CS 208: Automata Theory and Logic DFA Equivalence and Minimization

Ashutosh Trivedi

Ashutosh Trivedi - 1 of 24

Ashutosh Trivedi DFA Equivalence and Minimization

DFA Equivalence and Minimization

- 1. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- 2. Recall the definition of extended transition function $\hat{\delta}$.
- 3. Let L(A,q) be the languages $\{w : \hat{\delta}(q,w) \in F\}$
- 4. Recall the language of *A* is defined as $L(A) = L(A, q_0)$.
- 5. Two states $q_1, q_2 \in Q$ are equivalent if $L(A, q_1) = L(A, q_2)$.
- 6. We say that two DFAs A_1 and A_2 are equivalent iff $L(A_1) = L(A_2)$.

Theorem (DFA Equivalence)

For every DFA there exists a unique (up to state naming) minimal DFA.

DFA Equivalence and Minimization

- 1. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA.
- 2. Recall the definition of extended transition function $\hat{\delta}$.
- 3. Let L(A,q) be the languages $\{w : \hat{\delta}(q,w) \in F\}$
- 4. Recall the language of *A* is defined as $L(A) = L(A, q_0)$.
- 5. Two states $q_1, q_2 \in Q$ are equivalent if $L(A, q_1) = L(A, q_2)$.
- 6. We say that two DFAs A_1 and A_2 are equivalent iff $L(A_1) = L(A_2)$.

Theorem (DFA Equivalence)

For every DFA there exists a unique (up to state naming) minimal DFA.

How to minimize DFAs?

Two observations:

- Removing unreachable states: removing states unreachable from the start state does not change the language accepted by a DFA.

Two observations:

- Removing unreachable states: removing states unreachable from the start state does not change the language accepted by a DFA.
- Merging equivalent states: merging equivalent states does not change the language accepted by a DFA.

Two observations:

- Removing unreachable states: removing states unreachable from the start state does not change the language accepted by a DFA.
- Merging equivalent states: merging equivalent states does not change the language accepted by a DFA.

Algorithms:

- 1. Breadth-first search or depth-first search (to identify reachable states)
- 2. table-filling algorithm (by E. F. Moore) (other algorithms exist due to Hopcroft and Brzozowski)

- Two states are distinguishable if they are not equivalent.
- Formally, two states q_1, q_2 are distinguishable, if there exists a string $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$ and $\delta(q_2, w)$ is an accepting state.
- Table-filling algorithm is recursive discovery of distinguishable pairs.

- Two states are distinguishable if they are not equivalent.
- Formally, two states q_1, q_2 are distinguishable, if there exists a string $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$ and $\delta(q_2, w)$ is an accepting state.
- Table-filling algorithm is recursive discovery of distinguishable pairs.
- − Basis: Pair (p,q) is distinguishable if $p \in F$ and $q \notin F$.

- Two states are distinguishable if they are not equivalent.
- Formally, two states q_1, q_2 are distinguishable, if there exists a string $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$ and $\delta(q_2, w)$ is an accepting state.
- Table-filling algorithm is recursive discovery of distinguishable pairs.
- − Basis: Pair (p,q) is distinguishable if $p \in F$ and $q \notin F$. why?

- Two states are distinguishable if they are not equivalent.
- Formally, two states q_1, q_2 are distinguishable, if there exists a string $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$ and $\delta(q_2, w)$ is an accepting state.
- Table-filling algorithm is recursive discovery of distinguishable pairs.
- − Basis: Pair (p,q) is distinguishable if $p \in F$ and $q \notin F$. why?
- Induction: Pair (p,q) is distinguishable if states $\delta(p,a)$ and $\delta(q,a)$ are distinguishable for some $a \in \Sigma$.

- Two states are distinguishable if they are not equivalent.
- Formally, two states q_1, q_2 are distinguishable, if there exists a string $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$ and $\delta(q_2, w)$ is an accepting state.
- Table-filling algorithm is recursive discovery of distinguishable pairs.
- − Basis: Pair (p,q) is distinguishable if $p \in F$ and $q \notin F$. why?
- Induction: Pair (p,q) is distinguishable if states $\delta(p,a)$ and $\delta(q,a)$ are distinguishable for some $a \in \Sigma$. why?

