CS 226: Digital Logic Design
 Lecture 2: Binary Numbers

Ashutosh Trivedi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Number-Base Conversions

Binary Arithmetic

Recap: Decimal Numbers

digits $=\{0,1,2,3,4,5,6,7,8,9\}$.

Recap: Decimal Numbers

digits $=\{0,1,2,3,4,5,6,7,8,9\}$.

- How do we construct numbers greater than 9 ?

Recap: Decimal Numbers

digits $=\{0,1,2,3,4,5,6,7,8,9\}$.

- How do we construct numbers greater than 9 ?
- Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).

Recap: Decimal Numbers

digits $=\{0,1,2,3,4,5,6,7,8,9\}$.

- How do we construct numbers greater than 9 ?
- Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).
- Convenient representation?

Recap: Decimal Numbers

digits $=\{0,1,2,3,4,5,6,7,8,9\}$.

- How do we construct numbers greater than 9 ?

Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).
Convenient representation?
Place-value system

The number 270 from a 9th century inscription in Gwalior, India [source]

Recap: Decimal Numbers

digits $=\{0,1,2,3,4,5,6,7,8,9\}$.

- How do we construct numbers greater than 9 ?

Use 0 and give convenient names to 10 (ten), 100 (hundred), 1000 (thousand), etc. and count with them. (examples).
Convenient representation?

Place-value system

The number 270 from a 9th century inscription in Gwalior, India [source]
Examples: 270, and 7392, and 7392.56.

Place-Value System

$$
\begin{aligned}
7392.56 & =7 * 1000+3 * 100+9 * 10+2 * 1+5 * \frac{1}{10}+6 * \frac{1}{100} \\
& =7 * 10^{3}+3 * 10^{2}+9 * 10^{1}+2 * 10^{0}+5 * 10^{-1}+6 * 10^{-2}
\end{aligned}
$$

Discussion:

- Is there something special about having 10 digits?
- Can we define arbitrary large numbers using fewer or more digits?
- Examples:

1. binary-digits $=\{0,1\}$
2. octal-digits $=\{0,1,2,3,4,5,6,7\}$
3. hexadecimal-digits $=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
4. Sexagesimal-digits ${ }^{1}$

Babylonian clay tablet YBC 7289

Babylonian clay tablet YBC 7289 with annotations. The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, 1245110 , which is good to about six decimal digits. [source]

Base-r Systems

Let the digits of a base- r system be $\mathcal{B}=\{0,1,2, \ldots, r-1\}$.
A base-r number

$$
\left(a_{n} a_{n-1} \cdots a_{0} \cdot a_{-1} a_{-2} \cdots a_{-m}\right)_{r}
$$

where $a_{i} \in \mathcal{B}$ is equal to decimal number:
$a_{n} * r^{n}+a_{n-1} * r^{n-1}+\cdots+a_{1} * r+a_{0}+a_{-1} r^{-1}+a_{-2} * r^{-2}+\cdots+a_{-m} * r^{-m}$.
The following number-systems are important for this course.

1. Decimal System with decimal-digits $=\{0,1,2,3,4,5,6,7,8,9\}$
2. Binary System with binary-digits $=\{0,1\}$
3. Octal System with octal-digits $=\{0,1,2,3,4,5,6,7\}$
4. Hexadecimal System with hexadecimal-digits $=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$

Base-r Systems

Let the digits of a base- r system be $\mathcal{B}=\{0,1,2, \ldots, r-1\}$.
A base-r number

$$
\left(a_{n} a_{n-1} \cdots a_{0} \cdot a_{-1} a_{-2} \cdots a_{-m}\right)_{r}
$$

where $a_{i} \in \mathcal{B}$ is equal to decimal number:
$a_{n} * r^{n}+a_{n-1} * r^{n-1}+\cdots+a_{1} * r+a_{0}+a_{-1} r^{-1}+a_{-2} * r^{-2}+\cdots+a_{-m} * r^{-m}$.
The following number-systems are important for this course.

1. Decimal System with decimal-digits $=\{0,1,2,3,4,5,6,7,8,9\}$
2. Binary System with binary-digits $=\{0,1\}$
3. Octal System with octal-digits $=\{0,1,2,3,4,5,6,7\}$
4. Hexadecimal System with hexadecimal-digits $=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
Let's convert various numbers in different bases to decimal.
$(4021.2)_{5}$
$(123.4)_{8}$
$(B 44 B)_{1} 6$
$(110101)_{2}$

How to do the converse?

Question: Given a number in Decimal convert it into base-r.

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

What is 11 in binary?

