finite State Automata (DFA)
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A finite state automaton is a tuple A = (S, X, §, 5o, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;

sg € S is the start state; and
F C S is the set of accept states.
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Deterministic Finite State Automata (DFA)
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A finite state automaton is a tuple A = (S, X, §, 5o, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;

sg € S is the start state; and
F C S is the set of accept states.

lfor afunction § : S x ¥ — S we define extended transition function
0 : S x ¥* — S using the following inductive definition:

. ifw=c¢
5(q,w) = {q

6(5(g,x),a) ifw=xast xeX*andae X.
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Deterministic Finite State Automata (DFA)
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A finite state automaton is a tuple A = (S, %, 6, 5o, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
6 :S x X — Sis the transition function;

So € S is the start state; and
F C S is the set of accept states.

The language L(.A) accepted by a DFA A = (S, %, 4, 5o, F) is defined as:

L(A) € {w : §(w) € F}.
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Computation of a DFA
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Deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by a DFA A = (S, ¥, 0, s0, F) is defined as:

L(A) Z {w : §(w) € F}.

Semantics using accepting computation:
A computation of a DFA A = (5, %, 9,50, F) ona word w = apa; .. . 4,_1
is the finite sequence s, 41,51, a2, . . . ,A,—1, 5y, Where sg is the starting
state, and (s;—1,4;) = Sit1.
A word w is accepted by a DFA A if the last state of the unique
computation of A on w is an accept state, i.e. s, € F.
Language of a DFA A

L(A) = {w : word w is accepted by DFA A}.
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Deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by a DFA A = (S, ¥, 0, s0, F) is defined as:

L(A) Z {w : §(w) € F}.

Semantics using accepting computation:
A computation of a DFA A = (5, %, 9,50, F) ona word w = apa; .. . 4,_1
is the finite sequence s, 41,51, a2, . . . ,A,—1, 5y, Where sg is the starting
state, and (s;—1,4;) = Sit1.
A word w is accepted by a DFA A if the last state of the unique
computation of A on w is an accept state, i.e. s, € F.
Language of a DFA A

L(A) = {w : word w is accepted by DFA A}.

Proposition

Both semantics define the same language. Proof by induction.
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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.
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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

1. Unionn AUB={w : we Aorw € B}

2. Intersection: ANB={w : we Aandw € B}
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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

1. Unionn AUB={w : we Aorw € B}

2. Intersection: ANB={w : we Aand w € B}

3. Complementation: A = {w : w ¢ A}
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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

1. Unionn AUB={w : we Aorw € B}

2. Intersection: ANB={w : we Aand w € B}

3. Complementation: A = {w : w ¢ A}

4. Concatenation: AB = {wv : w € Aand v € B}
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Regular Languages: Properties

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:
1. Unionn AUB={w : we Aorw € B}
. Intersection: ANB={w : we Aandw € B}
. Complementation: A = {w : w ¢ A}
. Concatenation: AB = {wv : we€ Aand v € B}
. Closure (Kleene Closure, or Star):
A* ={wiwy ... wy : k> 0and w; € A}. In other words:

A* = UiZOAi

where A? = (), Al = A, A2 = AA, and so on.
Define the notion of a set being closed under an operation (say, N and x).

Q1 WO DN
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Regular Languages: Properties

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:
1. Uniont AUB={w : we Aorw € B}
Intersection: ANB={w : we Aand w € B}
Complementation: A = {w : w ¢ A}
Concatenation: AB = {wv : w € Aand v € B}
Closure (Kleene Closure, or Star):
A* ={wiwy ... wy : k> 0and w; € A}. In other words:

A* = UiZOAi
where A? = (), Al = A, A2 = AA, and so on.

Gl LD

Define the notion of a set being closed under an operation (say, N and x).

