CS 226: Digital Logic Design

Lecture 6: Karnaugh Maps

Ashutosh Trivedi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Logical functions

How to represent logical functions:

1. Truth-tables
2. Algebraic expressions
3. Venn diagrams

Logical functions

How to represent logical functions:

1. Truth-tables
2. Algebraic expressions
3. Venn diagrams
4. Karnaugh maps

Dr. Maurice Karnaugh, developer of Karnaugh maps or K-maps (1954), explaining K-maps

Karnaugh-maps

A clever way to represent a truth-table

- It represent the truth-table in such a visual manner to help identifying manipulations of the following nature:

$$
\begin{aligned}
& -x_{1} \cdot x_{2}+x_{1} \cdot \overline{x_{2}}=x_{1} \\
& -x_{1} \cdot x_{2} \cdot x_{3}+x_{1} \cdot \overline{x_{2}} \cdot x_{3}+x_{1} \cdot x_{2} \cdot \overline{x_{3}}+x_{1} \cdot \overline{x_{2}} \cdot \overline{x_{3}}=x_{1} .
\end{aligned}
$$

An intuitive visual way to simplify logical expressions involving $2,3,4,5$, and 6 variables
The minimization process gives insight to the working of CAD tools.
We will begin by introducing K-maps of 2 variables, and continue with K-maps of higher complexity.

Two variable Karnaugh maps

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	0

- A box or a cell corresponding to each (minterm) line of truth-table
- The placement 1's in corresponding cell identifies the minterms representing a function

Two variable Karnaugh maps

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	0

- A box or a cell corresponding to each (minterm) line of truth-table
- The placement 1's in corresponding cell identifies the minterms representing a function
- Nice graphics, Ashutosh! but what's the point?

Two variable Karnaugh maps

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	1

Did you see what we did here?

Two variable Karnaugh maps

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	1

- Did you see what we did here?
- green group $=\overline{x_{1}} x_{2}+x_{1} x_{2}=x_{1}$
- red group $=x_{1} \overline{x_{2}}+x_{1} x_{2}=x_{2}$
- These groupings of 1 's helped us to simplify the logical expressions.

Two variable Karnaugh maps

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	1

Did you see what we did here?
green group $=\overline{x_{1}} x_{2}+x_{1} x_{2}=x_{1}$

- red group $=x_{1} \overline{x_{2}}+x_{1} x_{2}=x_{2}$
- These groupings of 1 's helped us to simplify the logical expressions.
- We are allowed to make (down and across) groups of 12,4 cells.
- Try to minimize number of groupings while covering all the 1 cells.
- Do not introduce redundant groupings.

Two variable Karnaugh maps

x_{1}	x_{2}	$f\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	1
1	1	1

Did you see what we did here?
green group $=\overline{x_{1}} x_{2}+x_{1} x_{2}=x_{1}$

- red group $=x_{1} \overline{x_{2}}+x_{1} x_{2}=x_{2}$
- These groupings of 1 's helped us to simplify the logical expressions.
- We are allowed to make (down and across) groups of 12,4 cells.
- Try to minimize number of groupings while covering all the 1 cells.
- Do not introduce redundant groupings.
- Let's work out some more examples.

Three variable Karnaugh maps

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- Alert: Did you notice the Gray code ordering?
- Groupings of $1,2,4$, and 8 cells possible

Three variable Karnaugh maps

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

- Alert: Did you notice the Gray code ordering?
- Groupings of $1,2,4$, and 8 cells possible
- "Ends are connected"
- Let's work out some examples!

Three variable Karnaugh maps: Example 1

x_{1}	x_{2}	x_{3}	$f\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Four variable Karnaugh maps

Four dimension K-map connected as a Torus

Thumb Rules

1. No zeroes allowed.
2. No diagonal groupings
3. Only power of 2 cells in each grouping
4. Every one must be at least in one grouping
5. Overlapping is allowed
6. Groups may "Wrap-around"
7. Fewest number of groups possible

Additional Topics

- Five and Six variable Karnaugh maps
- Incompletely specified functions
- Generating product-of-sum representation using K-maps

