#### CS 226: Digital Logic Design Lecture 2: Binary Numbers

Ashutosh Trivedi



#### Department of Computer Science and **Engineering**, Indian Institute of Technology Bombay.

Ashutosh Trivedi – 1 of 11

Number-Base Conversions

**Binary Arithmetic** 

Ashutosh Trivedi – 2 of 11

- **digits** =  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$ 

 $- \text{ digits} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$ 

- How do we construct numbers greater than 9?

- $\text{ digits} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- How do we construct numbers greater than 9?
- Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).

- $\text{ digits} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- How do we construct numbers greater than 9?
- Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).
- Convenient representation?

- $\text{ digits} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- How do we construct numbers greater than 9?
- Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).
- Convenient representation?
- Place-value system



The number 270 from a 9th century inscription in Gwalior, India [source]

Ashutosh Trivedi - 3 of 11

- $\text{ digits} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- How do we construct numbers greater than 9?
- Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).
- Convenient representation?
- Place-value system



The number 270 from a 9th century inscription in Gwalior, India [source] Examples: 270, and 7392, and 7392.56.

Ashutosh Trivedi – 3 of 11

7392.56 = 7 \* 1000 + 3 \* 100 + 9 \* 10 + 2 \* 1 + 5 \* 
$$\frac{1}{10}$$
 + 6 \*  $\frac{1}{100}$   
= 7 \* 10<sup>3</sup> + 3 \* 10<sup>2</sup> + 9 \* 10<sup>1</sup> + 2 \* 10<sup>0</sup> + 5 \* 10<sup>-1</sup> + 6 \* 10<sup>-2</sup>.

Discussion:

- Is there something special about having 10 digits?
- Can we define arbitrary large numbers using fewer or more digits?
- Examples:
  - 1. binary-digits =  $\{0, 1\}$
  - 2. octal-digits =  $\{0, 1, 2, 3, 4, 5, 6, 7\}$
  - 3. hexadecimal-digits =  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$
  - 4. Sexagesimal-digits<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Used as early as 3000 BC by Babylonians!

### **Babylonian clay tablet YBC 7289**



Babylonian clay tablet YBC 7289 with annotations. The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, 1 24 51 10, which is good to about six decimal digits. [source]

#### **Base-***r* **Systems**

Let the digits of a base-*r* system be  $\mathcal{B} = \{0, 1, 2, ..., r - 1\}$ . A base-*r* number

$$(a_na_{n-1}\cdots a_0.a_{-1}a_{-2}\cdots a_{-m})_r$$

where  $a_i \in \mathcal{B}$  is equal to decimal number:

 $a_n * r^n + a_{n-1} * r^{n-1} + \dots + a_1 * r + a_0 + a_{-1}r^{-1} + a_{-2} * r^{-2} + \dots + a_{-m} * r^{-m}.$ 

The following number-systems are important for this course.

- 1. Decimal System with **decimal-digits** =  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- 2. Binary System with **binary-digits** =  $\{0, 1\}$
- 3. Octal System with **octal-digits** =  $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- 4. Hexadecimal System with **hexadecimal-digits** = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, *A*, *B*, *C*, *D*, *E*, *F*}

## **Base-***r* **Systems**

Let the digits of a base-*r* system be  $\mathcal{B} = \{0, 1, 2, ..., r - 1\}$ . A base-r number

$$(a_na_{n-1}\cdots a_0.a_{-1}a_{-2}\cdots a_{-m})_r$$

where  $a_i \in \mathcal{B}$  is equal to decimal number:

 $a_n * r^n + a_{n-1} * r^{n-1} + \dots + a_1 * r + a_0 + a_{-1}r^{-1} + a_{-2} * r^{-2} + \dots + a_{-m} * r^{-m}.$ 

The following number-systems are important for this course.

- 1. Decimal System with **decimal-digits** =  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- 2. Binary System with **binary-digits** =  $\{0, 1\}$
- 3. Octal System with **octal-digits** =  $\{0, 1, 2, 3, 4, 5, 6, 7\}$
- 4. Hexadecimal System with **hexadecimal-digits** =  $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$

Let's convert various numbers in different bases to decimal.

- $-(4021.2)_5$
- $-(123.4)_8$
- $-(B44B)_{1}6$
- $-(110101)_2$

Question: Given a number in Decimal convert it into base-r.