Theorem

The class of regular languages is closed under union, intersection,
complementation, concatenation, andKleene closure.
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Closure under Union

Exercise
Construct a DFA accepting the following language:

L= {w e {0,1}* : number of 1's is even or number of 0’s is multiple of 3}
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Closure under Union

Exercise
Construct a DFA accepting the following language:

L= {w e {0,1}* : number of 1's is even or number of 0’s is multiple of 3}
Or equivalently, L = L; U L, where

Ly = {we{0,1}* : number of 1's is even}
L, = {we{0,1}" : number of 0’s is multiple of 3}
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Closure under Union

Exercise
Construct a DFA accepting the following language:

L= {w e {0,1}* : number of 1's is even or number of 0’s is multiple of 3}
Or equivalently, L = L; U L, where

Ly = {we{0,1}* : number of 1's is even}
L, = {we{0,1}" : number of 0’s is multiple of 3}

“The intuitive idea of simulating both automata together..” Generalize!
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

Let M1 = (Sl, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be finite
automata accepting these languages.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Let A; and A; be regular languages.

Let M1 = (Sl, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be finite
automata accepting these languages.
Simulate both automata together!
Product Construction:
We define M = (S, X%, 9, s, F) where
S = S] X Sz,
0 : S x ¥ — Sissuch that §((s1,52),a) = (6(s1,4),0(s2,a)) forall s; € 54,
sy € Sy,anda € 3,
s = (51,52);
F = (Fl X Sz) U (Sl X Fz).
Prove that M accepts A; U A, (How?)

The language A; U A; is regular since it is accepted by a DFA M.

— f41

Ashutosh Trivedi Lecture 3: Nondeterminism



Closure under Intersection

Lemma
The class of regular languages is closed under intersection.

Proof.
Let A; and A; be regular languages.

Let M1 = (Sl, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be finite
automata accepting these languages.
Simulate both automata together!
Product Construction:
We define M = (S, %, 9, s, F) where
S = S] X Sz,
0 :S x ¥ — Sissuch that §((s1,52),a) = (6(s1,4),0(s2,a)) forall s; € 51,
$» € Sp,anda € %,
s = (51,52);
F=(F x ).
Prove that M accepts A; N A, (How?)
The language A N A; is regular since it is accepted by a DFA M.

— f41
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Closure under Complementation

Exercise
Construct a DFA accepting the following language:

L={we{0,1}" : wisaword that does not contain 110}
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Closure under Complementation

Exercise
Construct a DFA accepting the following language:

L={we{0,1}" : wisaword that does not contain 110}
Or, equivalently, L = {0,1}* \ L’ where

L' ={w € {0,1}* : wis aword that contains 110}
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Closure under Complementation

Exercise
Construct a DFA accepting the following language:

L={we{0,1}" : wisaword that does not contain 110}
Or, equivalently, L = {0,1}* \ L’ where

L' ={w € {0,1}* : wis aword that contains 110}

“Find the differences between automata accepting L and L'”. Generalize!
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Closure under Complementation

Lemma
The class of reqular languages is closed under complementation.

Proof.

Let A be a regular language over Y. Let A be the set ¥* \ A.
Let M = (S,%,6,s,F) be a DFA accepting A.

Complementation:
We define M’ = (S, %, ', s, F') where
s =s,
§ 8" x ¥ — S is such that §’(s,a) = §(s,a) foralls € S,anda € &,
s’ =s; and
F=S\FE

Prove that M accepts A. (How?)
The language A is regular since it is accepted by a DFA M.
[
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Closure under Concatenation

Exercise
Construct a DFA accepting the following language:

L = {wyw, : no. of 1’s in wy is even and no. of 0’s is w, is multiple of 3}
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Closure under Concatenation

Exercise
Construct a DFA accepting the following language:

L = {wyw, : no. of 1’s in wy is even and no. of 0’s is w, is multiple of 3}
Or equivalently, L = L; - L, where

Ly = {we{0,1}* : number of 1's is even}
L, = {we{0,1}" : number of 0’s is multiple of 3}
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Closure under Concatenation

Exercise
Construct a DFA accepting the following language:

L = {wyw, : no. of 1’s in wy is even and no. of 0’s is w, is multiple of 3}
Or equivalently, L = L; - L, where

Ly = {we{0,1}* : number of 1's is even}
L, = {we{0,1}" : number of 0’s is multiple of 3}

“The intuitive idea of ¢ transitions..”

Ashutosh Trivedi - 14 of 41

Ashutosh Trivedi Lecture 3: Nondeterminism



Closure under Concatenation

Lemma

The class of reqular languages is closed under concatenation.

Proof.
(Attempt).
Let A; and A; be regular languages.

