

Ashutosh Trivedi

Department of Computer Science and Engineering, IIT Bombay

CS620: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (26 July 2013)

Peak Demand Reduction in Energy Usage

- 1. Absence of bulk energy storage technology
- 2. Base-load vs peaking power plants
- 3. Energy peaks are expensive:
 - For environment (peaking power plants are typically fossil-fueled)
 - For energy providers
 - For customers (peak power pricing)
- 4. Energy peaks are often avoidable:
 - Extreme weather and energy peaks
 - Heating, Ventilation, and Air-conditioning (HVAC) Units
- 5. Load-balancing methods:
 - Load shedding
 - Load shifting
 - Green scheduling [NBPM11]

Zones \setminus HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	2/0.2
Y (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	3/0.2

Zones \setminus HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	2/0.2
Y (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	3/0.2

- Assume that comfortable temperature range is $65^{o}F$ to $70^{o}F$.
- Energy is extremely expensive if peak demand dips above 4 units in a billing period

Zones \setminus HVAC Units Modes	HIGH	LOW	OFF
X (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	2/0.2
Y (Temp. Change Rate/ Energy Usage)	-2/3	-1/2	3/0.2

- Assume that comfortable temperature range is $65^{\circ}F$ to $70^{\circ}F$.
- Energy is extremely expensive if peak demand dips above 4 units in a billing period

Problem

Find an "implementable" switching schedule that keeps the temperatures within comfort zone and peak usage within 4 units?

Green Scheduling: Contd

Green Scheduling: Contd

Green Scheduling: Contd

Safe Schedulability Problem

Does there exist a switching schedule using these modes such that the temperatures of all zones stays in comfortable region?

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

68

68

 s_0

 s_1

x

y

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

 s_2

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Keywords: State, Schedule, periodic schedule, ultimately periodic schedule, trajectory, and safe schedule

Multi-mode System: Zeno schedule

Safe set: $x \in [65, 70], y \in [65, 70]$

Keywords: Zeno Schedule

Multi-mode Systems: Zeno schedule

Safe set: $x \in [65, 70], y \in [65, 70]$

Keywords: Zeno Schedule

Another Example: Leaking Tanks Systems

Another Example: Leaking Tanks Systems

- 1. Temperature and humidity control in cloud servers
- 2. Robot motion planning
- 3. Autonomous vehicles navigation
- 4. and more ..

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Summary

Definitions: Convex Sets

- A convex combination of a set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is a point of the form $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ where $\lambda_i \in [0, 1]$ and $\sum_i \lambda_i = 1$.

Definitions: Convex Sets

- A convex combination of a set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is a point of the form $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ where $\lambda_i \in [0, 1]$ and $\sum_i \lambda_i = 1$.
- A set $S \subseteq \mathbb{R}^n$ is convex if for any set of points $x_1, x_2, \ldots, x_n \in S$ their convex combinations are also in S.

Definitions: Convex Sets

- A convex combination of a set of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is a point of the form $\lambda_1 x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n$ where $\lambda_i \in [0, 1]$ and $\sum_i \lambda_i = 1$.
- A set $S \subseteq \mathbb{R}^n$ is convex if for any set of points $x_1, x_2, \ldots, x_n \in S$ their convex combinations are also in S.
- The convex hull of points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is the minimum convex set that contains these point, and is the set of all convex combinations.

Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple $\mathcal{H} = (M, n, R)$ where

- ${\cal M}$ is a finite nonempty set of modes,
- n is the number of continuous variables,
- $R:M\rightarrow \mathbb{R}^n$ gives for each mode the rate vector,
- $S\subseteq \mathbb{R}^n$ is a bounded convex set of safe states.

Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple $\mathcal{H} = (M, n, R)$ where

- ${\cal M}$ is a finite nonempty set of modes,
- n is the number of continuous variables,
- $R:M\rightarrow \mathbb{R}^n$ gives for each mode the rate vector,
- $S\subseteq \mathbb{R}^n$ is a bounded convex set of safe states.
- The trajectory of a schedule $(m_1, t_1), (m_2, t_2), \ldots, (m_k, t_k)$ from s_0 is

$$s_0, (m_1, t_1), s_1, \ldots, (m_k, t_k), s_k$$

such that $s_i = s_{i-1} + t_i \cdot R(m_i)$ for all for all $1 \le i \le k$.

