CS 208: Automata Theory and Logic DFA Equivalence and Minimization

Ashutosh Trivedi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

DFA Equivalence and Minimization

1. Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
2. Recall the definition of extended transition function $\hat{\delta}$.
3. Let $L(A, q)$ be the languages $\{w: \hat{\delta}(q, w) \in F\}$
4. Recall the language of A is defined as $L(A)=L\left(A, q_{0}\right)$.
5. Two states $q_{1}, q_{2} \in Q$ are equivalent if $L\left(A, q_{1}\right)=L\left(A, q_{2}\right)$.
6. We say that two DFAs A_{1} and A_{2} are equivalent iff $L\left(A_{1}\right)=L\left(A_{2}\right)$.

Theorem (DFA Equivalence)

For every DFA there exists a unique (up to state naming) minimal DFA.

DFA Equivalence and Minimization

1. Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
2. Recall the definition of extended transition function $\hat{\delta}$.
3. Let $L(A, q)$ be the languages $\{w: \hat{\delta}(q, w) \in F\}$
4. Recall the language of A is defined as $L(A)=L\left(A, q_{0}\right)$.
5. Two states $q_{1}, q_{2} \in Q$ are equivalent if $L\left(A, q_{1}\right)=L\left(A, q_{2}\right)$.
6. We say that two DFAs A_{1} and A_{2} are equivalent iff $L\left(A_{1}\right)=L\left(A_{2}\right)$.

Theorem (DFA Equivalence)

For every DFA there exists a unique (up to state naming) minimal DFA.
How to minimize DFAs?

How to minimize a DFA?

Two observations:

- Removing unreachable states: removing states unreachable from the start state does not change the language accepted by a DFA.

How to minimize a DFA?

Two observations:

- Removing unreachable states: removing states unreachable from the start state does not change the language accepted by a DFA.
- Merging equivalent states: merging equivalent states does not change the language accepted by a DFA.

How to minimize a DFA?

Two observations:

- Removing unreachable states: removing states unreachable from the start state does not change the language accepted by a DFA.
- Merging equivalent states: merging equivalent states does not change the language accepted by a DFA.
Algorithms:

1. Breadth-first search or depth-first search (to identify reachable states)
2. table-filling algorithm (by E. F. Moore) (other algorithms exist due to Hopcroft and Brzozowski)

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

- Formally, two states q_{1}, q_{2} are distinguishable, if there exists a string $w \in \Sigma^{*}$ such that exactly one of $\hat{\delta}\left(q_{1}, w\right)$ and $\delta\left(q_{2}, w\right)$ is an accepting state.
Table-filling algorithm is recursive discovery of distinguishable pairs.

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

- Formally, two states q_{1}, q_{2} are distinguishable, if there exists a string $w \in \Sigma^{*}$ such that exactly one of $\hat{\delta}\left(q_{1}, w\right)$ and $\delta\left(q_{2}, w\right)$ is an accepting state.

Table-filling algorithm is recursive discovery of distinguishable pairs.

- Basis: Pair (p, q) is distinguishable if $p \in F$ and $q \notin F$.

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

- Formally, two states q_{1}, q_{2} are distinguishable, if there exists a string $w \in \Sigma^{*}$ such that exactly one of $\hat{\delta}\left(q_{1}, w\right)$ and $\delta\left(q_{2}, w\right)$ is an accepting state.

Table-filling algorithm is recursive discovery of distinguishable pairs.

- Basis: Pair (p, q) is distinguishable if $p \in F$ and $q \notin F$. why?

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

- Formally, two states q_{1}, q_{2} are distinguishable, if there exists a string $w \in \Sigma^{*}$ such that exactly one of $\hat{\delta}\left(q_{1}, w\right)$ and $\delta\left(q_{2}, w\right)$ is an accepting state.
Table-filling algorithm is recursive discovery of distinguishable pairs.
- Basis: Pair (p, q) is distinguishable if $p \in F$ and $q \notin F$. why?
- Induction: Pair (p, q) is distinguishable if states $\delta(p, a)$ and $\delta(q, a)$ are distinguishable for some $a \in \Sigma$.