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

- What is 11 in binary?

$$
11=(10+1)
$$

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

- What is 11 in binary?

$$
\begin{aligned}
11 & =(10+1) \\
& =((5 * 2)+1)
\end{aligned}
$$

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

- What is 11 in binary?

$$
\begin{aligned}
11 & =(10+1) \\
& =((5 * 2)+1) \\
& =(((2 * 2+1) * 2)+1)
\end{aligned}
$$

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

- What is 11 in binary?

$$
\begin{aligned}
11 & =(10+1) \\
& =((5 * 2)+1) \\
& =(((2 * 2+1) * 2)+1) \\
& =((((1 * 2) * 2+1) * 2)+1)
\end{aligned}
$$

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

What is 11 in binary?

$$
\begin{aligned}
11 & =(10+1) \\
& =((5 * 2)+1) \\
& =(((2 * 2+1) * 2)+1) \\
& =((((1 * 2) * 2+1) * 2)+1) \\
& =(((((0 * 2+1) * 2) * 2+1) * 2)+1)
\end{aligned}
$$

How to do the converse?

Question: Given a number in Decimal convert it into base-r. Examples:

- What is 11 in binary?

$$
\begin{aligned}
11 & =(10+1) \\
& =((5 * 2)+1) \\
& =(((2 * 2+1) * 2)+1) \\
& =((((1 * 2) * 2+1) * 2)+1) \\
& =(((((0 * 2+1) * 2) * 2+1) * 2)+1) \\
& =1 * 2^{3}+1 * 2^{1}+1 \\
& =(1011)_{2} .
\end{aligned}
$$

What is 111 in octal?

- General algorithm?

How to do the converse?

Examples:
What is 0.6875 in binary?

How to do the converse?

Examples:
What is 0.6875 in binary?

$$
0.6875=\frac{1}{2}(1+0.375)
$$

How to do the converse?

Examples:
What is 0.6875 in binary?

$$
\begin{aligned}
0.6875 & =\frac{1}{2}(1+0.375) \\
& =\frac{1}{2}\left(1+\frac{1}{2}(0+0.75)\right)
\end{aligned}
$$

How to do the converse?

Examples:

- What is 0.6875 in binary?

$$
\begin{aligned}
0.6875 & =\frac{1}{2}(1+0.375) \\
& =\frac{1}{2}\left(1+\frac{1}{2}(0+0.75)\right) \\
& =\cdots \\
& =\frac{1}{2}\left(1+\frac{1}{2}\left(0+\frac{1}{2}\left(1+\frac{1}{2}(1+0)\right)\right)\right)
\end{aligned}
$$

How to do the converse?

Examples:

- What is 0.6875 in binary?

$$
\begin{aligned}
0.6875 & =\frac{1}{2}(1+0.375) \\
& =\frac{1}{2}\left(1+\frac{1}{2}(0+0.75)\right) \\
& =\cdots \\
& =\frac{1}{2}\left(1+\frac{1}{2}\left(0+\frac{1}{2}\left(1+\frac{1}{2}(1+0)\right)\right)\right) \\
& =(0.1011)_{2} .
\end{aligned}
$$

- What is $(0.513)_{10}$ in octal?

How to do the converse?

Examples:

- What is 0.6875 in binary?

$$
\begin{aligned}
0.6875 & =\frac{1}{2}(1+0.375) \\
& =\frac{1}{2}\left(1+\frac{1}{2}(0+0.75)\right) \\
& =\cdots \\
& =\frac{1}{2}\left(1+\frac{1}{2}\left(0+\frac{1}{2}\left(1+\frac{1}{2}(1+0)\right)\right)\right) \\
& =(0.1011)_{2} .
\end{aligned}
$$

- What is $(0.513)_{10}$ in octal?
- What is $(153.513)_{1} 0$ in octal?
- General algorithm?

Octal and Hexadecimal Numbers

Decimal	Binary	Octal	Hexadecimal
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	$\mathrm{~A}=10$
11	1011	13	$\mathrm{~B}=11$
12	1100	14	$\mathrm{C}=12$
13	1101	15	$\mathrm{D}=13$
14	1110	16	$\mathrm{E}=14$
15	1111	17	$\mathrm{~F}=15$

- Notice that $2^{3}=8$ and $2^{4}=16$.

Converting between Octal and Binary, and Hex and Binary. AExamaples of 11

Number-Base Conversions

Binary Arithmetic

Let's generalize Decimal Arithmetic

Addition

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

Let's generalize Decimal Arithmetic

Addition

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Subtraction
-What do you need to remember?
What is the algorithm?
- How to extend that in Binary?

Let's generalize Decimal Arithmetic

Addition

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Subtraction
- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Multiplication
- What do you need to remember?
-What is the algorithm?
- How to extend that in Binary?

Let's generalize Decimal Arithmetic

Addition

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

Subtraction

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Multiplication
-What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

Division

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