Let My = (51,%, 01,51, F1) and M, = (52, >, 00,57, Fz) be finite
automata accepting these languages.

How can we find an automaton that accepts the concatenation?
Does this automaton fit our definition of a finite state automaton?

Determinism vs Non-determinism
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Nondeterministic Finite State Automata
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Nondeterministic Finite State Automata

Michael O. Rabin Dana Scott
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Non-deterministic Finite State Automata

0,1 0,1

07

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Non-deterministic Finite State Automata

0,1 0,1

07

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

Fora function § : S x ¥ — 25 we define extended transition function
§: S x ©* — 25 using the following inductive definition:

A {9} ifw=ce
6(q, w) = U d(p,a) ifw=xast xeX*andaeci.
ped(g.x)
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Non-deterministic Finite State Automata

0,1 0,1
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A non-deterministic finite state automaton (NFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by an NFA A = (5,3, 6,50, F) is defined as:
L(A) € {w : §(w)NF +#0}.
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Computation of an NFA
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Non-deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by an NFA A = (S, 3, 6, 50, F) is defined:

L(A) = {w : (w)NF #0}.

Semantics using accepting computation:
A computation of an NFA on a word w = aga; . . . a,—1 is a finite
sequence
50,71,81,72,...,¥k—1,5n
where sy is the starting state, and s;;1 € J(si_1, ;) and
Yory...7e—1 =4aopdy ...0,—1.
A word w is accepted by an NFA A if the last state of some
computation of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : word wis accepted by NFA A}.

Proposition

Both semantics define the same language. Proof by induction.
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Why study NFA?

NFAs are often more convenient to design than DFAs, e.g.:
{w : w contains 1 in the third last position}.
{w : wis a multiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA
Consider the language of words having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.
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Why study NFA?

NFAs are often more convenient to design than DFAs, e.g.:
{w : w contains 1 in the third last position}.
{w : wis a multiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA

Consider the language of words having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.

And, surprisingly perhaps:
Theorem (DFA=NFA)

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.

Ashutosh Trivedi - 22 of 41

Ashutosh Trivedi Lecture 3: Nondeterminism



Computation of an NFA: An observation
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c-free NFA = DFA

Let A = (S,3,9,s0, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=1,

§": 2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F' C S issuchthat FF = {P : PNF # (}.

Theorem (e-free NFA = DFA)

L(A) = L(Det(A)). By induction, hint §(sg, w) = 8'({so}, w).

Exercise (3.1)
Extend the proof for NFA with e transitions. hint: e-closure
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that §(sy, w) = & ({so},w). We
prove it by induction on the length of w.
Base case: Let the size of wbe 0, i.e. w = . The base case follows
immediately from the definition of extended transition functions:

5(s0,€) = e and &' ({so}, w) = e.

Induction Hypothesis: Assume that for all words w € ¥* of size n we
have that 6(sp, w) = &' ({so}, w).

Induction Step: Let w = xa where x € ¥* and a € ¥ be a word of size
n + 1, and hence x is of size n. Now observe,

(s, xa) = §(s,a), by definition of 4.
y

5€5(s0,x)

= U (s, a), from inductive hypothesis.
s€d’({so},x)
= & (8'({so},x),a), from definition &' (P, a) U 5(s,a)
seP
= &'({s0}, xa), by definition of &".
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Equivalence of NFA and DFA

Exercise (In class)

Determinize the following automaton:

0,1
0,1 0,1
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Complementation of the Language of a DFA
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Hint: Simply swap the accepting and non-accepting states!
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Complementation of a DFA

Theorem

Complementation of the language of a DFA A = (S, X, 9, so, F) is the language
accepted by the DFA A’ = (S, %, d,s0, S \ F).

Proof.
L(A) = {w e ©* : §(sp,w) € F},
S*\L(A) ={weX*: (so7 w) ¢ F},
L(A) ={w e X* : (sp,w) € S\ F}, and

transition function is total.
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Complementation of the language of an NFA
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Question: Can we simply swap the accepting and non-accepting states?
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Complementation of the language of a NFA

Question: Can we simply swap the accepting and non-accepting states?

