CS620, 0 T BOMBAY

Green Scheduling

Ashutosh Trivedi
Department of Computer Science and Engineering,
IIT Bombay

Peak Demand Reduction in Energy Usage

1. Absence of bulk energy storage technology
2. Base-load vs peaking power plants
3. Energy peaks are expensive:

- For environment (peaking power plants are typically fossil-fueled)
- For energy providers
- For customers (peak power pricing)

4. Energy peaks are often avoidable:

- Extreme weather and energy peaks
- Heating, Ventilation, and Air-conditioning (HVAC) Units

5. Load-balancing methods:

- Load shedding
- Load shifting
- Green scheduling [NBPM11]

Green Scheduling

Zones \HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	$-2 / 3$	$-1 / 2$	$2 / 0.2$
Y (Temp. Change Rate/ Energy Usage)	$-2 / 3$	$-1 / 2$	$3 / 0.2$

Green Scheduling

Zones \HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	$-2 / 3$	$-1 / 2$	$2 / 0.2$
Y (Temp. Change Rate/ Energy Usage)	$-2 / 3$	$-1 / 2$	$3 / 0.2$

- Assume that comfortable temperature range is $65^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$.
- Energy is extremely expensive if peak demand dips above 4 units in a billing period

Green Scheduling

Zones \HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	$-2 / 3$	$-1 / 2$	$2 / 0.2$
Y (Temp. Change Rate/ Energy Usage)	$-2 / 3$	$-1 / 2$	$3 / 0.2$

- Assume that comfortable temperature range is $65^{\circ} \mathrm{F}$ to $70^{\circ} \mathrm{F}$.
- Energy is extremely expensive if peak demand dips above 4 units in a billing period

Problem

Find an "implementable" switching schedule that keeps the temperatures within comfort zone and peak usage within 4 units?

Green Scheduling: Contd

Green Scheduling: Contd

Green Scheduling: Contd

Safe Schedulability Problem

Does there exist a switching schedule using these modes such that the temperatures of all zones stays in comfortable region?

Multi-mode Systems: Safe Schedulability

Safe set: $x \in[65,70], y \in[65,70]$

x	68
y	68
	s_{0}

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode Systems: Safe Schedulability

Safe set: $x \in[65,70], y \in[65,70]$

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode Systems: Safe Schedulability

Safe set: $x \in[65,70], y \in[65,70]$

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode Systems: Safe Schedulability

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode Systems: Safe Schedulability

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode Systems: Safe Schedulability

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode System: Zeno schedule

Safe set: $x \in[65,70], y \in[65,70]$

Keywords: Zeno Schedule

Multi-mode Systems: Zeno schedule

Safe set: $x \in[65,70], y \in[65,70]$

Keywords: Zeno Schedule

Another Example: Leaking Tanks Systems

Another Example: Leaking Tanks Systems

$$
x_{1} \in\left[\ell_{1}, u_{1}\right], x_{2} \in\left[\ell_{2}, u_{2}\right]
$$

\ldots and more

1. Temperature and humidity control in cloud servers
2. Robot motion planning
3. Autonomous vehicles navigation
4. and more..

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Definitions: Convex Sets

Convex Sets

Non-Convex Set

- A convex combination of a set of points $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{n}$ is a point of the form $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}$ where $\lambda_{i} \in[0,1]$ and $\sum_{i} \lambda_{i}=1$.

Definitions: Convex Sets

- A convex combination of a set of points $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{n}$ is a point of the form $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}$ where $\lambda_{i} \in[0,1]$ and $\sum_{i} \lambda_{i}=1$.
- A set $S \subseteq \mathbb{R}^{n}$ is convex if for any set of points $x_{1}, x_{2}, \ldots, x_{n} \in S$ their convex combinations are also in S.

Definitions: Convex Sets

- A convex combination of a set of points $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{n}$ is a point of the form $\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}$ where $\lambda_{i} \in[0,1]$ and $\sum_{i} \lambda_{i}=1$.
- A set $S \subseteq \mathbb{R}^{n}$ is convex if for any set of points $x_{1}, x_{2}, \ldots, x_{n} \in S$ their convex combinations are also in S.
- The convex hull of points $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{n}$ is the minimum convex set that contains these point, and is the set of all convex combinations.

Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)
A MMS is a tuple $\mathcal{H}=(M, n, R)$ where

- M is a finite nonempty set of modes,
- n is the number of continuous variables,
- $R: M \rightarrow \mathbb{R}^{n}$ gives for each mode the rate vector,
- $S \subseteq \mathbb{R}^{n}$ is a bounded convex set of safe states.

Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple $\mathcal{H}=(M, n, R)$ where

- M is a finite nonempty set of modes,
- n is the number of continuous variables,
- $R: M \rightarrow \mathbb{R}^{n}$ gives for each mode the rate vector,
- $S \subseteq \mathbb{R}^{n}$ is a bounded convex set of safe states.
- The trajectory of a schedule $\left(m_{1}, t_{1}\right),\left(m_{2}, t_{2}\right), \ldots,\left(m_{k}, t_{k}\right)$ from s_{0} is

$$
s_{0},\left(m_{1}, t_{1}\right), s_{1}, \ldots,\left(m_{k}, t_{k}\right), s_{k}
$$

such that $s_{i}=s_{i-1}+t_{i} \cdot R\left(m_{i}\right)$ for all for all $1 \leq i \leq k$.

- A schedule is safe at s_{0} if all states of its trajectory from s_{0} are safe.
- A mode m is t-safe at a state $s \in S$ if the schedule (m, t) is safe.

Definition

Safe Schedulability Problem

Given an MMS \mathcal{H} and a starting state s_{0} decide whether there exists a non-Zeno safe schedule.

Definition

Safe Schedulability Problem

Given an MMS \mathcal{H} and a starting state s_{0} decide whether there exists a non-Zeno safe schedule.

Theorem
Safe Schedulability can be solved in polynomial time.

Definition

Safe Schedulability Problem

Given an MMS \mathcal{H} and a starting state s_{0} decide whether there exists a non-Zeno safe schedule.

Theorem
Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS \mathcal{H}, a starting state $s_{0} \in S$, and a target state $s_{t} \in S$, decide whether there exists a safe schedule that reaches s_{t} from s_{0}.

Definition

Safe Schedulability Problem

Given an MMS \mathcal{H} and a starting state s_{0} decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS \mathcal{H}, a starting state $s_{0} \in S$, and a target state $s_{t} \in S$, decide whether there exists a safe schedule that reaches s_{t} from s_{0}.

Theorem

Safe Reachability can be solved in polynomial time if the starting and the target states lie in the interior of S.

Safe Schedulability Problem: Geometry

Safe Schedulability Problem: Interior Case

Lemma

Assume that the starting state lies in the interior of the safety set. A safe non-Zeno schedule exists if and only if

$$
\begin{aligned}
\sum_{i=1}^{|M|} R(i) \cdot f_{i} & =0 \\
\sum_{i=1}^{|M|} f_{i} & =1
\end{aligned}
$$

for some $f_{1}, f_{2}, \ldots, f_{|M|} \geq 0$.
Moreover, such a schedule is periodic.

Safe Schedulability Problem: Interior Case

Proof Sketch: ("if" direction):
If for some non-negative f_{i} we have

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1
$$

then there exists a non-Zeno periodic safe schedule.

Safe Schedulability Problem: Interior Case

Proof Sketch: ("if" direction):
If for some non-negative f_{i} we have

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1
$$

then there exists a non-Zeno periodic safe schedule.

1. There exists a $t>0$ such that all modes are safe at s_{0} for t-time.
2. Consider the periodic schedule

$$
\left(m_{1}, t \cdot f_{1}\right),\left(m_{2}, t \cdot f_{2}\right), \ldots,\left(m_{|M|}, t \cdot f_{|M|}\right)
$$

3. Notice that the schedule is non-Zeno.
4. Consider the trajectory of the schedule

$$
s_{0},\left(m_{1}, t_{1}\right), s_{1}\left(m_{2}, t_{2}\right), \ldots, s_{|M|},\left(m_{1}, t_{1}\right) \ldots
$$

5. Notice that $s_{i \cdot|M|+j}=s_{j}$ for all $i \geq 0$.
6. We show that $s_{0}, s_{1}, \ldots, s_{|M|-1}$ are safe.

Safe Schedulability Problem: "If" Direction

Lemma: All convex combinations of finite safe schedules are safe.

Safe Schedulability Problem: "If" Direction

Lemma: All convex combinations of finite safe schedules are safe.