- Two states are distinguishable if they are not equivalent.
- Formally, two states q_1, q_2 are distinguishable, if there exists a string $w \in \Sigma^*$ such that exactly one of $\hat{\delta}(q_1, w)$ and $\delta(q_2, w)$ is an accepting state.
- Table-filling algorithm is recursive discovery of distinguishable pairs.
- − Basis: Pair (p,q) is distinguishable if $p \in F$ and $q \notin F$. why?
- Induction: Pair (p,q) is distinguishable if states $\delta(p,a)$ and $\delta(q,a)$ are distinguishable for some $a \in \Sigma$. why?

TABLE-FILLING ALGORITHM:

- 1. DISTINGUISHABLE = { $(p,q) : p \in F \text{ and } q \notin F$ }.
- 2. Repeat while no new pair is added
 - **2.1** for every $a \in \Sigma$

add (p,q) to Distinguishable if $(\delta(p,a), \delta(q,a)) \in$ Distinguishable.

3. Return DISTINGUISHABLE.

Theorem

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

- The proof is by contradiction.

Theorem

- The proof is by contradiction.
- Assume that there is a pair (*p*, *q*) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
- Let us call such pair (p,q) a bad pair.

Theorem

- The proof is by contradiction.
- Assume that there is a pair (p,q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
- Let us call such pair (p,q) a bad pair.
- There must be a string $w \in \Sigma^*$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).

Theorem

- The proof is by contradiction.
- Assume that there is a pair (p,q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
- Let us call such pair (p,q) a bad pair.
- There must be a string $w \in \Sigma^*$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).
 - Notice that w can not be ϵ (Why?)

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

- The proof is by contradiction.
- Assume that there is a pair (p,q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
- Let us call such pair (p,q) a bad pair.
- There must be a string $w \in \Sigma^*$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).
 - Notice that w can not be ϵ

(Why?)

- Let *w* be of the form *ax*. Since *p* and *q* are distinguishable, we know that exactly one of $\hat{\delta}(p, ax)$ and $\hat{\delta}(q, ax)$ is accepting.
- Then $p' = \delta(p, a)$ and $q' = \delta(q, a)$ are also distinguished by string *x*.

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

- The proof is by contradiction.
- Assume that there is a pair (p,q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
- Let us call such pair (p,q) a bad pair.
- There must be a string $w \in \Sigma^*$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).
 - Notice that w can not be ϵ

(Why?)

- Let *w* be of the form *ax*. Since *p* and *q* are distinguishable, we know that exactly one of $\hat{\delta}(p, ax)$ and $\hat{\delta}(q, ax)$ is accepting.
- Then $p' = \delta(p, a)$ and $q' = \delta(q, a)$ are also distinguished by string *x*.
- if (p', q') were discovered by table-filling algorithm and (p, q) must have been discovered as well.

Theorem

If two states are not distinguished by table-filling algorithm, then they are equivalent.

- The proof is by contradiction.
- Assume that there is a pair (p,q) that is not distinguished by the algorithm, but they are not equivalent, i.e. they are indeed distinguishable (it is just that algorithm did not find them).
- Let us call such pair (p,q) a bad pair.
- There must be a string $w \in \Sigma^*$ that distinguishes a bad pair (p, q). Let us take shortest such distinguishing string w among any bad pair, and consider corresponding bad pair (p, q).
 - Notice that w can not be ϵ

(Why?)

- Let *w* be of the form *ax*. Since *p* and *q* are distinguishable, we know that exactly one of $\hat{\delta}(p, ax)$ and $\hat{\delta}(q, ax)$ is accepting.
- Then $p' = \delta(p, a)$ and $q' = \delta(q, a)$ are also distinguished by string *x*.
- if (p', q') were discovered by table-filling algorithm and (p, q) must have been discovered as well.
- If (p',q') were not discovered by table-filling algorithm, then (p',q') is a bad pair with a shorter distinguishing string.

