
Ashutosh Trivedi – 1 of 29

CS 226: Digital Logic Design
Lecture 4: Introduction to Logic Circuits

Ashutosh Trivedi

0 1

0
1

0

1 SI

S′

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 2 of 29

Objectives

In this lecture we will introduce:
1. Logic functions and circuits,
2. Boolean algebra for manipulating with logic functions,
3. Logic gates, and
4. Synthesis of simple logic circuits.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 3 of 29

Objectives

Logic functions and circuits

Boolean Algebra

Synthesis of Simple Circuits

Introduction to CAD tools

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 4 of 29

Variables and Functions

– Logic circuits form the foundation of digital systems
– Binary logic circuits perform operations of binary signals

– Let’s consider the simplest element logic circuit: switch.
– A switch can be in two states: “open” and “close”.
– Graphical symbol for a switch
– A simple application using a switch : “lightbulb”
– State of the switch can be given as a binary variable x s.t.:

– x = 0 when switch is open, and
– x = 1 when switch is closed.

– The function of a switch:
– F = 0 when x = 0 and
– F = 1 when x = 1.

– In other words F(x) = x.

– Keywords: Logic expression defining output, logic function, and
input variable.

– Let’s use two switches to control the lightbulb by connecting them in
series and parallel.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 4 of 29

Variables and Functions

– Logic circuits form the foundation of digital systems
– Binary logic circuits perform operations of binary signals
– Let’s consider the simplest element logic circuit: switch.

– A switch can be in two states: “open” and “close”.
– Graphical symbol for a switch
– A simple application using a switch : “lightbulb”

– State of the switch can be given as a binary variable x s.t.:
– x = 0 when switch is open, and
– x = 1 when switch is closed.

– The function of a switch:
– F = 0 when x = 0 and
– F = 1 when x = 1.

– In other words F(x) = x.

– Keywords: Logic expression defining output, logic function, and
input variable.

– Let’s use two switches to control the lightbulb by connecting them in
series and parallel.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 4 of 29

Variables and Functions

– Logic circuits form the foundation of digital systems
– Binary logic circuits perform operations of binary signals
– Let’s consider the simplest element logic circuit: switch.

– A switch can be in two states: “open” and “close”.
– Graphical symbol for a switch
– A simple application using a switch : “lightbulb”
– State of the switch can be given as a binary variable x s.t.:

– x = 0 when switch is open, and
– x = 1 when switch is closed.

– The function of a switch:
– F = 0 when x = 0 and
– F = 1 when x = 1.

– In other words F(x) = x.

– Keywords: Logic expression defining output, logic function, and
input variable.

– Let’s use two switches to control the lightbulb by connecting them in
series and parallel.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 4 of 29

Variables and Functions

– Logic circuits form the foundation of digital systems
– Binary logic circuits perform operations of binary signals
– Let’s consider the simplest element logic circuit: switch.

– A switch can be in two states: “open” and “close”.
– Graphical symbol for a switch
– A simple application using a switch : “lightbulb”
– State of the switch can be given as a binary variable x s.t.:

– x = 0 when switch is open, and
– x = 1 when switch is closed.

– The function of a switch:
– F = 0 when x = 0 and
– F = 1 when x = 1.

– In other words F(x) = x.

– Keywords: Logic expression defining output, logic function, and
input variable.

– Let’s use two switches to control the lightbulb by connecting them in
series and parallel.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 4 of 29

Variables and Functions

– Logic circuits form the foundation of digital systems
– Binary logic circuits perform operations of binary signals
– Let’s consider the simplest element logic circuit: switch.

– A switch can be in two states: “open” and “close”.
– Graphical symbol for a switch
– A simple application using a switch : “lightbulb”
– State of the switch can be given as a binary variable x s.t.:

– x = 0 when switch is open, and
– x = 1 when switch is closed.

– The function of a switch:
– F = 0 when x = 0 and
– F = 1 when x = 1.

– In other words F(x) = x.

– Keywords: Logic expression defining output, logic function, and
input variable.