Corollary: All intermediate states visited in the following periodic schedule are safe if each mode is safe for time $t>0$.

$$
\left(m_{1}, t \cdot f_{1}\right),\left(m_{2}, t \cdot f_{2}\right), \ldots,\left(m_{|M|}, t \cdot f_{|M|}\right)
$$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):
There exists a non-Zeno periodic safe schedule only if for some non-negative f_{i} we have

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1
$$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):
There exists a non-Zeno periodic safe schedule only if for some non-negative f_{i} we have

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1
$$

1. Assume that it is not feasible.
2. Then by Farkas's lemma there is $\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ such that

$$
\left(v_{1}, v_{2}, \ldots, v_{n}\right) \cdot R(i)>0 \text { for all modes } i \text {. }
$$

3. Taking any mode contributes to some progress in the direction $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$
4. Any non-Zeno schedule will eventually leave the safety set.

Reachability Problem: Geometry

Reachability Problem: Geometry

Safe Reachability Problem

Lemma

Assume that the starting state s_{0} and the target state s_{t} lie in the interior of the safety set.
A safe schedule exists from s_{0} to s_{t} exists if and only if

$$
s_{0}+\sum_{i=1}^{|M|} R(i) \cdot t_{i}=s_{t}
$$

for some $t_{1}, t_{2}, \ldots, t_{|M|} \geq 0$.
Proof Sketch:
"Only if" direction is trivial.

Safe Reachability Problem

Proof Sketch: ("if" direction):
If for some $t_{1}, t_{2}, \ldots, t_{|M|} \geq 0$ we have that

$$
s_{0}+\sum_{i=1}^{|M|} R(i) \cdot t_{i}=s_{t}
$$

then a safe schedule exists from s_{0} to s_{t}.

1. There exists a $t>0$ such that all modes are safe at s_{0} and s_{t} for t-time.
2. Let ℓ be a natural number greater than $\frac{\sum_{i=1}^{|M|} t_{i}}{t}$.
3. The periodic schedule $\left(m_{1}, t_{1} / \ell\right),\left(m_{2}, t_{2} / \ell\right), \ldots,\left(m_{M}, t_{|M|} / \ell\right)$ reaches the target in $\ell \cdot|M|$ steps.
4. Each intermediate state is in the safety set.

Thumb Rules: Schedulability

The following is feasible:

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1
$$

Or, the following in infeasible:
$\left(v_{1}, v_{2}, \ldots, v_{n}\right) \cdot R(i)>0$ for all modes i.

Thumb Rules: Schedulability

The following is feasible:

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1
$$

Or, the following in infeasible:
$\left(v_{1}, v_{2}, \ldots, v_{n}\right) \cdot R(i)>0$ for all modes i.

Thumb Rules: Reachability

The following is feasible:

$$
s_{0}+\sum_{i=1}^{|M|} R(i) \cdot t_{i}=s_{t}
$$

Reachability: Boundary Case

Reachability: Boundary Case

1. Rate vectors are $(1,1)$ and $(1,-1)$
2. Angle at s^{\prime} is 30°.
3. $\left\|s_{k}, s\right\|=\left\|s, s^{\prime}\right\| \cdot\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^{k}$.

Schedulability: Boundary Case

Schedulability: Boundary Case

Schedulability: Boundary Case

Schedulability: Boundary Case

Schedulability: Boundary Case

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ^{\prime} s.t.:

1. All modes that were ever safe during the trajectory with σ will be safe in the final state of σ^{\prime}, and
2. The set of safe modes in every state of σ^{\prime} will always be increasing.

Schedulability: Boundary Case

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ^{\prime} st.:

1. All modes that were ever safe during the trajectory with σ will be safe in the final state of σ^{\prime}, and
2. The set of safe modes in every state of σ^{\prime} will always be increasing.

x_{2}

Algorithm: Interior Case

1. Compute the sequence of set of modes $M_{1}, M_{2}, \ldots, M_{k}$ such that

- M_{1} is the set of safe modes at x_{0}, and
- M_{i} is the set of safe modes at states reachable from x_{0} using only modes from M_{i-1}.

