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Deterministic Finite State Automata (DFA)
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A finite state automaton is a tuple A = (S, %, 4, s, F), where:
S is a finite set called the states;
¥ is a finite set called the alphabet;
0 : S x X — Sis the transition function;

so € S is the start state; and
F C S is the set of accept states.
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Deterministic Finite State Automata (DFA)
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0
A finite state automaton is a tuple A = (S, %, 4, s, F), where:
S is a finite set called the states;
¥ is a finite set called the alphabet;
0 : S x X — Sis the transition function;
so € S is the start state; and

F C S is the set of accept states.
For a function d : S x ¥ — S we define extended transition function

0 : 5 x 3¥* — S using the following inductive definition:
. ifw=¢
Sa.w) =17 s o :
0(6(g,x),a) ifw=xast xecX*anda e X.
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Deterministic Finite State Automata (DFA)
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A finite state automaton is a tuple A = (S, X, 4, so, F), where:
S is a finite set called the states;
¥ is a finite set called the alphabet;
0 : S x X — Sis the transition function;
so € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by a DFA A = (S, X, 4, 5o, F) is defined as:

L(A) € {w : §(w) € F}.
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Computation or Run of a DFA
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Deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by a DFA A = (S, %, 6, 5o, F) is defined as:

L(A) = {w : §(w) € F}.
Semantics using accepting computation:
A computation or a run of a DFA A = (S, %, 6, s, F) on a string

W = aody - .. a,_1 is the finite sequence
SOa alsl7 u27 AR 7a7l—13 S‘rl

where sy is the starting state, and §(s;_1,4;) = si+1.

A string w is accepted by a DFA A if the last state of the unique
computation of A on w is an accept state, i.e. s, € F.

Language of a DFA A

L(A) = {w : string w is accepted by DFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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Nondeterministic Finite State Automata
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Non-deterministic Finite State Automata
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A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Non-deterministic Finite State Automata
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A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

Fora function § : S x ¥ — 25 we define extended transition function
§: S x ©* — 25 using the following inductive definition:

A {9} ifw=ce
6(q, w) = U d(p,a) ifw=xast xeX*andaeci.
ped(g.x)
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Non-deterministic Finite State Automata
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A non-deterministic finite state automaton (NFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by an NFA A = (5,3, 6,50, F) is defined as:
L(A) € {w : §(w)NF +#0}.
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Computation or Run of an NFA
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Non-deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by an NFA A = (S, %, 4, 5o, F) is defined:

L(A) € {w : (w)NF#0}.

Semantics using accepting computation:
A computation or a run of a NFA on a string w = aoa; .. .a,_1 is a
finite sequence
50,71,81,72,...,¥k—1,5n
where sy is the starting state, and s;+1 € 6(s;_1, ;) and
rori..."rk—1 =4aopdy ...0,—1.
A string w is accepted by an NFA A if the last state of some
computation of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA

Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.
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Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA

Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.

And, surprisingly perhaps:
Theorem (DFA=NFA)

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.
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Computation of an NFA: An observation
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c-free NFA = DFA

Let A = (S,3,0,s0, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S =25,
=3,
§":2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),
sy = {so}, and
F' C S issuchthat FF = {P : PNF # 0}.
Theorem (e-free NFA = DFA)
L(A) = L(Det(A)). By induction, hint §(sg, w) = 8'({so}, w).
Exercise (3.1)
Extend the proof for NFA with e transitions. hint: e-closure
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that §(sy, w) = &' ({so},w). We
prove it by induction on the length of w.
Base case: Let the size of wbe 0, i.e. w = . The base case follows
immediately from the definition of extended transition functions:

5(so,€) = e and &' ({so}, w) = e.

Induction Hypothesis: Assume that for all strings w € X* of size n we
have that 6(sp, w) = &' ({so}, w).

Induction Step: Let w = xa where x € ¥* and a € ¥ be a string of size
n + 1, and hence x is of size n. Now observe,

(s, xa) = §(s,a), by definition of 4.
y

5€5(s0,x)

= U (s, a), from inductive hypothesis.
s€d’ ({so},x)
= & (8'({so},x),a), from definition & (P, a) U 5(s,a)
seP
= &'({s0}, xa), by definition of &".
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Equivalence of NFA and DFA

Exercise (In class)

Determinize the following automaton:

0,1
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Complementation of the Language of a DFA
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Hint: Simply swap the accepting and non-accepting states!
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Complementation of a DFA

Theorem

Complementation of the language of a DFA A = (S, X, 9, so, F) is the language
accepted by the DFA A’ = (S, %, 9,50, S \ F).