Minimization of DFAs

- Let *A* be a DFA with no unreachable state.
- Let $\equiv_A \subseteq Q \times Q$ be the state equivalence relation (computed by, say table-filling algorithm).
- Note that \equiv_A is an equivalence relation.
- Let us write [q] for the equivalence class of the state q.

Minimization of DFAs

- Let *A* be a DFA with no unreachable state.
- Let $\equiv_A \subseteq Q \times Q$ be the state equivalence relation (computed by, say table-filling algorithm).
- Note that \equiv_A is an equivalence relation.
- Let us write [q] for the equivalence class of the state q.
- Given a DFA *A* and \equiv_A we can minimize *A* to the DFA $A_{\equiv} = (Q', \Sigma', \delta', q'_0, F')$, called Quotient Automata, where $-Q' = \{[q] : q \in Q\},$ $-\Sigma' = \Sigma,$ $-\delta'([q], a) = \delta(q, a)$ for all $a \in \Sigma,$ $-q'_0 = [q_0]$, and $-F' = \{[q] : q \in F\}.$

Minimization of DFAs

- Let *A* be a DFA with no unreachable state.
- Let $\equiv_A \subseteq Q \times Q$ be the state equivalence relation (computed by, say table-filling algorithm).
- Note that \equiv_A is an equivalence relation.
- Let us write [q] for the equivalence class of the state q.
- Given a DFA *A* and \equiv_A we can minimize *A* to the DFA $A_{\equiv} = (Q', \Sigma', \delta', q'_0, F')$, called Quotient Automata, where $-Q' = \{[q] : q \in Q\}$, $-\Sigma' = \Sigma$, $-\delta'([q], a) = \delta(q, a)$ for all $a \in \Sigma$, $-q'_0 = [q_0]$, and $-F' = \{[q] : q \in F\}$.

Theorem

 A_{\equiv} is the minimum and unique (up to state renaming) DFA equivalent to A.

Proof of Minimality

Theorem

 A_{\equiv} is the minimum and unique (up to state renaming) DFA equivalent to A.

Proof.

- The proof is by contradiction.
- Assume that there is a DFA *B* whose size is smaller than A_{\pm} and accepts that same language.
- Compute equivalent states of A_{\pm} and *B* using table-filling algorithm. The initial states of both DFAs must be equivalent. (Why?)
- After reading any string *w* from their initial states, both DFAs will go to states that are equivalent. (Why?)
- For every state of A_{\equiv} there is an equivalent state in *B*.
- Since the number of states of *B* are less than that of A_{\equiv} , there must be at least two states *p*, *q* of A_{\equiv} that are equivalent to some state of *B*.
- Hence *p* and *q* must be equivalent, a contradiction.

DFA Equivalence and Minimization

Myhill-Nerode Theorem

Pumping Lemma

- Given a languages *L*, two strings $u, v \in L$ are equivalent if for all strings $w \in \Sigma$ we have that $u.w \in L$ iff $v.w \in L$.
- Let $\equiv_L \subseteq \Sigma^* \times \Sigma^*$ be such string-equivalence relation.
- Note that \equiv_L is an equivalence relation.
- Consider the equivalence classes of \equiv_L .
- When there are only finitely mane classes?

Myhill-Nerode Theorem

John Myhill

Anil Nerode

Theorem (Myhill-Nerode Theorem)

A language *L* is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

Myhill-Nerode Theorem

John Myhill

Anil Nerode

Theorem (Myhill-Nerode Theorem)

A language L is regular if and only if there exists a string-equivalence relation \equiv_L *with finitely many classes.*

Moreover, the number of states in the minimum DFA accepting L is equal to the number of equivalence classes in \equiv_L .

A language *L* is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

Proof.

The proof is in two parts.

If *L* is regular, then a string-equivalence relation \equiv_L with finitely many classes can be given by states of DFA accepting *L*.

A language *L* is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

Proof.

The proof is in two parts.

If *L* is regular, then a string-equivalence relation \equiv_L with finitely many classes can be given by states of DFA accepting *L*. How?