Let the NFA A be (5,3, 0, s0, F) and let the NFA A’ be (S, %, 0,50, S \ F) the
NFA after swapping the accepting states.

L(A) = {w e ©* : §(so,w) NE # 0},

L(A) = {w e £* : §(so,w) N (S\ F) # 0}.

Consider, the complement language of A

S \L(A) = {we* : §(so,w)NF=0}
= {we¥* : §(so,w) CS\F}

Hence L(A") does not quite capture the complement. Moreover, the
condition for ¥* \ L(.A) is not quite captured by either DFA or NFA.

N
<
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Finite State Automata

Nondeterministic Finite State Automata

Alternation
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Universal Non-deterministic Finite Automata

0,1 0,1
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A universal non-deterministic finite state automaton (UNFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

The language L(A) accepted by a UNFA A = (S, 3, 4,50, F) is defined as:
L(A) = {w : §(w) C F}.
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Computation of an UNFA
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Universal Non-deterministic Finite Automata

Semantics using extended transition function:
The language L(.A) accepted by an NFA A = (S, %, 4, 59, F) is defined
as:
L(A) = {w : §(w) C F}.
Semantics using accepting computation:
A computation of an NFA on a word w = apa; . . . a,_1 is a finite
sequence
50,71,581,¥2y .y 7k—1,5n
where sy is the starting state, and s;;1 € 6(s;—1,7;) and
rory..."rg—1 =4aopdy ...Aq,—-1.
A word w is accepted by an NFA A if the last state of all computations
of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : word w is accepted by NFA A}.

Proposition

Both semantics define the same language. Proof by induction.
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e-free UNFA = DFA

Let A = (S,%, 9,50, F) be an e-free UNFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=1,

§": 2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F' C S issuchthatFF ={P : P C F}.

Theorem (e-free UNFA = DFA)
L(A) = L(Det(A)). By induction, hint &(so, w) = &' (so, w).
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e-free UNFA = DFA

Let A = (S,%, 9,50, F) be an e-free UNFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=1,

§": 2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F' C S issuchthatFF ={P : P C F}.

Theorem (e-free UNFA = DFA)

L(A) = L(Det(A)). By induction, hint &(so, w) = &' (so, w).

Exercise (3.2)
Extend the proof for UNFA with ¢ transitions.
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Complementation of an NFA

Theorem

Complementation of the language of an NFA A = (S, %, 6, s, F) is the language
accepted by the UNFA A’ = (S,%, 6,50, 5 \ F).

Exercise (3.3)
Write a formal proof for this theorem.
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Alternating Finite State Automata
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Alternating Finite State Automata
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An alternating finite state automaton (AFA) is a tuple
A =(S,53,5v,%, 6,50, F), where:

S is a finite set called the states with a partition S5 and Sy;
¥ is a finite set called the alphabet;
§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Computation of an AFA
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Universal Non-deterministic Finite Automata

A computation of an AFA on a word w = aoa; .. .4, is a game graph
G(A,w) =(5x%x{0,1,2,...,n —1},E) where:

Nodes in S5 x {0,1,2,...,n — 1} are controlled by Eva and nodes in

Sv x {0,1,2,...,n} are controlled by Adam; and

((s,4),(s',i+ 1)) € Eifs’ € §(s,a;).

Initially a token is in (s, 0) node, and at every step the controller of
the current node chooses the successor node.

Eva wins if the node reached at level i is an accepting state node,
otherwise Adam wins.

We say that Eva has a winning strategy if she can make her decisions
no matter how Adam plays.

A word w is accepted by an AFA A if Eva has a winning strategy in
the graph G(A, w).

Language of an AFA A L(A) = {w : word w is accepted by AFA A}.
Example.
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e-free AFA = NFA

Let A = (S, 53, 5v, %, §,s0, F) be an e-free AFA. Consider the NFA
NDet(A) = (§',%',4', sy, F') where
g/ =92S
¥ =3,
§':25 x ¥ — 2% such that Q € §(P,a) if
for all universal states p € P N Sy we have that 6(p,a) C Q and
for all existential states p € P N S5 we have that 6(p,a) N Q # 0,

so = {so}, and
F' C S is such that F' = 2F \ ().

Theorem (e-free AFA = NFA)
L(A) = L(Det(A)).
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