

Ashutosh Trivedi

Department of Computer Science and Engineering, IIT Bombay

CS620: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (26 July 2013)

Peak Demand Reduction in Energy Usage

- 1. Absence of bulk energy storage technology
- 2. Base-load vs peaking power plants
- 3. Energy peaks are expensive:
 - For environment (peaking power plants are typically fossil-fueled)
 - For energy providers
 - For customers (peak power pricing)
- 4. Energy peaks are often avoidable:
 - Extreme weather and energy peaks
 - Heating, Ventilation, and Air-conditioning (HVAC) Units
- 5. Load-balancing methods:
 - Load shedding
 - Load shifting
 - Green scheduling [NBPM11]

Zones \ HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	2/0.2
Y (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	3/0.2

Zones \ HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	2/0.2
Y (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	3/0.2

- Assume that comfortable temperature range is $65^{o}F$ to $70^{o}F$.
- Energy is extremely expensive if peak demand dips above 4 units in a billing period

Zones \ HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	2/0.2
Y (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	3/0.2

- Assume that comfortable temperature range is $65^{o}F$ to $70^{o}F$.
- Energy is extremely expensive if peak demand dips above 4 units in a billing period

Problem

Find an "implementable" switching schedule that keeps the temperatures within comfort zone and peak usage within 4 units?

Green Scheduling: Contd

Green Scheduling: Contd

Green Scheduling: Contd

Safe Schedulability Problem

Does there exist a switching schedule using these modes such that the temperatures of all zones stays in comfortable region?

Safe set: $x \in [65, 70], y \in [65, 70]$

$$\begin{array}{c|c}
x & 68 \\
y & 68 \\
\hline
s_0
\end{array}$$

Safe set:
$$x \in [65, 70], y \in [65, 70]$$

$$\begin{array}{c|cccc}
x & 68 & (m_2, 1) & 67 \\
y & 68 & & & 67 \\
s_0 & & s_1 & & & \\
\end{array}$$

Safe set: $x \in [65, 70], y \in [65, 70]$

Safe set: $x \in [65, 70], y \in [65, 70]$

Safe set: $x \in [65, 70], y \in [65, 70]$

Safe set: $x \in [65, 70], y \in [65, 70]$

Multi-mode System: Zeno schedule

Safe set: $x \in [65, 70], y \in [65, 70]$

Keywords: Zeno Schedule

Multi-mode Systems: Zeno schedule

Safe set: $x \in [65, 70], y \in [65, 70]$

Keywords: Zeno Schedule

Another Example: Leaking Tanks Systems

Another Example: Leaking Tanks Systems

... and more

- 1. Temperature and humidity control in cloud servers
- 2. Robot motion planning
- 3. Autonomous vehicles navigation
- 4. and more..

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Conclusion

Definitions: Convex Sets

- A convex combination of a set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is a point of the form $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ where $\lambda_i \in [0,1]$ and $\sum_i \lambda_i = 1$.

Definitions: Convex Sets

- A convex combination of a set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is a point of the form $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ where $\lambda_i \in [0, 1]$ and $\sum_i \lambda_i = 1$.
- A set $S \subseteq \mathbb{R}^n$ is convex if for any set of points $x_1, x_2, \dots, x_n \in S$ their convex combinations are also in S.

Definitions: Convex Sets

- A convex combination of a set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is a point of the form $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ where $\lambda_i \in [0, 1]$ and $\sum_i \lambda_i = 1$.
- A set $S \subseteq \mathbb{R}^n$ is convex if for any set of points $x_1, x_2, \ldots, x_n \in S$ their convex combinations are also in S.
- The convex hull of points $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ is the minimum convex set that contains these point, and is the set of all convex combinations.

Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple $\mathcal{H} = (M, n, R)$ where

- -M is a finite nonempty set of modes,
- -n is the number of continuous variables,
- $R: M \to \mathbb{R}^n$ gives for each mode the rate vector,
- $-S\subseteq\mathbb{R}^n$ is a bounded convex set of safe states.

Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple $\mathcal{H} = (M, n, R)$ where

- $-\ M$ is a finite nonempty set of modes,
- -n is the number of continuous variables,
- $-R:M\to\mathbb{R}^n$ gives for each mode the rate vector,
- $-S \subseteq \mathbb{R}^n$ is a bounded convex set of safe states.

- The trajectory of a schedule $(m_1,t_1),(m_2,t_2),\ldots,(m_k,t_k)$ from s_0 is

$$s_0, (m_1, t_1), s_1, \ldots, (m_k, t_k), s_k$$

such that $s_i = s_{i-1} + t_i \cdot R(m_i)$ for all for all $1 \le i \le k$.

- A schedule is safe at s_0 if all states of its trajectory from s_0 are safe.
- A mode m is t-safe at a state $s \in S$ if the schedule (m, t) is safe.