– Let’s use two switches to control the lightbulb by connecting them in
series and parallel.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 5 of 29

Introducing AND nd OR

– Logical AND operation (series connection)
– We write the expression

L(x, y) = x · y

to say L(x, y) = x AND y when

L =

{
1 if x = 1 and y = 1.
0 otherwise.

– Logical OR operation (parallel connection)
– We write the expression

L(x, y) = x + y

to say L(x, y) = x OR y when

L =

{
0 if x = 0 and y = 0.
0 otherwise.

– A series-parallel connection

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 5 of 29

Introducing AND nd OR

– Logical AND operation (series connection)
– We write the expression

L(x, y) = x · y

to say L(x, y) = x AND y when

L =

{
1 if x = 1 and y = 1.
0 otherwise.

– Logical OR operation (parallel connection)
– We write the expression

L(x, y) = x + y

to say L(x, y) = x OR y when

L =

{
0 if x = 0 and y = 0.
0 otherwise.

– A series-parallel connection

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 5 of 29

Introducing AND nd OR

– Logical AND operation (series connection)
– We write the expression

L(x, y) = x · y

to say L(x, y) = x AND y when

L =

{
1 if x = 1 and y = 1.
0 otherwise.

– Logical OR operation (parallel connection)
– We write the expression

L(x, y) = x + y

to say L(x, y) = x OR y when

L =

{
0 if x = 0 and y = 0.
0 otherwise.

– A series-parallel connection

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 6 of 29

Inversion

– Can we use a switch to implement an “inverted switch”?
– We would like to implement the following function:

L(x) = x

to say L(x) = NOT x or “complement” of x when

L =

{
0 if x = 1.
1 if x = 0

– The inverting circuit
– We can complement not only variables but also expressions, s.t.

f (x, y) = x + y.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 6 of 29

Inversion

– Can we use a switch to implement an “inverted switch”?
– We would like to implement the following function:

L(x) = x

to say L(x) = NOT x or “complement” of x when

L =

{
0 if x = 1.
1 if x = 0

– The inverting circuit

– We can complement not only variables but also expressions, s.t.

f (x, y) = x + y.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 6 of 29

Inversion

– Can we use a switch to implement an “inverted switch”?
– We would like to implement the following function:

L(x) = x

to say L(x) = NOT x or “complement” of x when

L =

{
0 if x = 1.
1 if x = 0

– The inverting circuit
– We can complement not only variables but also expressions, s.t.

f (x, y) = x + y.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 7 of 29

Specification of a logical function: Truth tables

– The specification of a logical function can be enumerate as a
truth-table

– Since input variables are finite, there are only finitely many possible
combinations for a finite set of inputs.

– Example of truth table for x · y, x + y and x.
– Truth-table for n-input AND, OR, or NOT operations

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 8 of 29

Logic Gates

– A “switch” can be implemented using a transistor.
– Also other Boolean operations can be implemented using various

combinations of switches.
– AND gate, OR gate, NOT gate represent encapsulation of transistor

circuits implementing Boolean function
–

x
y x · y x

y x + y x x

x
y
z

x · y · z
x
y
y

x + y

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 8 of 29

Logic Gates

– A “switch” can be implemented using a transistor.
– Also other Boolean operations can be implemented using various

combinations of switches.
– AND gate, OR gate, NOT gate represent encapsulation of transistor

circuits implementing Boolean function
–

x
y x · y x

y x + y x x

x
y
z

x · y · z
x
y
y

x + y

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 9 of 29

Analysis and Synthesis of a Logic Network

– Tasks of a designer of a digital system: analysis and synthesis

– Let’s analyze the logic network f (x1, x2, x3) = x1 + x2 · x3.
– Construct its Truth-Table
– Timing diagram of a circuit
– Functionally equivalent circuits: consider the network that implement

Boolean function g(x1, x2) = x1 + x2. and compare with the function
f (x1, x2).

– How do we know if two functions are logically equivalent?
– How many different logically equivalent functions over n-variables?
– How to minimize circuit complexity (and cost)?