Table-filling algorithm

Two states are distinguishable if they are not equivalent.

- Formally, two states q_{1}, q_{2} are distinguishable, if there exists a string $w \in \Sigma^{*}$ such that exactly one of $\hat{\delta}\left(q_{1}, w\right)$ and $\delta\left(q_{2}, w\right)$ is an accepting state.
Table-filling algorithm is recursive discovery of distinguishable pairs.
- Basis: Pair (p, q) is distinguishable if $p \in F$ and $q \notin F$. why?
- Induction: Pair (p, q) is distinguishable if states $\delta(p, a)$ and $\delta(q, a)$ are distinguishable for some $a \in \Sigma$. why?

Table-filling algorithm

Two states are distinguishable if they are not equivalent.
Formally, two states q_{1}, q_{2} are distinguishable, if there exists a string $w \in \Sigma^{*}$ such that exactly one of $\hat{\delta}\left(q_{1}, w\right)$ and $\delta\left(q_{2}, w\right)$ is an accepting state.
Table-filling algorithm is recursive discovery of distinguishable pairs.
Basis: Pair (p, q) is distinguishable if $p \in F$ and $q \notin F$. why?
Induction: Pair (p, q) is distinguishable if states $\delta(p, a)$ and $\delta(q, a)$ are distinguishable for some $a \in \Sigma$. why?

Table-Filling Algorithm:

1. Distinguishable $=\{(p, q): p \in F$ and $q \notin F\}$.
2. Repeat while no new pair is added
2.1 for every $a \in \Sigma$

$$
\text { add }(p, q) \text { to Distinguishable if }(\delta(p, a), \delta(q, a)) \in \text { DISTINGUISHABLE. }
$$

3. Return Distinguishable.

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction.

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction. Assume that there is a pair (p, q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them). Let us call such pair (p, q) a bad pair.

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction. Assume that there is a pair (p, q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them). Let us call such pair (p, q) a bad pair. There must be a string $w \in \Sigma^{*}$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction. Assume that there is a pair (p, q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them). Let us call such pair (p, q) a bad pair. There must be a string $w \in \Sigma^{*}$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).

Notice that w can not be ϵ

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction. Assume that there is a pair (p, q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them). Let us call such pair (p, q) a bad pair. There must be a string $w \in \Sigma^{*}$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).

Notice that w can not be ϵ
Let w be of the form $a x$. Since p and q are distinguishable, we know that
exactly one of $\hat{\delta}(p, a x)$ and $\hat{\delta}(q, a x)$ is accepting.
Then $p^{\prime}=\delta(p, a)$ and $q^{\prime}=\delta(q, a)$ are also distinguished by string x.

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction. Assume that there is a pair (p, q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them). Let us call such pair (p, q) a bad pair. There must be a string $w \in \Sigma^{*}$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).

Notice that w can not be ϵ
Let w be of the form $a x$. Since p and q are distinguishable, we know that exactly one of $\hat{\delta}(p, a x)$ and $\hat{\delta}(q, a x)$ is accepting.
Then $p^{\prime}=\delta(p, a)$ and $q^{\prime}=\delta(q, a)$ are also distinguished by string x. if $\left(p^{\prime}, q^{\prime}\right)$ were discovered by table-filling algorithm and (p, q) must have been discovered as well.

Correctness of Table-Filling Algorithm

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

The proof is by contradiction.
Assume that there is a pair (p, q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
Let us call such pair (p, q) a bad pair.
There must be a string $w \in \Sigma^{*}$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).