Safe Schedulability Problem

Given an MMS ${\cal H}$ and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Safe Schedulability Problem

Given an MMS ${\cal H}$ and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Schedulability Problem

Given an MMS ${\cal H}$ and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS \mathcal{H} , a starting state $s_0 \in S$, and a target state $s_t \in S$, decide whether there exists a safe schedule that reaches s_t from s_0 .

Safe Schedulability Problem

Given an MMS ${\cal H}$ and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS \mathcal{H} , a starting state $s_0 \in S$, and a target state $s_t \in S$, decide whether there exists a safe schedule that reaches s_t from s_0 .

Theorem

Safe Reachability can be solved in polynomial time if the starting and the target states lie in the interior of S.

Safe set: $x \in [65, 70], y \in [65, 70]$

Safe Schedulability Problem: Interior Case

Lemma

Assume that the starting state lies in the interior of the safety set. A safe non-Zeno schedule exists if and only if

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0$$

$$\sum_{i=1}^{|M|} f_i = 1.$$

for some $f_1, f_2, \dots, f_{|M|} \ge 0$. Moreover, such a schedule is periodic.

Safe Schedulability Problem: Interior Case

Proof Sketch: ("if" direction):

If for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0$$
 and $\sum_{i=1}^{|M|} f_i = 1$

then there exists a non-Zeno periodic safe schedule.

Safe Schedulability Problem: Interior Case

Proof Sketch: ("if" direction):

If for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0$$
 and $\sum_{i=1}^{|M|} f_i = 1$

then there exists a non-Zeno periodic safe schedule.

- 1. There exists a t > 0 such that all modes are safe at s_0 for t-time.
- 2. Consider the periodic schedule

$$(m_1, t \cdot f_1), (m_2, t \cdot f_2), \dots, (m_{|M|}, t \cdot f_{|M|})$$

- 3. Notice that the schedule is non-Zeno.
- 4. Consider the trajectory of the schedule

$$s_0, (m_1, t_1), s_1(m_2, t_2), \ldots, s_{|M|}, (m_1, t_1) \ldots$$

- 5. Notice that $s_{i \cdot |M|+j} = s_j$ for all $i \ge 0$.
- 6. We show that $s_0, s_1, \ldots, s_{|M|-1}$ are safe.

Safe Schedulability Problem: "If" Direction

Lemma: All convex combinations of finite safe schedules are safe.

Safe Schedulability Problem: "If" Direction

Lemma: All convex combinations of finite safe schedules are safe.

Corollary: All intermediate states visited in the following periodic schedule are safe if each mode is safe for time t>0.

$$(m_1, t \cdot f_1), (m_2, t \cdot f_2), \dots, (m_{|M|}, t \cdot f_{|M|})$$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0$$
 and $\sum_{i=1}^{|M|} f_i = 1$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

- 1. Assume that it is not feasible.
- 2. Then by Farkas's lemma there is $(v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ such that

$$(v_1, v_2, \dots, v_n) \cdot R(i) > 0$$
 for all modes i .

- 3. Taking any mode contributes to some progress in the direction (v_1, v_2, \dots, v_n)
- 4. Any non-Zeno schedule will eventually leave the safety set.

Reachability Problem: Geometry

Reachability Problem: Geometry

Safe Reachability Problem

Lemma

Assume that the starting state s_0 and the target state s_t lie in the interior of the safety set.

A safe schedule exists from s_0 to s_t exists if and only if

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$

for some $t_1, t_2, \dots, t_{|M|} \ge 0$.

Proof Sketch:

"Only if" direction is trivial.

Safe Reachability Problem

Proof Sketch: ("if" direction):

If for some $t_1, t_2, \ldots, t_{|M|} \geq 0$ we have that

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$

then a safe schedule exists from s_0 to s_t .

- 1. There exists a t > 0 such that all modes are safe at s_0 and s_t for t-time.
- 2. Let ℓ be a natural number greater than $\frac{\sum_{i=1}^{|M|}t_i}{t}.$
- 3. The periodic schedule $(m_1,t_1/\ell), (m_2,t_2/\ell), \ldots, (m_M,t_{|M|}/\ell)$ reaches the target in $\ell \cdot |M|$ steps.
- 4. Each intermediate state is in the safety set.

Thumb Rules: Schedulability

The following is feasible:

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

Or, the following in infeasible:

$$(v_1, v_2, \dots, v_n) \cdot R(i) > 0$$
 for all modes i .

Thumb Rules: Schedulability

The following is feasible:

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

Or, the following in infeasible:

$$(v_1, v_2, \dots, v_n) \cdot R(i) > 0$$
 for all modes i .