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 9 of 29

Analysis and Synthesis of a Logic Network

– Tasks of a designer of a digital system: analysis and synthesis
– Let’s analyze the logic network f (x1, x2, x3) = x1 + x2 · x3.
– Construct its Truth-Table

– Timing diagram of a circuit
– Functionally equivalent circuits: consider the network that implement

Boolean function g(x1, x2) = x1 + x2. and compare with the function
f (x1, x2).

– How do we know if two functions are logically equivalent?
– How many different logically equivalent functions over n-variables?
– How to minimize circuit complexity (and cost)?

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 9 of 29

Analysis and Synthesis of a Logic Network

– Tasks of a designer of a digital system: analysis and synthesis
– Let’s analyze the logic network f (x1, x2, x3) = x1 + x2 · x3.
– Construct its Truth-Table
– Timing diagram of a circuit
– Functionally equivalent circuits: consider the network that implement

Boolean function g(x1, x2) = x1 + x2. and compare with the function
f (x1, x2).

– How do we know if two functions are logically equivalent?
– How many different logically equivalent functions over n-variables?
– How to minimize circuit complexity (and cost)?

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 9 of 29

Analysis and Synthesis of a Logic Network

– Tasks of a designer of a digital system: analysis and synthesis
– Let’s analyze the logic network f (x1, x2, x3) = x1 + x2 · x3.
– Construct its Truth-Table
– Timing diagram of a circuit
– Functionally equivalent circuits: consider the network that implement

Boolean function g(x1, x2) = x1 + x2. and compare with the function
f (x1, x2).

– How do we know if two functions are logically equivalent?

– How many different logically equivalent functions over n-variables?
– How to minimize circuit complexity (and cost)?

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 9 of 29

Analysis and Synthesis of a Logic Network

– Tasks of a designer of a digital system: analysis and synthesis
– Let’s analyze the logic network f (x1, x2, x3) = x1 + x2 · x3.
– Construct its Truth-Table
– Timing diagram of a circuit
– Functionally equivalent circuits: consider the network that implement

Boolean function g(x1, x2) = x1 + x2. and compare with the function
f (x1, x2).

– How do we know if two functions are logically equivalent?
– How many different logically equivalent functions over n-variables?

– How to minimize circuit complexity (and cost)?

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 9 of 29

Analysis and Synthesis of a Logic Network

– Tasks of a designer of a digital system: analysis and synthesis
– Let’s analyze the logic network f (x1, x2, x3) = x1 + x2 · x3.
– Construct its Truth-Table
– Timing diagram of a circuit
– Functionally equivalent circuits: consider the network that implement

Boolean function g(x1, x2) = x1 + x2. and compare with the function
f (x1, x2).

– How do we know if two functions are logically equivalent?
– How many different logically equivalent functions over n-variables?
– How to minimize circuit complexity (and cost)?

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 10 of 29

Objectives

Logic functions and circuits

Boolean Algebra

Synthesis of Simple Circuits

Introduction to CAD tools

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 11 of 29

Boolean Algebra

– In 1849 George Boole introduced algebra for manipulating processes
involving logical thoughts and reasoning

– This scheme, with some refinements, is not know as Boolean algebra.
– Claude Shannon in 1930 showed that Boolean algebra is awesome for

describing circuits with switches!
– It is, then, of course awesome to describe logical circuits.
– Let’s see how it is a powerful tool to design and analyze logical

circuits.
Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 12 of 29

Boolean Algebra: Axioms

1.

0 · 0 = 0 (1)
1 + 1 = 1 (2)

2.

1 · 1 = 1 (3)
0 + 0 = 0 (4)

3.

0 · 1 = 1 · 0 = 0 (5)
0 + 1 = 1 + 0 = 1 (6)

4.