Question: Given a number in Decimal convert it into base-r. Examples:

Question: Given a number in Decimal convert it into base-r. Examples:

$$11 = (10+1)$$

Question: Given a number in Decimal convert it into base-r. Examples:

$$\begin{array}{rcl} 11 & = & (10+1) \\ & = & ((5*2)+1) \end{array}$$

Question: Given a number in Decimal convert it into base-r. Examples:

$$11 = (10+1) = ((5*2)+1) = (((2*2+1)*2)+1)$$

Question: Given a number in Decimal convert it into base-r. Examples:

$$\begin{array}{rcl} 11 & = & (10+1) \\ & = & ((5*2)+1) \\ & = & (((2*2+1)*2)+1) \\ & = & ((((1*2)*2+1)*2)+1) \end{array}$$

1

Question: Given a number in Decimal convert it into base-r. Examples:

$$1 = (10+1)$$
  
= ((5 \* 2) + 1)  
= (((2 \* 2 + 1) \* 2) + 1)  
= (((((1 \* 2) \* 2 + 1) \* 2) + 1)  
= (((((0 \* 2 + 1) \* 2) \* 2 + 1) \* 2) + 1)

Question: Given a number in Decimal convert it into base-r. Examples:

$$\begin{array}{rcl} 11 & = & (10+1) \\ & = & ((5*2)+1) \\ & = & (((2*2+1)*2)+1) \\ & = & (((((1*2)*2+1)*2)+1) \\ & = & (((((0*2+1)*2)*2+1)*2)+1) \\ & = & 1*2^3+1*2^1+1 \\ & = & (1011)_2. \end{array}$$

- What is 111 in octal?
- General algorithm?

Examples:

Examples:

$$0.6875 \quad = \quad \frac{1}{2}(1+0.375)$$

Examples:

$$\begin{array}{rcl} 0.6875 & = & \displaystyle \frac{1}{2}(1+0.375) \\ & = & \displaystyle \frac{1}{2}(1+\frac{1}{2}(0+0.75)) \end{array}$$

Examples:

$$\begin{array}{rcl} 0.6875 & = & \displaystyle \frac{1}{2}(1+0.375) \\ & = & \displaystyle \frac{1}{2}(1+\frac{1}{2}(0+0.75)) \\ & = & \displaystyle \cdots \\ & = & \displaystyle \frac{1}{2}(1+\frac{1}{2}(0+\frac{1}{2}(1+\frac{1}{2}(1+0)))) \end{array}$$

Examples:

– What is 0.6875 in binary?

(

$$\begin{array}{rcl} 0.6875 & = & \frac{1}{2}(1+0.375) \\ & = & \frac{1}{2}(1+\frac{1}{2}(0+0.75)) \\ & = & \cdots \\ & = & \frac{1}{2}(1+\frac{1}{2}(0+\frac{1}{2}(1+\frac{1}{2}(1+0)))) \\ & = & (0.1011)_2. \end{array}$$

- What is  $(0.513)_{10}$  in octal?

Examples:

$$\begin{array}{rcl} 0.6875 & = & \displaystyle \frac{1}{2}(1+0.375) \\ & = & \displaystyle \frac{1}{2}(1+\frac{1}{2}(0+0.75)) \\ & = & \cdots \\ & = & \displaystyle \frac{1}{2}(1+\frac{1}{2}(0+\frac{1}{2}(1+\frac{1}{2}(1+0)))) \\ & = & \displaystyle (0.1011)_2. \end{array}$$

- What is  $(0.513)_{10}$  in octal?
- What is  $(153.513)_10$  in octal?
- General algorithm?

# **Octal and Hexadecimal Numbers**

| Decimal | Binary | Octal | Hexadecimal |
|---------|--------|-------|-------------|
| 00      | 0000   | 00    | 0           |
| 01      | 0001   | 01    | 1           |
| 02      | 0010   | 02    | 2           |
| 03      | 0011   | 03    | 3           |
| 04      | 0100   | 04    | 4           |
| 05      | 0101   | 05    | 5           |
| 06      | 0110   | 06    | 6           |
| 07      | 0111   | 07    | 7           |
| 08      | 1000   | 10    | 8           |
| 09      | 1001   | 11    | 9           |
| 10      | 1010   | 12    | A = 10      |
| 11      | 1011   | 13    | B = 11      |
| 12      | 1100   | 14    | C = 12      |
| 13      | 1101   | 15    | D = 13      |
| 14      | 1110   | 16    | E = 14      |
| 15      | 1111   | 17    | F = 15      |

- Notice that  $2^3 = 8$  and  $2^4 = 16$ .

- Converting between Octal and Binary, and Hex and Binary. A Examples of 11

Ashutosh Trivedi

Lecture 2: Binary Numbers

Number-Base Conversions

**Binary Arithmetic** 

Ashutosh Trivedi – 10 of 11

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Subtraction
  - What do you need to remember?
  - What is the algorithm?
  - How to extend that in Binary?

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Subtraction
  - What do you need to remember?
  - What is the algorithm?
  - How to extend that in Binary?
- Multiplication
  - What do you need to remember?
  - What is the algorithm?
  - How to extend that in Binary?

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Subtraction
  - What do you need to remember?
  - What is the algorithm?
  - How to extend that in Binary?
- Multiplication
  - What do you need to remember?
  - What is the algorithm?
  - How to extend that in Binary?
- Division
  - What do you need to remember?
  - What is the algorithm?
  - How to extend that in Binary?