Thumb Rules: Reachability

The following is feasible:

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$

Reachability: Boundary Case

Reachability: Boundary Case

- 1. Rate vectors are (1,1) and (1,-1)
- 2. Angle at s' is 30^o .
- 3. $||s_k, s|| = ||s, s'|| \cdot (\frac{\sqrt{3}-1}{\sqrt{3}+1})^k$.

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ' s.t.:

- 1. All modes that were ever safe during the trajectory with σ will be safe in the final state of σ' , and
- 2. The set of safe modes in every state of σ' will always be increasing.

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ' s.t.:

- 1. All modes that were ever safe during the trajectory with σ will be safe in the final state of σ' , and
- 2. The set of safe modes in every state of σ' will always be increasing.

Algorithm: Interior Case

- 1. Compute the sequence of set of modes M_1, M_2, \ldots, M_k such that
 - M_1 is the set of safe modes at x_0 , and
 - M_i is the set of safe modes at states reachable from x_0 using only modes from M_{i-1} .
- 2. $M_1 \subset M_2 \subset \cdots \subset M_k$.
- 3. Modes outside M_k are never reachable from x_0 .
- 4. The set M_k can be computed in polynomial time.
- 5. MMS is schedulable from x_0 if and only if:

$$\sum_{m \in M_k} R(m) \cdot f_m = 0 \text{ and } \sum_{m \in M_k} f_m = 1$$

6. That can, again, be checked in polynomial time.

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Conclusion

Optimization Schedulability and Reachability

- MMS $\mathcal{H} = (M, n, R)$ and price function $\pi: M \to \mathbb{R}$
- Price of a finite schedule $(m_1, t_1), (m_2, t_2), \ldots, (m_k, t_k)$ is

$$\sum_{i=1}^{k} \pi(m_i) t_i.$$

- Average price of an infinite schedule $(m_1, t_1), (m_2, t_2), \ldots$ is

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^k \pi(m_i) t_i}{\sum_{i=1}^k t_i}.$$

Optimal reachability-price and average-price problems

Optimization Schedulability and Reachability

- MMS $\mathcal{H} = (M, n, R)$ and price function $\pi : M \to \mathbb{R}$
- Price of a finite schedule $(m_1, t_1), (m_2, t_2), \ldots, (m_k, t_k)$ is

$$\sum_{i=1}^{k} \pi(m_i) t_i.$$

- Average price of an infinite schedule $(m_1, t_1), (m_2, t_2), \ldots$ is

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^{k} \pi(m_i) t_i}{\sum_{i=1}^{k} t_i}.$$

- Optimal reachability-price and average-price problems
- Minimize $\sum_{i=1}^{|M|} t_i \cdot \pi(m_i)$ subject to:

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$
, and $t_i \ge 0$.

- Minimize $\sum_{i=1}^{|M|} f_i \cdot \pi(m_i)$ subject to:

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1, f_i \ge 0.$$

Discrete Schedulability and Undecidability

Discrete Schedulability:

- Requiring schedules with delays that are multiples of a given sampling rate
- For a bounded safety set only a finite number of states reachable using such discrete schedulers.
- Such reachable state-transition graph is of exponential size.
- schedulability/optimization problems can be solved in PSPACE.
- We show PSPACE-hardness by a reduction from acceptance problem for linear-bounded automata.

Discrete Schedulability and Undecidability

Discrete Schedulability:

- Requiring schedules with delays that are multiples of a given sampling rate
- For a bounded safety set only a finite number of states reachable using such discrete schedulers.
- Such reachable state-transition graph is of exponential size.
- schedulability/optimization problems can be solved in PSPACE.
- We show PSPACE-hardness by a reduction from acceptance problem for linear-bounded automata.

Generalizations:

- One can add some structure to the system by adding
 - guards on mode-switches
 - mode-dependent invariants
- Corresponds to singular hybrid automata of Henzinger et al. [HKPV98]
- We show that both generalizations lead to undecidability of the reachability problem.

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Conclusion

Summary and Future Work

Summary:

- 1. Proposed a model for constant-rate multi-mode systems
- 2. Polynomial-time algorithms for safe schedulability and safe reachability
- 3. Energy peak demand reduction problem
- 4. Discrete schedulers lead to PSPACF-hardness
- 5. Adding either local invariants or guards lead to undecidability

Future work:

- 1. Bounded-rate multi-mode systems
- 2. Optimization problems with cost of mode-switches
- 3. Extension with clock variables with guards and local-invariants

What's decidable about hybrid automata? Journal of Comp. and Sys. Sciences, 57:94–124, 1998.

Journal of Comp. and Sys. Sciences, 57:94–124, 199

T. X. Nghiem, M. Behl, G. J. Pappas, and R. Mangharam. Green scheduling: Scheduling of control systems for peak power reduction.

2nd International Green Computing Conference, July 2011.