CS 226: Digital Logic Design

 Lecture 3: Binary Numbers (Contd.)

 Lecture 3: Binary Numbers (Contd.)}

Ashutosh Trivedi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Recap: Number-Base Conversions

Binary Arithmetic

Surprise Quiz!

1. Enumerate the first 16 binary numbers.
2. Enumerate the first 20 base- 4 numbers.
3. Convert the following numbers with the indicated bases to decimal:
$3.1(4310)_{5}$
3.2 (123) 8
4. Convert (243) ${ }_{10}$ to binary.
5. Convert (1010101.11) $)_{2}$ to octal and hexadecimals.
6. Convert $(.56)_{10}$ to octal up to five significant digits.

Recap: Number-Base Conversions

Binary Arithmetic

Let's generalize Decimal Arithmetic

Addition

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

Subtraction
-What do you need to remember?

- What is the algorithm?
- How to extend that in Binary?
- Multiplication
-What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

Division

- What do you need to remember?
- What is the algorithm?
- How to extend that in Binary?

Binary Addition

- Binary Addition

$-0+0=0-$ sum is 0 and carry is 0 ;
$-0+1=1-$ sum is 1 and carry is 0 ;
$-1+0=1-$ sum is 1 and carry is 0 ;
$-1+1=10-$ sum is 0 and carry is 1 .

Binary Addition

Binary Addition

$-0+0=0-$ sum is 0 and carry is 0 ;
$-0+1=1$ - sum is 1 and carry is 0 ;
$-1+0=1$ - sum is 1 and carry is 0 ;
$-1+1=10-$ sum is 0 and carry is 1 .

- Binary Addition with Carry (Blue bit is carry).
$-1+0+0=0-$ sum is 1 and carry is 0 ;
$-1+0+1=1-$ sum is 0 and carry is 1 ;
$-1+1+0=1-$ sum is 0 and carry is 1 ;
$-1+1+1=11-$ sum is 1 and carry is 1 .

Binary Addition

Binary Addition

$-0+0=0-$ sum is 0 and carry is 0 ;
$-0+1=1-$ sum is 1 and carry is 0 ;
$-1+0=1$ - sum is 1 and carry is 0 ;
$-1+1=10-$ sum is 0 and carry is 1 .

- Binary Addition with Carry (Blue bit is carry).
$-1+0+0=0-$ sum is 1 and carry is 0 ;
$-1+0+1=1-$ sum is 0 and carry is 1 ;
$-1+1+0=1$ - sum is 0 and carry is 1 ;
$-1+1+1=11-$ sum is 1 and carry is 1 .
Examples.

$1 \ldots-1_{-}$	carry
11101	augend
+10001	addend
101110	sum

Binary Subtraction

- Binary Subtraction
$-0-0=0$
$-1-1=0$
$-1-0=1$
$-10-1=1$ (borrow 1 from a higher bit).

Binary Subtraction

- Binary Subtraction
$-0-0=0$
$-1-1=0$
$-1-0=1$
$-10-1=1$ (borrow 1 from a higher bit).
Examples.

$$
\begin{aligned}
-111 & \text { borrow } \\
_111 & \text { borrow } \\
1000 & \text { minuend } \\
-0011 & \text { subtrahend } \\
\cline { 1 - 1 } 0101 & \text { difference }
\end{aligned}
$$

Binary Subtraction

- Binary Subtraction
$-0-0=0$
$-1-1=0$
$-1-0=1$
$-10-1=1$ (borrow 1 from a higher bit).
Examples.

$$
\begin{aligned}
_111 & \text { borrow } \\
_111 & \text { borrow } \\
1000 & \text { minuend } \\
-0011 & \text { subtrahend }
\end{aligned}
$$

0101 difference
$-1000-0011=$?
$-1001.10-0101.1=$?
$45-39=$?

Binary Multiplication

Binary Multiplication
$-0 \times 0=0$
$-0 \times 1=0$
$-1 \times 0=0$
$-1 \times 1=1$

Binary Multiplication

- Binary Multiplication
$-0 \times 0=0$
$-0 \times 1=0$
$-1 \times 0=0$
$-1 \times 1=1$
- Multiplying a binary number by 2 (i.e. $\left.(10)_{2}\right)$.

Binary Multiplication

- Binary Multiplication

$$
\begin{aligned}
& -0 \times 0=0 \\
& -0 \times 1=0 \\
& -1 \times 0=0 \\
& -1 \times 1=1
\end{aligned}
$$

- Multiplying a binary number by 2 (i.e. $\left.(10)_{2}\right)$.
- Examples.

$\begin{array}{r} 1100 \\ \times \quad 1011 \end{array}$	multiplicand multiplier
1100	
$1100 \times$	
$0000 \times \times$	
$1100 \times \times \times$	
10000100	product

Binary Division

- Recall Long Division Algorithm for Decimal numbers
- Let's divide (24158) ${ }_{10}$ by (6) ${ }_{10}$.

Binary Division

- Recall Long Division Algorithm for Decimal numbers
- Let's divide (24158) ${ }_{10}$ by (6) ${ }_{10}$.
- Generalize it to divide $(1011110)_{2}$ by $(101)_{2}$.

101 | 10010 |
| ---: |
| $\frac{101}{101110}$ |
| 111 |
| $\frac{101}{100}$ |