Proof.
L(A) = {w € ©* : §(sp,w) € F},
S*\L(A) ={weX*: (so7 w) ¢ F},
L(A) ={w e X* : (sp,w) € S\ F}, and

transition function is total.
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Complementation of the language of an NFA
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Question: Can we simply swap the accepting and non-accepting states?
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Complementation of the language of a NFA

Question: Can we simply swap the accepting and non-accepting states?

Let the NFA A be (5,3, 0, s0, F) and let the NFA A’ be (S, %, 0,50, S \ F) the
NFA after swapping the accepting states.

L(A) = {w e ©* : §(so,w) NE # 0},

L(A) = {w e £* : §(so,w) N (S\ F) # 0}.

Consider, the complement language of A

S\L(A) = {we* : §(so,w)NF=0}
= {we¥* : §(so,w) CS\F}

Hence L(A") does not quite capture the complement. Moreover, the
condition for ¥* \ L(.A) is not quite captured by either DFA or NFA.

N
<
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Alternation
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Universal Non-deterministic Finite Automata
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A universal non-deterministic finite state automaton (UNFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

The language L(A) accepted by a UNFA A = (S, 3, 4,50, F) is defined as:
L(A) = {w : §(w) C F}.
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Computation or Run of an UNFA
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Universal Non-deterministic Finite Automata

Semantics using extended transition function:
The language L(A) accepted by an NFA A = (S, %, §, 5o, F) is defined
as:
L(A) < {w : d(w) C F}.
Semantics using accepting computation:
A computation or a run of a NFA on a string w = aoa; .. .a,_1 is a
finite sequence
50,71,581,12, -+ 37k—1,5n
where sy is the starting state, and s;;1 € d(si_1, ;) and
Yory...7k—1 =4aopdy ...0,—1.
A string w is accepted by an NFA A if the last state of all
computations of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.
Proposition

Both semantics define the same language. Proof by induction.

Ashutosh ‘lrivedi - 25 of 32

Ashutosh Trivedi Lecture 3: Nondeterminism and Alternation



e-free UNFA = DFA

Let A = (S,%,9,s0, F) be an e-free UNFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S = 25’

=13,

§":2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),

sy = {so}, and

F C S issuchthatFF ={P : P C F}.

Theorem (e-free UNFA = DFA)
L(A) = L(Det(A)). By induction, hint &(so, w) = &' (so, ).
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e-free UNFA = DFA

Let A = (S,%,9,s0, F) be an e-free UNFA. Consider the DFA
Det(A) = (S',%',0,s(, F') where

S =25,
=13,
§":2% x ¥ — 2% such that §'(P,a) = ,p 6(s,a),
sy = {so}, and
F C S issuchthatFF ={P : P C F}.
Theorem (e-free UNFA = DFA)
L(A) = L(Det(A)). By induction, hint &(so, w) = &' (so, ).

Exercise (3.2)
Extend the proof for UNFA with ¢ transitions.
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Complementation of an NFA

Theorem

Complementation of the language of an NFA A = (S, %, 6, s, F) is the language
accepted by the UNFA A’ = (S,%, 6,50, 5 \ F).

Exercise (3.3)
Write a formal proof for this theorem.
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Alternating Finite State Automata
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Alternating Finite State Automata
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An alternating finite state automaton (AFA) is a tuple
A =(S,53,5v,%, 6,50, F), where:

S is a finite set called the states with a partition S5 and Sy;
¥ is a finite set called the alphabet;
§:S x (XU {e}) — 2% is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Computation or Run of an AFA
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Universal Non-deterministic Finite Automata

A computation or a run of a AFA on a string w = agpa; ...a,—1 is a
game graph G(A,w) = (S x {0,1,2,...,n — 1}, E) where:
Nodes in S5 % {0,1,2,...,n — 1} are controlled by Eva and nodes in
Sv x {0,1,2,...,n} are controlled by Adam; and
((s,4),(s',i+ 1)) € Eifs’ € §(s,a:).

Initially a token is in (s, 0) node, and at every step the controller of
the current node chooses the successor node.

Eva wins if the node reached at level i is an accepting state node,
otherwise Adam wins.

We say that Eva has a winning strategy if she can make her decisions
no matter how Adam plays.

A string w is accepted by an AFA A if Eva has a winning strategy in
the graph G(A, w).

Language of an AFA AL(A) = {w : string w is accepted by AFA A}.
Example.
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e-free AFA = NFA

Let A = (S, 53, S5v, %, §,s0, F) be an e-free AFA. Consider the NFA
NDet(A) = (S',%',4', sy, F') where
g/ =92S
¥ =3,
§':25 x ¥ — 2% such that Q € & (P, a) if
for all universal states p € P N Sy we have that 6(p,a) C Q and
for all existential states p € P N S5 we have that 6(p,a) N Q # 0,

so = {so}, and
F' C S is such that F' = 2F \ ().

Theorem (e-free AFA = NFA)
L(A) = L(Det(A)).
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