- A schedule is safe at s_0 if all states of its trajectory from s_0 are safe.
- A mode m is t-safe at a state $s \in S$ if the schedule (m, t) is safe.

Safe Schedulability Problem

Given an MMS ${\cal H}$ and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Safe Schedulability Problem

Given an MMS ${\cal H}$ and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Schedulability Problem

Given an MMS \mathcal{H} and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS \mathcal{H} , a starting state $s_0 \in S$, and a target state $s_t \in S$, decide whether there exists a safe schedule that reaches s_t from s_0 .

Safe Schedulability Problem

Given an MMS \mathcal{H} and a starting state s_0 decide whether there exists a non-Zeno safe schedule.

Theorem

Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS \mathcal{H} , a starting state $s_0 \in S$, and a target state $s_t \in S$, decide whether there exists a safe schedule that reaches s_t from s_0 .

Theorem

Safe Reachability can be solved in polynomial time if the starting and the target states lie in the interior of *S*.

Safe set: $x \in [65, 70], y \in [65, 70]$

Safe Schedulability Problem: Interior Case

Lemma

Assume that the starting state lies in the interior of the safety set. A safe non-Zeno schedule exists if and only if

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0$$
$$\sum_{i=1}^{|M|} f_i = 1.$$

for some $f_1, f_2, \ldots, f_{|M|} \ge 0$. Moreover, such a schedule is periodic.
Safe Schedulability Problem: Interior Case

Proof Sketch: ("if" direction):

If for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

then there exists a non-Zeno periodic safe schedule.

Safe Schedulability Problem: Interior Case

Proof Sketch: ("if" direction):

If for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

then there exists a non-Zeno periodic safe schedule.

- 1. There exists a t > 0 such that all modes are safe at s_0 for t-time.
- 2. Consider the periodic schedule

$$(m_1, t \cdot f_1), (m_2, t \cdot f_2), \dots, (m_{|M|}, t \cdot f_{|M|})$$

- 3. Notice that the schedule is non-Zeno.
- 4. Consider the trajectory of the schedule

$$s_0, (m_1, t_1), s_1(m_2, t_2), \dots, s_{|M|}, (m_1, t_1) \dots$$

- 5. Notice that $s_{i \cdot |M|+j} = s_j$ for all $i \ge 0$.
- 6. We show that $s_0, s_1, \ldots, s_{|M|-1}$ are safe.

Safe Schedulability Problem: "If" Direction

Lemma: All convex combinations of finite safe schedules are safe.

Safe Schedulability Problem: "If" Direction

Lemma: All convex combinations of finite safe schedules are safe.

Corollary: All intermediate states visited in the following periodic schedule are safe if each mode is safe for time t > 0.

$$(m_1, t \cdot f_1), (m_2, t \cdot f_2), \dots, (m_{|M|}, t \cdot f_{|M|})$$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

- 1. Assume that it is not feasible.
- 2. Then by Farkas's lemma there is $(v_1, v_2, \ldots, v_n) \in \mathbb{R}^n$ such that

 $(v_1, v_2, \ldots, v_n) \cdot R(i) > 0$ for all modes *i*.

- 3. Taking any mode contributes to some progress in the direction (v_1, v_2, \ldots, v_n)
- 4. Any non-Zeno schedule will eventually leave the safety set.

Farkas's Lemma

Gyula Farkas (1847–1930)

Theorem

Let A be a real $N \times M$ matrix and b be an N-dimensional vector. Then exactly one of the following two statements is true.

- There exists a vector $x \in \mathbb{R}^M$ such that Ax = b and $x \ge 0$.
- There exists a vector $y \in \mathbb{R}^N$ such that $A^T y \ge 0$ and $b^T y < 0$.