Notice that w can not be ϵ
Let w be of the form $a x$. Since p and q are distinguishable, we know that exactly one of $\hat{\delta}(p, a x)$ and $\hat{\delta}(q, a x)$ is accepting.
Then $p^{\prime}=\delta(p, a)$ and $q^{\prime}=\delta(q, a)$ are also distinguished by string x. if $\left(p^{\prime}, q^{\prime}\right)$ were discovered by table-filling algorithm and (p, q) must have been discovered as well.
If $\left(p^{\prime}, q^{\prime}\right)$ were not discovered by table-filling algorithm, then $\left(p^{\prime}, q^{\prime}\right)$ is a
bad pair with a shorter distinguishing string.

Minimization of DFAs

- Let A be a DFA with no unreachable state.
- Let $\equiv_{A} \subseteq Q \times Q$ be the state equivalence relation (computed by, say table-filling algorithm).
- Note that \equiv_{A} is an equivalence relation.
- Let us write $[q]$ for the equivalence class of the state q.

Minimization of DFAs

- Let A be a DFA with no unreachable state.
- Let $\equiv_{A} \subseteq Q \times Q$ be the state equivalence relation (computed by, say table-filling algorithm).
- Note that \equiv_{A} is an equivalence relation.
- Let us write $[q]$ for the equivalence class of the state q.
- Given a DFA A and \equiv_{A} we can minimize A to the DFA $A_{\equiv}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, called Quotient Automata, where
$-Q^{\prime}=\{[q]: q \in Q\}$,
$-\Sigma^{\prime}=\Sigma$,
$-\delta^{\prime}([q], a)=\delta(q, a)$ for all $a \in \Sigma$,
$-q_{0}^{\prime}=\left[q_{0}\right]$, and
$-F^{\prime}=\{[q]: q \in F\}$.

Minimization of DFAs

Let A be a DFA with no unreachable state.

- Let $\equiv_{A} \subseteq Q \times Q$ be the state equivalence relation (computed by, say table-filling algorithm).
- Note that \equiv_{A} is an equivalence relation.
- Let us write $[q]$ for the equivalence class of the state q.

Given a DFA A and \equiv_{A} we can minimize A to the DFA
$A_{\equiv}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, called Quotient Automata, where
$Q^{\prime}=\{[q]: q \in Q\}$,
$\Sigma^{\prime}=\Sigma$,

- $\delta^{\prime}([q], a)=\delta(q, a)$ for all $a \in \Sigma$,
$q_{0}^{\prime}=\left[q_{0}\right]$, and
$F^{\prime}=\{[q]: q \in F\}$.

Theorem

A_{\equiv} is the minimum and unique (up to state renaming) DFA equivalent to A.

Proof of Minimality

Theorem

A_{\equiv} is the minimum and unique (up to state renaming) DFA equivalent to A.

Proof.

The proof is by contradiction.
Assume that there is a DFA B whose size is smaller than A_{\equiv} and accepts that same language.
Compute equivalent states of A_{\equiv} and B using table-filling algorithm.
The initial states of both DFAs must be equivalent. (Why?)
After reading any string w from their initial states, both DFAs will go to states that are equivalent. (Why?)
For every state of A_{\equiv} there is an equivalent state in B.
Since the number of states of B are less than that of $A_{\equiv \text {, there must be }}$ at least two states p, q of A 三 that are equivalent to some state of B.
Hence p and q must be equivalent, a contradiction.

DFA Equivalence and Minimization

Myhill-Nerode Theorem

Pumping Lemma

- Given a languages L, two strings $u, v \in L$ are equivalent if for all strings $w \in \Sigma$ we have that $u . w \in L$ iff $v . w \in L$.
- Let $\equiv_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ be such string-equivalence relation.
- Note that \equiv_{L} is an equivalence relation.
- Consider the equivalence classes of \equiv_{L}.
- When there are only finitely mane classes?

Myhill-Nerode Theorem

John Myhill

Anil Nerode

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Myhill-Nerode Theorem

John Myhill

Anil Nerode

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.
Moreover, the number of states in the minimum DFA accepting L is equal to the number of equivalence classes in \equiv_{L}.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Proof.

