CS 226: Digital Logic Design Lecture 3: Binary Numbers (Contd.)

Ashutosh Trivedi

Department of Computer Science and **Engineering**, Indian Institute of Technology Bombay.

Ashutosh Trivedi - 1 of 9

Recap: Number-Base Conversions

Binary Arithmetic

Ashutosh Trivedi - 2 of 9

- 1. Enumerate the first 16 binary numbers.
- 2. Enumerate the first 20 base-4 numbers.
- 3. Convert the following numbers with the indicated bases to decimal:
 - 3.1 (4310)5
 - 3.2 (123)8
- 4. Convert $(243)_{10}$ to binary.
- 5. Convert $(1010101.11)_2$ to octal and hexadecimals.
- 6. Convert $(.56)_{10}$ to octal up to five significant digits.

Recap: Number-Base Conversions

Binary Arithmetic

Ashutosh Trivedi - 4 of 9

Let's generalize Decimal Arithmetic

Addition

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?
- Subtraction
 - What do you need to remember?
 - What is the algorithm?
 - How to extend that in Binary?
- Multiplication
 - What do you need to remember?
 - What is the algorithm?
 - How to extend that in Binary?
- Division
 - What do you need to remember?
 - What is the algorithm?
 - How to extend that in Binary?

Binary Addition

- Binary Addition

- 0 + 0 = 0 sum is 0 and carry is 0;
- -0 + 1 = 1 sum is 1 and carry is 0;
- -1 + 0 = 1 sum is 1 and carry is 0;
- -1 + 1 = 10 sum is 0 and carry is 1.

Binary Addition

- Binary Addition

- 0 + 0 = 0 sum is 0 and carry is 0;
- 0 + 1 = 1 sum is 1 and carry is 0;
- -1 + 0 = 1 sum is 1 and carry is 0;
- -1+1=10 sum is 0 and carry is 1.
- Binary Addition with Carry (Blue bit is carry).
 - -1 + 0 + 0 = 0 sum is 1 and carry is 0;
 - -1 + 0 + 1 = 1 sum is 0 and carry is 1;
 - -1 + 1 + 0 = 1 sum is 0 and carry is 1;
 - -1 + 1 + 1 = 11 sum is 1 and carry is 1.

Binary Addition

- Binary Addition

- 0 + 0 = 0 — sum is 0 and carry is 0;

- -0+1 = 1 sum is 1 and carry is 0;
- -1 + 0 = 1 sum is 1 and carry is 0;
- -1+1=10 sum is 0 and carry is 1.
- Binary Addition with Carry (Blue bit is carry).
 - -1 + 0 + 0 = 0 sum is 1 and carry is 0;
 - -1 + 0 + 1 = 1 sum is 0 and carry is 1;
 - -1 + 1 + 0 = 1 sum is 0 and carry is 1;
 - -1 + 1 + 1 = 11 sum is 1 and carry is 1.

- Examples.

11_	carry
11101	augend
+10001	addend
101110	sum

Binary Subtraction

- Binary Subtraction
 - -0-0=0
 - -1 1 = 0
 - -1-0=1
 - 10 1 = 1 (borrow 1 from a higher bit).

Binary Subtraction

- Binary Subtraction
 - -0-0=0
 - -1 1 = 0
 - -1-0=1
 - -10 1 = 1 (borrow 1 from a higher bit).
- Examples.

_111	borrow
_111	borrow
1 000	minuend
-0011	subtrahend
0101	difference

Binary Subtraction

- Binary Subtraction
 - -0-0=0
 - -1 1 = 0
 - -1-0=1
 - -10 1 = 1 (borrow 1 from a higher bit).
- Examples.

_ <mark>11</mark> 1	borrow
_111	borrow
1 000	minuend
-0011	subtrahend
0101	difference

- -1000 0011 = ?
- -1001.10 0101.1 = ?
- -45 39 = ?

Binary Multiplication

- Binary Multiplication
 - $-0 \times 0 = 0$
 - $-0 \times 1 = 0$
 - $-1 \times 0 = 0$
 - $-1 \times 1 = 1$

Binary Multiplication

- Binary Multiplication
 - $-0 \times 0 = 0$
 - $-0 \times 1 = 0$
 - $-1 \times 0 = 0$
 - $-1 \times 1 = 1$

- Multiplying a binary number by 2 (i.e. $(10)_2$).

Binary Multiplication

- Binary Multiplication
 - $-0 \times 0 = 0$
 - $-0 \times 1 = 0$
 - $-1 \times 0 = 0$
 - $-1 \times 1 = 1$
- Multiplying a binary number by 2 (i.e. $(10)_2$).
- Examples.

$\begin{array}{cccc} 1 & 1 & 0 & 0 \\ \times & 1 & 0 & 1 & 1 \end{array}$	F
$\begin{array}{c} 1 \ 1 \ 0 \ 0 \\ 1 \ 1 \ 0 \ 0 \times \\ 0 \ 0 \ 0 \ 0 \times \times \\ 1 \ 1 \ 0 \ 0 \times \times \end{array}$	
10000100	product

- Recall Long Division Algorithm for Decimal numbers
- Let's divide $(24158)_{10}$ by $(6)_{10}$.

Binary Division

- Recall Long Division Algorithm for Decimal numbers
- Let's divide $(24158)_{10}$ by $(6)_{10}$.
- Generalize it to divide $(1011110)_2$ by $(101)_2$.

```
\frac{10010}{101} \frac{101}{1011110} \frac{101}{111} \frac{101}{100}
```