Farkas's lemma application

There exists a vector (f_1, f_2, \ldots, f_m) such that for

$$A = \begin{pmatrix} R(1)(1) & R(2)(1) & \cdots & R(m)(1) \\ R(1)(2) & R(2)(2) & \cdots & R(m)(2) \\ R(1)(3) & R(2)(3) & \cdots & R(m)(3) \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$x = (f_1, f_2, \dots, f_m)$$
 and $b = (0, 0, \dots, 1)$,

we have that Ax = b and $x \ge 0$.

Farkas's lemma application

There exists a vector (f_1, f_2, \ldots, f_m) such that for

$$A = \begin{pmatrix} R(1)(1) & R(2)(1) & \cdots & R(m)(1) \\ R(1)(2) & R(2)(2) & \cdots & R(m)(2) \\ R(1)(3) & R(2)(3) & \cdots & R(m)(3) \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

$$x = (f_1, f_2, \dots, f_m)$$
 and $b = (0, 0, \dots, 1)$,

we have that Ax = b and $x \ge 0$.

By Farkas's lemma, either our equations are feasible or the following is feasible. There exists a vector $(v_1, v_2, \ldots, v_n, d)$ such that for

$$A^{T} = \begin{pmatrix} R(1)(1) & R(1)(2) & R(1)(3) & 1\\ R(2)(1) & R(2)(2) & R(2)(3) & 1\\ R(3)(1) & R(3)(2) & R(3)(3) & 1\\ \cdots & & \\ R(m)(1) & R(m)(2) & R(m)(3) & 1 \end{pmatrix}$$

and $b^t = (0,0,0,\ldots,1)^T$, $A^Ty \geq 0$ and $b^Ty < 0.$

Safe Schedulability Problem: Interior Case

Proof Sketch: ("only if" direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative f_i we have

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

- 1. Assume that it is not feasible.
- 2. Then by Farkas's lemma there is $(v_1, v_2, \ldots, v_n) \in \mathbb{R}^n$ such that

 $(v_1, v_2, \ldots, v_n) \cdot R(i) > 0$ for all modes *i*.

- 3. Taking any mode contributes to some progress in the direction (v_1, v_2, \ldots, v_n)
- 4. Any non-Zeno schedule will eventually leave the safety set.

Reachability Problem: Geometry

Reachability Problem: Geometry

Lemma

Assume that the starting state s_0 and the target state s_t lie in the interior of the safety set.

A safe schedule exists from s_0 to s_t exists if and only if

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$

for some $t_1, t_2, \ldots, t_{|M|} \ge 0$.

Proof Sketch:

"Only if" direction is trivial.

Safe Reachability Problem

 $\frac{\text{Proof Sketch: ("if" direction):}}{\text{If for some } t_1, t_2, \dots, t_{|M|} \ge 0} \text{ we have that}$

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$

then a safe schedule exists from s_0 to s_t .

- 1. There exists a t > 0 such that all modes are safe at s_0 and s_t for t-time. Notice all points on the line connecting s_0 and s_t .
- 2. Let ℓ be a natural number greater than $\frac{\sum_{i=1}^{|M|} t_i}{t}$.
- 3. The periodic schedule $(m_1, t_1/\ell), (m_2, t_2/\ell), \dots, (m_M, t_{|M|}/\ell)$ reaches the target in $\ell \cdot |M|$ steps.
- 4. Each intermediate state is in the safety set.

Thumb Rules: Schedulability

The following is feasible:

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

Or, the following in infeasible:

 $(v_1, v_2, \ldots, v_n) \cdot R(i) > 0$ for all modes *i*.

Thumb Rules: Schedulability

The following is feasible:

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1$$

Or, the following in infeasible:

 $(v_1, v_2, \ldots, v_n) \cdot R(i) > 0$ for all modes *i*.

Thumb Rules: Reachability

The following is feasible:

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$

Reachability: Boundary Case

Reachability: Boundary Case

1. Rate vectors are $\left(1,1\right)$ and $\left(1,-1\right)$

2. Angle at s' is 30° .

3.
$$||s_k, s|| = ||s, s'|| \cdot (\frac{\sqrt{3}-1}{\sqrt{3}+1})^k$$
.