A language *L* is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

Proof.

The proof is in two parts.

- If *L* is regular, then a string-equivalence relation \equiv_L with finitely many classes can be given by states of DFA accepting *L*. How?
- If there is a string-equivalence relation \equiv_L with finitely many classes, one can find a DFA accepting *L*.

A language *L* is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

Proof.

The proof is in two parts.

- If *L* is regular, then a string-equivalence relation \equiv_L with finitely many classes can be given by states of DFA accepting *L*. How?
- If there is a string-equivalence relation \equiv_L with finitely many classes, one can find a DFA accepting *L*. How?

A language L is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

A language L is regular if and only if there exists a string-equivalence relation \equiv_L with finitely many classes.

Equivalently,

A language L is nonregular if and only if there exists an infinite subset M of Σ * where any two elements of M are distinguishable with respect to L.

Applying Myhill-Nerode Theorem

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

Applying Myhill-Nerode Theorem

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

Proof.

- 1. The proof is by contradiction.
- 2. Assume that *L* is regular.

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

- 1. The proof is by contradiction.
- 2. Assume that *L* is regular.
- 3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_L over *L* with finitely equivalence classes.

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

- 1. The proof is by contradiction.
- 2. Assume that *L* is regular.
- 3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_L over *L* with finitely equivalence classes.
- 4. Let us consider the set of strings $\{0, 00, 000, \dots, 0^i, \dots\}$.

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

- 1. The proof is by contradiction.
- 2. Assume that *L* is regular.
- 3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_L over *L* with finitely equivalence classes.
- 4. Let us consider the set of strings $\{0, 00, 000, \ldots, 0^i, \ldots\}$.
- 5. It must be the case that some two string 0^m and 0^n , with $m \neq n$ are mapped to same equivalence class.

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

- 1. The proof is by contradiction.
- 2. Assume that *L* is regular.
- 3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_L over *L* with finitely equivalence classes.
- 4. Let us consider the set of strings $\{0, 00, 000, \ldots, 0^i, \ldots\}$.
- 5. It must be the case that some two string 0^m and 0^n , with $m \neq n$ are mapped to same equivalence class.
- 6. It implies that for all strings $w \in \Sigma^*$ we have that $0^m . w \in L$ iff $0^n . w \in L$.

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ *is not regular.*

- 1. The proof is by contradiction.
- 2. Assume that *L* is regular.
- 3. By Myhill-Nerode theorem, there is a string-equivalence relation \equiv_L over *L* with finitely equivalence classes.
- 4. Let us consider the set of strings $\{0, 00, 000, \ldots, 0^i, \ldots\}$.
- 5. It must be the case that some two string 0^m and 0^n , with $m \neq n$ are mapped to same equivalence class.
- 6. It implies that for all strings $w \in \Sigma^*$ we have that $0^m . w \in L$ iff $0^n . w \in L$.
- 7. However, $0^m 1^m \in L$ but $0^n 1^m \notin L$, a contradiction.
- 8. Hence *L* is not regular.

Theorem

The language $L = \{0^n 1^n : n \ge 0\}$ is not regular.

Proof.

Ashutosh Trivedi - 14 of 24

Theorem

```
The language L = \{0^n 1^n : n \ge 0\} is not regular.
```

Proof.

1. From Myhill-Nerode theorem, a language L is nonregular if and only if there exists an infinite subset M of Σ * where any two elements of M are distinguishable with respect to L.

Theorem

```
The language L = \{0^n 1^n : n \ge 0\} is not regular.
```

- 1. From Myhill-Nerode theorem, a language L is nonregular if and only if there exists an infinite subset M of Σ * where any two elements of M are distinguishable with respect to L.
- 2. Consider the set $M = \{0^i : i \ge 0\}$.