The proof is in two parts.
If L is regular, then a string-equivalence relation \equiv_{L} with finitely many classes can be given by states of DFA accepting L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Proof.

The proof is in two parts.
If L is regular, then a string-equivalence relation \equiv_{L} with finitely many classes can be given by states of DFA accepting L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Proof.

The proof is in two parts.
If L is regular, then a string-equivalence relation \equiv_{L} with finitely many classes can be given by states of DFA accepting L. How?
If there is a string-equivalence relation \equiv_{L} with finitely many classes, one can find a DFA accepting L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Proof.

The proof is in two parts.
If L is regular, then a string-equivalence relation \equiv_{L} with finitely many classes can be given by states of DFA accepting L.
If there is a string-equivalence relation \equiv_{L} with finitely many classes, one can find a DFA accepting L.

Applying Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Applying Myhill-Nerode Theorem

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_{L} with finitely many classes.

Equivalently,

A language L is nonregular if and only if there exists an infinite subset M of $\Sigma *$ where any two elements of M are distinguishable with respect to L.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. The proof is by contradiction.
2. Assume that L is regular.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. The proof is by contradiction.
2. Assume that L is regular.
3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_{L} over L with finitely equivalence classes.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. The proof is by contradiction.
2. Assume that L is regular.
3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_{L} over L with finitely equivalence classes.
4. Let us consider the set of strings $\left\{0,00,000, \ldots, 0^{i}, \ldots\right\}$.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. The proof is by contradiction.
2. Assume that L is regular.
3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_{L} over L with finitely equivalence classes.
4. Let us consider the set of strings $\left\{0,00,000, \ldots, 0^{i}, \ldots\right\}$.
5. It must be the case that some two string 0^{m} and 0^{n}, with $m \neq n$ are mapped to same equivalence class.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. The proof is by contradiction.
2. Assume that L is regular.
3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_{L} over L with finitely equivalence classes.
4. Let us consider the set of strings $\left\{0,00,000, \ldots, 0^{i}, \ldots\right\}$.
5. It must be the case that some two string 0^{m} and 0^{n}, with $m \neq n$ are mapped to same equivalence class.
6. It implies that for all strings $w \in \Sigma^{*}$ we have that $0^{m} . w \in L$ iff $0^{n} . w \in L$.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. The proof is by contradiction.
2. Assume that L is regular.
3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_{L} over L with finitely equivalence classes.
4. Let us consider the set of strings $\left\{0,00,000, \ldots, 0^{i}, \ldots\right\}$.
5. It must be the case that some two string 0^{m} and 0^{n}, with $m \neq n$ are mapped to same equivalence class.
6. It implies that for all strings $w \in \Sigma^{*}$ we have that $0^{m} . w \in L$ iff $0^{n} . w \in L$.
7. However, $0^{m} 1^{m} \in L$ but $0^{n} 1^{m} \notin L$, a contradiction.
8. Hence L is not regular.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only if there exists an infinite subset M of $\Sigma *$ where any two elements of M are distinguishable with respect to L.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only if there exists an infinite subset M of $\Sigma *$ where any two elements of M are distinguishable with respect to L.
2. Consider the set $M=\left\{0^{i}: i \geq 0\right\}$.

Applying Myhill-Nerode Theorem

Theorem

The language $L=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular.

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only if there exists an infinite subset M of $\Sigma *$ where any two elements of M are distinguishable with respect to L.
2. Consider the set $M=\left\{0^{i}: i \geq 0\right\}$.
3. Since any two string in M are distinguishable with respect to L (i.e. $0^{m} 0^{n} \in L$ but $0^{n} 1^{m} \notin L$ for $n \neq m$), it follows from Myhill-Nerode theorem that L is a non-regular language.

Some languages are not regular!

