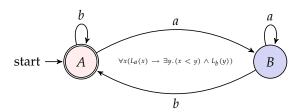
CS 208: Automata Theory and Logic

Lecture 2: Finite State Automata

Ashutosh Trivedi

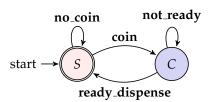


Department of Computer Science and Engineering, Indian Institute of Technology Bombay. Computation With Finitely Many States

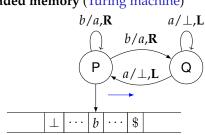
Non-determinism

Machines and their Mathematical Abstractions

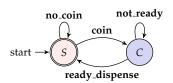
Finite instruction machine with finite memory (Finite State Automata)



Finite instruction machine with unbounded memory (Turing machine)



Ashutosh Trivedi - 3 of 19



- Introduced first by two neuro-psychologist Warren
 S. McCullough and Walter Pitts in 1943 as a model for human brain!
- Finite automata can naturally model microprocessors and even software programs working on variables with bounded domain
- capture so-called regular sets of sequences that occur in many different fields (logic, algebra, regEx)
- Nice theoretical properties
- Applications in digital circuit/protocol verification, compilers, pattern recognition, etc.

Let us observe our mental process while we compute the following:

- Recognize a string of an even length.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.

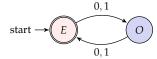
- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.
- Recognize a string with well-matched parenthesis.

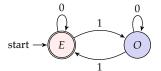
- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.
- Recognize a string with well-matched parenthesis.
- Recognize a # separated string of the form $w\#\overline{w}$.

- Recognize a string of an even length.
- Recognize a binary string of an even number of 0's.
- Recognize a binary string of an odd number of 0's.
- Recognize a string that contains your roll number.
- Recognize a binary (decimal) string that is a multiple of 2.
- Recognize a binary (decimal) string that is a multiple of 3.
- Recognize a string with well-matched parenthesis.
- Recognize a # separated string of the form $w\#\overline{w}$.
- Recognize a string with a prime number of 1's

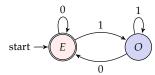
Automaton accepting strings of even length:

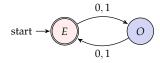


Automaton accepting strings with an even number of 1's:



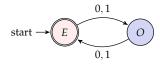
Automaton accepting even strings (multiple of 2):





A finite state automaton is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- − *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- δ : S × Σ → S is the transition function;
- $-s_0 \in S$ is the start state; and
- *F* ⊆ *S* is the set of accept states.



A finite state automaton is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta$: S × Σ → S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.

Example: The automaton in the figure above can be represented as $(S, \Sigma, \delta, s_0, F)$ where $S = \{E, O\}$, $\Sigma = \{0, 1\}$, $s_0 = E$, $F = \{E\}$, and transition function δ is such that

$$-\delta(E,0) = O$$
, $\delta(E,1) = 0$, and $\delta(O,0) = E$, $\delta(O,1) = E$.

State Diagram

Let's draw the state diagram of the following automaton $(S, \Sigma, \delta, s_1, F)$:

$$-S = \{s_1, s_2, s_3\}$$

$$-\Sigma = \{0,1\},$$

$$\delta$$
 is given in a tabular form below: $\begin{bmatrix} s_1 & s_1 & s_2 \\ s_2 & s_3 & s_2 \\ s_3 & s_2 & s_3 \end{bmatrix}$

- $-s_1$ is the initial state, and
- $F = \{s_2\}.$

State Diagram

Let's draw the state diagram of the following automaton $(S, \Sigma, \delta, s_1, F)$:

- $-S = \{s_1, s_2, s_3\}$
- $-\Sigma = \{0,1\},$
- $-s_1$ is the initial state, and
- $F = \{s_2\}.$

What does it accept?

Semantics of the finite state automata

A finite state automaton (DFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- − *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- δ : S × Σ → S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.
- A computation or a run of a DFA on a string $w = a_0 a_1 \dots a_{n-1}$ is the finite sequence

$$s_0, a_1 s_1, a_2, \ldots, a_{n-1}, s_n$$

where s_0 is the starting state, and $\delta(s_{i-1}, a_i) = s_{i+1}$.

- − A run is accepting if $s_n \in F$.
- Language of a DFA A

$$L(A) = \{w : \text{run of } A \text{ on } w \text{ is accepting}\}.$$

Semantics of the finite state automata

A finite state automaton (DFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- S is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- δ : S × Σ → S is the transition function;
- s₀ ∈ S is the start state; and
- F ⊆ S is the set of accept states.
- A computation or a run of a DFA on a string $w = a_0 a_1 \dots a_{n-1}$ is the finite sequence

$$s_0, a_1 s_1, a_2, \ldots, a_{n-1}, s_n$$

where s_0 is the starting state, and $\delta(s_{i-1}, a_i) = s_{i+1}$.