2. $M_{1} \subset M_{2} \subset \cdots \subset M_{k}$.
3. Modes outside M_{k} are never reachable from x_{0}.
4. The set M_{k} can be computed in polynomial time.
5. MMS is schedulable from x_{0} if and only if:

$$
\sum_{m \in M_{k}} R(m) \cdot f_{m}=0 \text { and } \sum_{m \in M_{k}} f_{m}=1
$$

6. That can, again, be checked in polynomial time.

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Optimization Schedulability and Reachability

- MMS $\mathcal{H}=(M, n, R)$ and price function $\pi: M \rightarrow \mathbb{R}$
- Price of a finite schedule $\left(m_{1}, t_{1}\right),\left(m_{2}, t_{2}\right), \ldots,\left(m_{k}, t_{k}\right)$ is

$$
\sum_{i=1}^{k} \pi\left(m_{i}\right) t_{i}
$$

- Average price of an infinite schedule $\left(m_{1}, t_{1}\right),\left(m_{2}, t_{2}\right), \ldots$ is

$$
\limsup _{n \rightarrow \infty} \frac{\sum_{i=1}^{k} \pi\left(m_{i}\right) t_{i}}{\sum_{i=1}^{k} t_{i}}
$$

- Optimal reachability-price and average-price problems

Optimization Schedulability and Reachability

- MMS $\mathcal{H}=(M, n, R)$ and price function $\pi: M \rightarrow \mathbb{R}$
- Price of a finite schedule $\left(m_{1}, t_{1}\right),\left(m_{2}, t_{2}\right), \ldots,\left(m_{k}, t_{k}\right)$ is

$$
\sum_{i=1}^{k} \pi\left(m_{i}\right) t_{i}
$$

- Average price of an infinite schedule $\left(m_{1}, t_{1}\right),\left(m_{2}, t_{2}\right), \ldots$ is

$$
\limsup _{n \rightarrow \infty} \frac{\sum_{i=1}^{k} \pi\left(m_{i}\right) t_{i}}{\sum_{i=1}^{k} t_{i}}
$$

- Optimal reachability-price and average-price problems
- Minimize $\sum_{i=1}^{|M|} t_{i} \cdot \pi\left(m_{i}\right)$ subject to:

$$
s_{0}+\sum_{i=1}^{|M|} R(i) \cdot t_{i}=s_{t}, \text { and } t_{i} \geq 0
$$

- Minimize $\sum_{i=1}^{|M|} f_{i} \cdot \pi\left(m_{i}\right)$ subject to:

$$
\sum_{i=1}^{|M|} R(i) \cdot f_{i}=0 \text { and } \sum_{i=1}^{|M|} f_{i}=1, f_{i} \geq 0
$$

Discrete Schedulability and Undecidability

Discrete Schedulability:

- Requiring schedules with delays that are multiples of a given sampling rate
- For a bounded safety set only a finite number of states reachable using such discrete schedulers.
- Such reachable state-transition graph is of exponential size.
- schedulability/optimization problems can be solved in PSPACE.
- We show PSPACE-hardness by a reduction from acceptance problem for linear-bounded automata.

Discrete Schedulability and Undecidability

Discrete Schedulability:

- Requiring schedules with delays that are multiples of a given sampling rate
- For a bounded safety set only a finite number of states reachable using such discrete schedulers.
- Such reachable state-transition graph is of exponential size.
- schedulability/optimization problems can be solved in PSPACE.
- We show PSPACE-hardness by a reduction from acceptance problem for linear-bounded automata.

Generalizations:

- One can add some structure to the system by adding
- guards on mode-switches
- mode-dependent invariants
- Corresponds to singular hybrid automata of Henzinger et al. [HKPV98]
- We show that both generalizations lead to undecidability of the reachability problem.

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Conclusion

Summary and Future Work

Summary:

1. Proposed a model for constant-rate multi-mode systems
2. Polynomial-time algorithms for safe schedulability and safe reachability
3. Energy peak demand reduction problem
4. Discrete schedulers lead to PSPACE-hardness
5. Adding either local invariants or guards lead to undecidability

Future work:

1. Bounded-rate multi-mode systems
2. Optimization problems with cost of mode-switches
3. Extension with clock variables with guards and local-invariants
T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata?
Journal of Comp. and Sys. Sciences, 57:94-124, 1998.
國 T. X. Nghiem, M. Behl, G. J. Pappas, and R. Mangharam.
Green scheduling: Scheduling of control systems for peak power reduction.
2nd International Green Computing Conference, July 2011.