Theorem

```
The language L = \{0^n 1^n : n \ge 0\} is not regular.
```

- 1. From Myhill-Nerode theorem, a language L is nonregular if and only if there exists an infinite subset M of Σ * where any two elements of M are distinguishable with respect to L.
- 2. Consider the set $M = \{0^i : i \ge 0\}$.
- 3. Since any two string in *M* are distinguishable with respect to *L* (i.e. $0^m 0^n \in L$ but $0^n 1^m \notin L$ for $n \neq m$), it follows from Myhill-Nerode theorem that *L* is a non-regular language.

The following languages are regular or non-regular?

- The language $\{0^n 1^n : n \ge 0\}$
- The set of strings having an equal number of 0's and 1's
- The set of strings with an equal number of occurrences of 01 and 10.
- The language $\{ww \ : \ w \in \{0,1\}^*\}$
- The language $\{w\overline{w} : w \in \{0,1\}^*\}$
- The language $\{0^i 1^j : i > j\}$
- The language $\{0^i 1^j : i \leq j\}$
- The language of palindromes of $\{0,1\}$

The following languages are regular or non-regular?

- The language $\{0^n 1^n : n \ge 0\}$
- The set of strings having an equal number of 0's and 1's
- The set of strings with an equal number of occurrences of 01 and 10.
- The language $\{ww : w \in \{0,1\}^*\}$
- The language $\{w\overline{w} : w \in \{0,1\}^*\}$
- The language $\{0^i 1^j : i > j\}$
- The language $\{0^i 1^j : i \leq j\}$
- The language of palindromes of $\{0,1\}$

DFA Equivalence and Minimization

Myhill-Nerode Theorem

Pumping Lemma

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L)

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that for every string $w \in L$ of length greater than p, there exists an infinite family of strings belonging to L.

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that for every string $w \in L$ of length greater than p, there exists an *infinite family of strings* belonging to L.

Why?

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that for every string $w \in L$ of length greater than p, there exists an *infinite family of strings* belonging to L.

Why? Think: Regular expressions, DFAs

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that for every string $w \in L$ of length greater than p, there exists an *infinite family of strings* belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!

Theorem (Pumping Lemma for Regular Languages)

For every regular language L there exists a constant p (that depends on L) such that for every string $w \in L$ of length greater than p, there exists an *infinite family of strings* belonging to L.

Why? Think: Regular expressions, DFAs Formalize our intuition!

If *L* is a regular language, then there exists a constant (pumping length) *p* such that for every string $w \in L$ s.t. $|w| \ge p$ there exists a division of *w* in strings *x*, *y*, and *z* s.t. w = xyz such that

- 1. |y| > 0,
- 2. $|xy| \leq p$, and
- 3. for all $i \ge 0$ we have that $xy^i z \in L$.

A simple observation about DFA

Ashutosh Trivedi DFA Equivalence and Minimization

A simple observation about DFA

Image source: Wikipedia

- Let $A = (S, \Sigma, \delta, s_0, F)$ be a DFA.
- For every string $w \in \Sigma^*$ of the length greater than or equal to the number of states of *A*, i.e. $|w| \ge |S|$, we have that
- the unique computation of *A* on *w* re-visits at least one state after reading first |S| letters !

Theorem (Pumping Lemma for Regular Languages)

If *L* is a regular language, then there exists a constant (pumping length) *p* such that for every string $w \in L$ s.t. $|w| \ge p$ there exists a division of *w* in strings *x*, *y*, and *z* s.t. w = xyz such that

- 1. |y| > 0,
- 2. $|xy| \le p$, and
- 3. for all $i \ge 0$ we have that $xy^i z \in L$.

Theorem (Pumping Lemma for Regular Languages)

If *L* is a regular language, then there exists a constant (*pumping length*) *p* such that for every string $w \in L$ s.t. $|w| \ge p$ there exists a division of *w* in strings *x*, *y*, and *z* s.t. w = xyz such that

- 1. |y| > 0,
- 2. $|xy| \le p$, and
- 3. for all $i \ge 0$ we have that $xy^i z \in L$.
- Let A be the DFA accepting L and p be the set of states in A.
- Let $w = (a_1 a_2 \dots a_k) \in L$ be any string of length $\geq p$.
- Let $s_0a_1s_1a_2s_2\ldots a_ks_k$ be the run of w on A.
- Consider first n + 1 states—at least one state must occur twice.
- Let *i* be the index of first state that the run revisits and let *j* be the index of second occurrence of that state, i.e. $s_i = s_j$,
- Let $x = a_1 a_2 \dots a_{i-1}$ and $y = a_i a_{i+1} \dots a_{j-1}$, and $z = a_j a_{j+1} \dots a_k$.
- − notice that |y| > 0 and $|xy| \le n$
- Also, notice that for all $i \ge 0$ the string $xy^i z$ is also in *L*.