The following languages are regular or non-regular?
The language $\left\{0^{n} 1^{n}: n \geq 0\right\}$

- The set of strings having an equal number of 0's and 1's
- The set of strings with an equal number of occurrences of 01 and 10.
- The language $\left\{w w: w \in\{0,1\}^{*}\right\}$
- The language $\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$
- The language $\left\{0^{i} 1^{j}: i>j\right\}$
- The language $\left\{0^{i} 1^{j}: i \leq j\right\}$
- The language of palindromes of $\{0,1\}$

Some languages are not regular!

The following languages are regular or non-regular?
The language $\left\{0^{n} 1^{n}: n \geq 0\right\}$

- The set of strings having an equal number of 0's and 1's
- The set of strings with an equal number of occurrences of 01 and 10.
- The language $\left\{w w: w \in\{0,1\}^{*}\right\}$
- The language $\left\{w \bar{w}: w \in\{0,1\}^{*}\right\}$
- The language $\left\{0^{i} 1^{j}: i>j\right\}$
- The language $\left\{0^{i} 1^{j}: i \leq j\right\}$
- The language of palindromes of $\{0,1\}$

DFA Equivalence and Minimization

Myhill-Nerode Theorem

Pumping Lemma

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L)

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that
for every string $w \in L$ of length greater than p, there exists an infinite family of strings belonging to L.

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that
for every string $w \in L$ of length greater than p, there exists an infinite family of strings belonging to L.

Why?

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that
for every string $w \in L$ of length greater than p, there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that
for every string $w \in L$ of length greater than p, there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that
for every string $w \in L$ of length greater than p, there exists an infinite family of strings belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!
If L is a regular language, then
there exists a constant (pumping length) p such that
for every string $w \in L$ s.t. $|w| \geq p$
there exists a division of w in strings x, y, and z s.t. $w=x y z$ such that

1. $|y|>0$,
2. $|x y| \leq p$, and
3. for all $i \geq 0$ we have that $x y^{i} z \in L$.

A simple observation about DFA

string
computation
string

A simple observation about DFA

Image source: Wikipedia
Let $A=\left(S, \Sigma, \delta, s_{0}, F\right)$ be a DFA.

- For every string $w \in \Sigma^{*}$ of the length greater than or equal to the number of states of A, i.e. $|w| \geq|S|$, we have that
the unique computation of A on w re-visits at least one state after reading first $|S|$ letters !

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

If L is a regular language, then there exists a constant (pumping length) p such that for every string $w \in L$ s.t. $|w| \geq p$ there exists a division of w in strings x, y, and z s.t. $w=x y z$ such that

1. $|y|>0$,
2. $|x y| \leq p$, and
3. for all $i \geq 0$ we have that $x y^{i} z \in L$.

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

If L is a regular language, then there exists a constant (pumping length) p such that for every string $w \in L$ s.t. $|w| \geq p$ there exists a division of w in strings x, y, and z s.t. $w=x y z$ such that

1. $|y|>0$,
2. $|x y| \leq p$, and
3. for all $i \geq 0$ we have that $x y^{i} z \in L$.

Let A be the DFA accepting L and p be the set of states in A.
Let $w=\left(a_{1} a_{2} \ldots a_{k}\right) \in L$ be any string of length $\geq p$.
Let $s_{0} a_{1} s_{1} a_{2} s_{2} \ldots a_{k} s_{k}$ be the run of w on A.
Consider first $n+1$ states-at least one state must occur twice.
Let i be the index of first state that the run revisits and let j be the index of second occurrence of that state, i.e. $s_{i}=s_{j}$,
Let $x=a_{1} a_{2} \ldots a_{i-1}$ and $y=a_{i} a_{i+1} \ldots a_{j-1}$, and $z=a_{j} a_{j+1} \ldots a_{k}$. notice that $|y|>0$ and $|x y| \leq n$
Also, notice that for all $i \geq 0$ the string $x y^{i} z$ is also in L.