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ' s.t.:

- 1. All modes that were ever safe during the trajectory with σ will be safe in the final state of $\sigma',$ and
- 2. The set of safe modes in every state of σ' will always be increasing.

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ' s.t.:

- 1. All modes that were ever safe during the trajectory with σ will be safe in the final state of σ' , and
- 2. The set of safe modes in every state of σ' will always be increasing.

$\sigma: \checkmark t_1$	$\searrow t_2$	$\int t_3$
σ' : $t_1/2$		
$/ t_1/4$	$t_2/2$	
$/ t_1/8$	$t_2/4$	$t_{3}/2$

- 1. Compute the sequence of set of modes M_1, M_2, \ldots, M_k such that
 - M_1 is the set of safe modes at x_0 , and
 - M_i is the set of safe modes at states reachable from x_0 using only modes from M_{i-1} .
- 2. $M_1 \subset M_2 \subset \cdots \subset M_k$.
- 3. Modes outside M_k are never reachable from x_0 .
- 4. The set M_k can be computed in polynomial time.
- 5. MMS is schedulable from x_0 if and only if:

$$\sum_{m\in M_k} R(m)\cdot f_m = 0 \text{ and } \sum_{m\in M_k} f_m = 1$$

6. That can, again, be checked in polynomial time.

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Summary

Optimization Schedulability and Reachability

- MMS $\mathcal{H} = (M, n, R)$ and price function $\pi: M \rightarrow \mathbb{R}$
- Price of a finite schedule $(m_1, t_1), (m_2, t_2), \ldots, (m_k, t_k)$ is

$$\sum_{i=1}^k \pi(m_i) t_i.$$

- Average price of an infinite schedule $(m_1, t_1), (m_2, t_2), \ldots$ is

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^k \pi(m_i) t_i}{\sum_{i=1}^k t_i}.$$

- Optimal reachability-price and average-price problems

Optimization Schedulability and Reachability

- MMS $\mathcal{H} = (M, n, R)$ and price function $\pi: M \rightarrow \mathbb{R}$
- Price of a finite schedule $(m_1, t_1), (m_2, t_2), \ldots, (m_k, t_k)$ is

$$\sum_{i=1}^k \pi(m_i) t_i.$$

- Average price of an infinite schedule $(m_1, t_1), (m_2, t_2), \ldots$ is

$$\limsup_{n \to \infty} \frac{\sum_{i=1}^k \pi(m_i) t_i}{\sum_{i=1}^k t_i}$$

- Optimal reachability-price and average-price problems
- Minimize $\sum_{i=1}^{|M|} t_i \cdot \pi(m_i)$ subject to:

$$s_0 + \sum_{i=1}^{|M|} R(i) \cdot t_i = s_t$$
, and $t_i \ge 0$.

– Minimize $\sum_{i=1}^{|M|} f_i \cdot \pi(m_i)$ subject to:

$$\sum_{i=1}^{|M|} R(i) \cdot f_i = 0 \text{ and } \sum_{i=1}^{|M|} f_i = 1, f_i \ge 0.$$

Discrete Schedulability and Undecidability

Discrete Schedulability:

- Requiring schedules with delays that are multiples of a given sampling rate
- For a bounded safety set only a finite number of states reachable using such discrete schedulers.
- Such reachable state-transition graph is of exponential size.
- schedulability/optimization problems can be solved in PSPACE.
- PSPACE-hardness can be shown by a reduction from the acceptance problem for linear-bounded automata.

Discrete Schedulability and Undecidability

Discrete Schedulability:

- Requiring schedules with delays that are multiples of a given sampling rate
- For a bounded safety set only a finite number of states reachable using such discrete schedulers.
- Such reachable state-transition graph is of exponential size.
- schedulability/optimization problems can be solved in PSPACE.
- PSPACE-hardness can be shown by a reduction from the acceptance problem for linear-bounded automata.

Generalizations:

- One can add some structure to the system by adding
 - guards on mode-switches
 - mode-dependent invariants
- Corresponds to a variant (singular) of hybrid automata [HKPV98]
- Each of these generalizations lead to undecidability of the reachability problem.