If x = 0 then x = 1 (7)
If x = 1 then x = 0 (8)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 13 of 29

Boolean Algebra: Single variable Theorems
1.

x · 0 = 0 (9)
x + 1 = 1 (10)

2.

x · 1 = x (11)
x + 0 = x (12)

3.

x · x = x (13)
x + x = x (14)

4.

x · x = 0 (15)
x + ·x = 1 (16)

5.

x = x (17)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 14 of 29

Boolean Algebra: 2- and 3- Variable Properties

1. Commutativity:

x · y = y · x (18)
x + y = y + x (19)

2. Associativity:

x · (y · z) = (x · y) · z (20)
x + (y + z) = (x + y) + z (21)

3. Distributivity:

x · (y · z) = (x · y) · z (22)
x + (y + z) = (x + y) + z (23)

4. Absorption:

x + x · y = x (24)
x · (x + y) = x (25)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 15 of 29

Boolean Algebra: 2- and 3- Variable Properties

1. Combining:

x · y + x · y = x (26)
(x + y) · (x + y) = x (27)

2. Consensus:

x · y + y · z + x · z = x · y + x · z (28)
(x + y) · (y + z) · (x + z) = (x + y) · (x + z) (29)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 16 of 29

Boolean Algebra: DeMorgan’s theorem

Augustus De Morgan (27 June 1806 — 18 March 1871)

x · y = x + y (30)
x + y = x · y (31)

Proof by Perfect Induction (Truth-tables)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 16 of 29

Boolean Algebra: DeMorgan’s theorem

Augustus De Morgan (27 June 1806 — 18 March 1871)

x · y = x + y (30)
x + y = x · y (31)

Proof by Perfect Induction (Truth-tables)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 17 of 29

Other Remarks

– Venn diagram are quite useful proving theorems in Boolean algebra

– Common symbols to represent OR: x ∨ y and x + y
– Common symbols to represent AND: x ∧ y and x · y
– Common symbols to represent NOT: ¬x and x
– Precedence of Operations:

NOT > AND > OR

Example
– x1 · x2 + x1 · x2

– (x1 · x2) + ((x1) · (x2))

– x1 · (x2 + x1) · x2

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 17 of 29

Other Remarks

– Venn diagram are quite useful proving theorems in Boolean algebra
– Common symbols to represent OR: x ∨ y and x + y
– Common symbols to represent AND: x ∧ y and x · y
– Common symbols to represent NOT: ¬x and x

– Precedence of Operations:

NOT > AND > OR

Example
– x1 · x2 + x1 · x2

– (x1 · x2) + ((x1) · (x2))

– x1 · (x2 + x1) · x2

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 17 of 29

Other Remarks

– Venn diagram are quite useful proving theorems in Boolean algebra
– Common symbols to represent OR: x ∨ y and x + y
– Common symbols to represent AND: x ∧ y and x · y
– Common symbols to represent NOT: ¬x and x
– Precedence of Operations:

NOT > AND > OR

Example
– x1 · x2 + x1 · x2

– (x1 · x2) + ((x1) · (x2))

– x1 · (x2 + x1) · x2

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 18 of 29

Objectives

Logic functions and circuits

Boolean Algebra

Synthesis of Simple Circuits

Introduction to CAD tools

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 19 of 29

Synthesis of simple circuits

Definition (Synthesis)
Given a description of the desired functional behavior, the synthesis is the
process to generate a circuit that realizes this behavior.

Commonly Used logic Gates:

x
y x · y x

y x + y x x

x
y x · y x

y x + y x
y x⊕ y

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 20 of 29

Synthesis of simple circuits

Theorem
Any Boolean function can be synthesized using only AND, OR, and NOT gates.
x
y x · y x

y x + y x x

Theorem
Any Boolean function can be synthesized using only NAND gates.
x
y x · y

Theorem
Any Boolean function can be synthesized using only NOR gates.
x
y x + y

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 20 of 29

Synthesis of simple circuits

Theorem
Any Boolean function can be synthesized using only AND, OR, and NOT gates.
x
y x · y x

y x + y x x

Theorem
Any Boolean function can be synthesized using only NAND gates.
x
y x · y

Theorem
Any Boolean function can be synthesized using only NOR gates.
x
y x + y

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 20 of 29

Synthesis of simple circuits

Theorem
Any Boolean function can be synthesized using only AND, OR, and NOT gates.
x
y x · y x

y x + y x x

Theorem
Any Boolean function can be synthesized using only NAND gates.
x
y x · y

Theorem
Any Boolean function can be synthesized using only NOR gates.
x
y x + y

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 21 of 29

Synthesis using AND, OR, and NOT gates

Given a Boolean function f given in the form of a truth table, the
expression that realizes f can be obtained:

– (SUM-OF-PRODUCTS) by considering rows for which f = 1, or
– (PRODUCTS-OF-SUMS) by considering rows for which f = 0.