- − A run is accepting if $s_n \in F$.
- Language of a DFA A

$$L(A) = \{w : \text{run of } A \text{ on } w \text{ is accepting} \}.$$

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Properties of Regular Languages

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- Closure (Kleene Closure, or Star):

$$A^* = \{w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$$
 In other words:

$$A^* = \cup_{i \ge 0} A^i$$

where
$$A^0 = \emptyset$$
, $A^1 = A$, $A^2 = AA$, and so on.

Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Properties of Regular Languages

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- Closure (Kleene Closure, or Star):

$$A^* = \{w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$$
 In other words:

$$A^* = \cup_{i \ge 0} A^i$$

where
$$A^0 = \emptyset$$
, $A^1 = A$, $A^2 = AA$, and so on.

Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Theorem

The class of regular languages is closed under union, concatenation, and Kleene closure.

Lemma

The class of regular languages is closed under union.

Proof.

Let A_1 and A_1 be regular languages.

Lemma

The class of regular languages is closed under union.

Proof.

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.

Lemma

The class of regular languages is closed under union.

Proof.

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.
- Simulate both automata together!
- The language $A \cup B$ is accept by the resulting finite state automaton, and hence is regular.

Lemma

The class of regular languages is closed under union.

Proof.

- Let A_1 and A_1 be regular languages.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.
- Simulate both automata together!
- The language $A \cup B$ is accept by the resulting finite state automaton, and hence is regular.

Class Exercise: Extend this construction for intersection.

Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.

Proof.

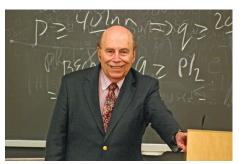
(Attempt).

- Let A_1 and A_1 be regular languages.
 - Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be finite automata accepting these languages.
- How can we find an automaton that accepts the concatenation?
- Does this automaton fit our definition of a finite state automaton?
- Determinism vs Non-determinism

Computation With Finitely Many States

Non-determinism

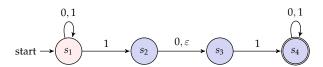
Nondeterministic Finite State Automata



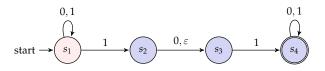
Michael O. Rabin

Dana Scott

Non-deterministic Finite State Automata



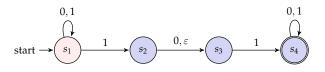
Non-deterministic Finite State Automata



A non-deterministic finite state automaton (NFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- $-\delta: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S$ is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.

Non-deterministic Finite State Automata



A non-deterministic finite state automaton (NFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- $-\delta: S \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^S$ is the transition function;
- s₀ ∈ S is the start state; and
- − $F \subseteq S$ is the set of accept states.

Example: Show a deterministic vs non-deterministic computation of the NFS above over some string, say 010110.

Non-deterministic Finite Automata: Semantics

A non-deterministic finite state automaton (NFA) is a tuple $(S, \Sigma, \delta, s_0, F)$, where:

- − *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta$: S × (Σ ∪ { ε }) \rightarrow 2^S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.
- A computation or a run of a NFA on a string $w = a_0 a_1 \dots a_{n-1}$ is the finite sequence

$$s_0, r_1 s_1, r_2, \ldots, r_{k-1}, s_n$$

where s_0 is the starting state, and $s_{i+1} \in \delta(s_{i-1}, r_i)$ and

$$r_0r_1\ldots r_{k-1}=a_0a_1\ldots a_{n-1}.$$

- − A run is accepting if $s_n \in F$.
- Language of a NFA A

$$L(A) = \{w : \text{some run of } A \text{ on } w \text{ is accepting} \}.$$

NFA are often more convenient to design than DFA!

- Strings containing 1 in the third last position.
- Strings accepting multiples of 2 or 2. (General union)

Equivalence of NFA and DFA

Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Proof.

- For the sake of simplicity assume NFA is ε -free.
- Design a DFA that simulates a given NFA.
- Note that NFA can be in a number of states at any given time
- How are the states of the corresponding DFA?
- Define initial state and accepting states
- Define the transition function

Equivalence of NFA and DFA

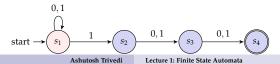
Theorem

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Proof.

- For the sake of simplicity assume NFA is ε -free.
- Design a DFA that simulates a given NFA.
- Note that NFA can be in a number of states at any given time
- How are the states of the corresponding DFA?
- Define initial state and accepting states
- Define the transition function

Determinize the following automaton:



Extension

Exercise: Extend the previous construction in the presence of ε -transitions. Hint: ε -closure of a set of states.

Closure under Regular Operations

Theorem

The class of regular languages is closed under union, concatenation, and Kleene closure.