Marvin Minsky (1927)

A Minsky machine \mathcal{A} is a tuple (L, C, D) where:

- $L = \{\ell_0, \ell_1, \dots, \ell_n\}$ is the set of states including the distinguished terminal state ℓ_n ;
- $C = \{c_1, c_2\}$ is the set of two counters;
- $D = \{\delta_0, \delta_1, \dots, \delta_{n-1}\}$ is the set of transitions of the following type: 1. c := c + 1; goto ℓ_k , 2. if (c > 0) then (c := c - 1; goto $\ell_k)$ else goto ℓ_m ,

- Let $\mathcal{A} = (L, C, D)$ be a Minsky machine.
- A configuration of a Minsky machine is a tuple (ℓ,c,d)
- The initial configuration $(\ell_0, 0, 0)$
- The run of a Minsky machine is a (finite or infinite) valid sequence of configurations $\langle k_0,k_1,\ldots\rangle$
- The run is a finite sequence (halting) if and only if the last configuration is the terminal state ℓ_n .
- The halting problem for a Minsky machine asks whether its unique run is finite.

Theorem ([Min67])

The halting problem for the two-counter Minsky machines is undecidable.

- Let $\mathcal{A} = (L, C, D)$ be a Minsky machine.
- A configuration of a Minsky machine is a tuple (ℓ,c,d)
- The initial configuration $(\ell_0, 0, 0)$
- The run of a Minsky machine is a (finite or infinite) valid sequence of configurations $\langle k_0,k_1,\ldots\rangle$
- The run is a finite sequence (halting) if and only if the last configuration is the terminal state ℓ_n .
- The halting problem for a Minsky machine asks whether its unique run is finite.

Theorem ([Min67])

The halting problem for the two-counter Minsky machines is undecidable.

We reduce Minsky machine halting problem to singular hybrid automata reachability problem.

- Let $\mathcal{A} = (L, C, D)$ be a Minsky machine.
- A configuration of a Minsky machine is a tuple (ℓ,c,d)
- The initial configuration $(\ell_0, 0, 0)$
- The run of a Minsky machine is a (finite or infinite) valid sequence of configurations $\langle k_0,k_1,\ldots\rangle$
- The run is a finite sequence (halting) if and only if the last configuration is the terminal state ℓ_n .
- The halting problem for a Minsky machine asks whether its unique run is finite.

Theorem ([Min67])

The halting problem for the two-counter Minsky machines is undecidable.

We reduce Minsky machine halting problem to singular hybrid automata reachability problem.

Theorem

The reachability problem for singular hybrid automata is undecidable.

Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Summary
- 1. Discussed a model for constant-rate multi-mode systems
- 2. Polynomial-time algorithms for safe schedulability and safe reachability
- 3. Energy peak demand reduction problem
- 4. Discrete schedulers lead to PSPACE-hardness
- 5. Adding either local invariants or guards lead to undecidability
- 6. Bounded-rate Multi-mode systems

Course overview

- 1. Formal Modeling of CPS
 - Discrete Dynamical Systems (Extended Finite State Machines)
 - Continuous Dynamical Systems (Ordinary Differential Equations)
 - Hybrid Dynamical Systems
 - Timed automata,
 - Hybrid automata,
 - PCDs, Multi-mode systems, and other decidable subclasses
- 2. Tools for modeling CPS
 - UPPAAL
 - HyTech
 - Stateflow/Simulink
- 3. Verification and Synthesis
 - Classical temporal logics LTL and CTL
 - Real-time extensions of these logics, in particular MTL
 - Model-Checking for timed and hybrid automata
 - Automatic Synthesis for CPS (satisfiability, controller-environment games, code-generations, etc.)

Grading

T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What's decidable about hybrid automata? Journal of Comp. and Sys. Sciences, 57:94–124, 1998.

Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc., 1967.

T. X. Nghiem, M. Behl, G. J. Pappas, and R. Mangharam. Green scheduling: Scheduling of control systems for peak power reduction.

2nd International Green Computing Conference, July 2011.