Example:

x1 x2 f (x1, x2)
0 0 0
0 1 1
1 0 0
1 1 1

f (x1, x2) = x1x2 + x1x2 = m1 + m3

f (x1, x2) = (x1x2 + x1x2) = (x1x2) · (x1x2) = (x1 + x2) · (x1 + x2) = M0 ·M2

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 21 of 29

Synthesis using AND, OR, and NOT gates

Given a Boolean function f given in the form of a truth table, the
expression that realizes f can be obtained:

– (SUM-OF-PRODUCTS) by considering rows for which f = 1, or
– (PRODUCTS-OF-SUMS) by considering rows for which f = 0.

Example:

x1 x2 f (x1, x2)
0 0 0
0 1 1
1 0 0
1 1 1

f (x1, x2) = x1x2 + x1x2 = m1 + m3

f (x1, x2) = (x1x2 + x1x2) = (x1x2) · (x1x2) = (x1 + x2) · (x1 + x2) = M0 ·M2

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 22 of 29

Sum-of-Product Canonical Form

– For a function of n variables a minterm is a product term in which
each of the variable occur exactly once. For example: x0 · x1 · x2 and
x0 · x1 · x2.

– A function f can be represented by an expression that is sum of
minterms.

– A logical expression that consists of product terms that are summed
(ORed) together is called a sum-of-product form.

– If each of the product term is a minterm, then the expression is called
canonical sum-of-product expression.

– Notice that two logically equivalent functions will have the same
canonical representation.

– For a truth-table of n variables, we represent the minterm
corresponding to the i-th row as mi where i ∈ {0, 2n − 1}.

– A unique representation of a function can be given as an explicit sum
of minterms for rows for which function is true.

– For example
f (x1, x2) = x1x2 + x1x2 = m1 + m3 =

∑
(m1,m3) =

∑
m(1, 3).

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 23 of 29

Sum-of-Product Canonical Form
– For a function of n variables a maxterm is a sum term in which each

of the variable occur exactly once. For example

(x0 + x1 + x2) and (x0 + x1 + x2).

– A function f can be represented by an expression that is product of
maxterms.

– A logical expression that consists of sum terms that are factors of
logical product (AND) is called a product-of-sum form.

– If each of the sum term is a maxterm, then the expression is called
canonical product-of-sum expression.

– Notice that two logically equivalent functions will have the same
canonical product-of-sum representation.

– For a truth-table of n variables, we represent the maxterm
corresponding to complement of the minterm of the i-th row as Mi

where i ∈ {0, 2n − 1}.
– A unique representation of a function can be given as an explicit

product of maxterms for rows for which function is false.
– For example f (x1, x2) = (x1x2 + x1x2) =

∏
(M0,M2) =

∏
M(0, 2).

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 24 of 29

Questions

– Give SOP form of the function f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7) and
simplify it.

– Give POS for of the function f (x1, x2, x3) =
∏

M(0, 1, 5) and simplify
it.

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 25 of 29

NAND and NOR logic networks

– De Morgan’s theorem in terms of logic gates
– Using NAND gates to implement a sum-of-products
– Using NOR gates to implement a product-of-sums

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 26 of 29

Examples

Design the logic circuits for the following problems:
– Three-way light control
– Multiplexer circuit

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 27 of 29

Objectives

Logic functions and circuits

Boolean Algebra

Synthesis of Simple Circuits

Introduction to CAD tools

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 28 of 29

Steps in Design process

1. Design Entry
– Schematic capture
– Hardware description language

2. Synthesis (or translating/ compiling)
3. Functional Simulation
4. Physical Design
5. Timing Simulation
6. Chip configuration (programming)

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits



Ashutosh Trivedi – 29 of 29

Introduction to VHDL

Ashutosh Trivedi Lecture 4: Introduction to Logic Circuits


	Objectives
	Logic functions and circuits
	Boolean Algebra
	Synthesis of Simple Circuits
	Introduction to CAD tools