Applying Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

$L \in \Sigma^{*}$ is a regular language

there exists $p \geq 1$ such that for all strings $w \in L$ with $|w| \geq p$ we have that there exists $x, y, z \in \Sigma^{*}$ with $w=x y z,|y|>0,|x y| \leq p$ such that for all $i \geq 0$ we have that
$x y^{i} z \in L$.

Applying Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

$L \in \Sigma^{*}$ is a regular language
\Longrightarrow there exists $p \geq 1$ such that
for all strings $w \in L$ with $|w| \geq p$ we have that
there exists $x, y, z \in \Sigma^{*}$ with $w=x y z,|y|>0,|x y| \leq p$ such that
for all $i \geq 0$ we have that
$x y^{i} z \in L$.

Pumping Lemma (Contrapositive)

For all $p \geq 1$ we have that there exists a string $w \in L$ with $|w| \geq p$ such that for all $x, y, z \in \Sigma^{*}$ with $w=x y z,|y|>0,|x y| \leq p$ we have that there exists $i \geq 0$ such that
$x y^{i} z \notin L$
$L \in \Sigma^{*}$ is not a regular language.

Applying Pumping Lemma

How to show that a language L is non-regular.

1. Let p be an arbitrary number (pumping length).
2. (Cleverly) Find a representative string w of L of size $\geq p$.
3. Try out all ways to break the string into $x y z$ triplet satisfying that $|y|>0$ and $|x y| \leq n$. If the step 3 was clever enough, there will be finitely many cases to consider.
4. For every triplet show that for some i the string $x y^{i} z$ is not in L, and hence it yields contradiction with pumping lemma.

Applying Pumping Lemma

Theorem

Prove that the language $L=\left\{0^{n} 1^{n}\right\}$ is not regular.

Applying Pumping Lemma

Theorem

Prove that the language $L=\left\{0^{n} 1^{n}\right\}$ is not regular.

Proof.

1. State the contrapositive of Pumping lemma.
2. Let p be an arbitrary number.
3. Consider the string $0^{p} 1^{p} \in L$. Notice that $\left|0^{p} 1^{p}\right| \geq p$.

Applying Pumping Lemma

Theorem

Prove that the language $L=\left\{0^{n} 1^{n}\right\}$ is not regular.

Proof.

1. State the contrapositive of Pumping lemma.
2. Let p be an arbitrary number.
3. Consider the string $0^{p} 1^{p} \in L$. Notice that $\left|0^{p} 1^{p}\right| \geq p$.
4. Only way to break this string in $x y z$ triplets such that $|x y| \leq p$ and $y \neq \varepsilon$ is to choose $y=0^{k}$ for some $1 \leq k \leq p$.

Applying Pumping Lemma

Theorem

Prove that the language $L=\left\{0^{n} 1^{n}\right\}$ is not regular.

Proof.

1. State the contrapositive of Pumping lemma.
2. Let p be an arbitrary number.
3. Consider the string $0^{p} 1^{p} \in L$. Notice that $\left|0^{p} 1^{p}\right| \geq p$.
4. Only way to break this string in $x y z$ triplets such that $|x y| \leq p$ and $y \neq \varepsilon$ is to choose $y=0^{k}$ for some $1 \leq k \leq p$.
5. For each such triplet, there exists an i (say $i=0$) such that $x y^{i} z \notin L$.
6. Hence L is non-regular.

Proving a language Regular

Proving Regularity

Pumping Lemma is necessary but not sufficient condition for regularity.

Proving a language Regular

Proving Regularity

Pumping Lemma is necessary but not sufficient condition for regularity.
Consider the language

$$
L=\left\{\# a^{n} b^{n}: n \geq 1\right\} \cup\left\{\#^{k} w: k \neq 1, w \in\{a, b\}^{*}\right\} .
$$

Verify that this language satisfies the pumping condition, but is not regular!