Theorem (Pumping Lemma for Regular Languages)

```
L \in \Sigma^* is a regular language
```

 \implies

```
there exists p \ge 1 such that
for all strings w \in L with |w| \ge p we have that
there exists x, y, z \in \Sigma^* with w = xyz, |y| > 0, |xy| \le p such that
for all i \ge 0 we have that
xy^iz \in L.
```

Theorem (Pumping Lemma for Regular Languages)

```
L \in \Sigma^* is a regular language
```

 \implies

```
there exists p \ge 1 such that
for all strings w \in L with |w| \ge p we have that
there exists x, y, z \in \Sigma^* with w = xyz, |y| > 0, |xy| \le p such that
for all i \ge 0 we have that
xy^iz \in L.
```

Pumping Lemma (Contrapositive)

```
For all p \ge 1 we have that
there exists a string w \in L with |w| \ge p such that
for all x, y, z \in \Sigma^* with w = xyz, |y| > 0, |xy| \le p we have that
there exists i \ge 0 such that
xy^i z \notin L
\Longrightarrow
L \in \Sigma^* is not a regular language.
```

How to show that a language *L* is non-regular.

- 1. Let *p* be an arbitrary number (pumping length).
- 2. (Cleverly) Find a representative string w of L of size $\ge p$.
- 3. Try out all ways to break the string into xyz triplet satisfying that |y| > 0 and $|xy| \le n$. If the step 3 was clever enough, there will be finitely many cases to consider.
- 4. For every triplet show that for some *i* the string xy^iz is not in *L*, and hence it yields contradiction with pumping lemma.

Theorem

Prove that the language $L = \{0^n 1^n\}$ *is not regular.*

Theorem

Prove that the language $L = \{0^n 1^n\}$ *is not regular.*

- 1. State the contrapositive of Pumping lemma.
- 2. Let *p* be an arbitrary number.
- 3. Consider the string $0^p 1^p \in L$. Notice that $|0^p 1^p| \ge p$.

Theorem

Prove that the language $L = \{0^n 1^n\}$ *is not regular.*

- 1. State the contrapositive of Pumping lemma.
- 2. Let *p* be an arbitrary number.
- 3. Consider the string $0^p 1^p \in L$. Notice that $|0^p 1^p| \ge p$.
- 4. Only way to break this string in *xyz* triplets such that $|xy| \le p$ and $y \ne \varepsilon$ is to choose $y = 0^k$ for some $1 \le k \le p$.

Theorem

Prove that the language $L = \{0^n 1^n\}$ *is not regular.*

- 1. State the contrapositive of Pumping lemma.
- 2. Let *p* be an arbitrary number.
- 3. Consider the string $0^p 1^p \in L$. Notice that $|0^p 1^p| \ge p$.
- 4. Only way to break this string in *xyz* triplets such that $|xy| \le p$ and $y \ne \varepsilon$ is to choose $y = 0^k$ for some $1 \le k \le p$.
- 5. For each such triplet, there exists an *i* (say i = 0) such that $xy^i z \notin L$.
- 6. Hence *L* is non-regular.

Proving Regularity

Pumping Lemma is necessary but not sufficient condition for regularity.

Proving Regularity

Pumping Lemma is necessary but not sufficient condition for regularity.

Consider the language

$$L = \{ \#a^n b^n : n \ge 1 \} \cup \{ \#^k w : k \ne 1, w \in \{a, b\}^* \}.$$

Verify that this language satisfies the pumping condition, but is not regular!