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Peak Demand Reduction in Energy Usage

1. Absence of bulk energy storage technology

2. Base-load vs peaking power plants

3. Energy peaks are expensive:

– For environment (peaking power plants are
typically fossil-fueled )

– For energy providers
– For customers (peak power pricing)

4. Energy peaks are often avoidable:

– Extreme weather and energy peaks
– Heating, Ventilation, and Air-conditioning

(HVAC) Units

5. Load-balancing methods:

– Load shedding
– Load shifting

– Green scheduling [NBPM11]
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Green Scheduling

Zones \ HVAC Units Modes HIGH LOW OFF
X (Temp. Change Rate/ Energy Usage) -2/3 -1/2 2/0.2
Y (Temp. Change Rate/ Energy Usage) -2/3 -1/2 3/0.2

– Assume that comfortable temperature range is 65oF to 70oF .

– Energy is extremely expensive if peak demand dips above 4 units in a
billing period

Problem
Find an “implementable” switching schedule that keeps the temperatures
within comfort zone and peak usage within 4 units?
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Green Scheduling: Contd
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ẋ = 2
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Green Scheduling: Contd
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ẋ = 2
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Safe Schedulability Problem

Does there exist a switching schedule using these modes such that the
temperatures of all zones stays in comfortable region?
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Multi-mode Systems: Safe Schedulability
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Keywords: State, Schedule, periodic schedule, ultimately periodic schedule,
trajectory, and safe schedule
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ẋ = −1
ẏ = −1

m2
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ẏ = −1

m5

ẋ = 2
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ẏ = −1

m5
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ẏ = 3

m3
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Multi-mode System: Zeno schedule
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ẋ = 2
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ẋ = −1
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Another Example: Leaking Tanks Systems
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... and more

1. Temperature and humidity control in cloud servers

2. Robot motion planning

3. Autonomous vehicles navigation

4. and more..
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Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Summary
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Definitions: Convex Sets

z z

Convex Sets Non-Convex Set
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– A convex combination of a set of points x1, x2, . . . , xn ∈ Rn is a point of
the form λ1x1 + λ2x2 + · · ·+ λnxn where λi ∈ [0, 1] and

∑
i λi = 1.

– A set S ⊆ Rn is convex if for any set of points x1, x2, . . . , xn ∈ S their
convex combinations are also in S.

– The convex hull of points x1, x2, . . . , xn ∈ Rn is the minimum convex set
that contains these point, and is the set of all convex combinations.
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Formal Definitions

Definition (Constant-Rate Multi-Mode Systems: MMS)

A MMS is a tuple H = (M,n,R) where

– M is a finite nonempty set of modes,

– n is the number of continuous variables,

– R :M → Rn gives for each mode the rate vector,

– S ⊆ Rn is a bounded convex set of safe states.

– The trajectory of a schedule (m1, t1), (m2, t2), . . . , (mk, tk) from s0 is

s0, (m1, t1), s1, . . . , (mk, tk), sk

such that si = si−1 + ti ·R(mi) for all for all 1 ≤ i ≤ k.

– A schedule is safe at s0 if all states of its trajectory from s0 are safe.

– A mode m is t-safe at a state s ∈ S if the schedule (m, t) is safe.
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Definition

Safe Schedulability Problem

Given an MMS H and a starting state s0 decide whether there exists a
non-Zeno safe schedule.

Theorem
Safe Schedulability can be solved in polynomial time.

Safe Reachability Problem

Given an MMS H, a starting state s0 ∈ S, and a target state st ∈ S, decide
whether there exists a safe schedule that reaches st from s0.

Theorem
Safe Reachability can be solved in polynomial time if the starting and the
target states lie in the interior of S.
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Safe Schedulability Problem: Geometry
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ẋ = 2
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Safe Schedulability Problem: Interior Case

Lemma
Assume that the starting state lies in the interior of the safety set.
A safe non-Zeno schedule exists if and only if

|M |∑
i=1

R(i) · fi = 0

|M |∑
i=1

fi = 1.

for some f1, f2, . . . , f|M | ≥ 0.
Moreover, such a schedule is periodic.
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Safe Schedulability Problem: Interior Case

Proof Sketch: (“if” direction):

If for some non-negative fi we have

|M |∑
i=1

R(i) · fi = 0 and

|M |∑
i=1

fi = 1

then there exists a non-Zeno periodic safe schedule.

1. There exists a t > 0 such that all modes are safe at s0 for t-time.

2. Consider the periodic schedule

(m1, t · f1), (m2, t · f2), . . . , (m|M |, t · f|M |)

3. Notice that the schedule is non-Zeno.

4. Consider the trajectory of the schedule

s0, (m1, t1), s1(m2, t2), . . . , s|M |, (m1, t1) . . .

5. Notice that si·|M |+j = sj for all i ≥ 0.

6. We show that s0, s1, . . . , s|M |−1 are safe.
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Safe Schedulability Problem: “If” Direction

Lemma: All convex combinations of finite safe schedules are safe.

x0, y0, z0

x1

x2
x3

y1
y2
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z1
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z3

z4

z5

z6 z6 = λx3 + (1− λ)y3

Corollary: All intermediate states visited in the following periodic schedule are
safe if each mode is safe for time t > 0.

(m1, t · f1), (m2, t · f2), . . . , (m|M |, t · f|M |)
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Safe Schedulability Problem: Interior Case

Proof Sketch: (“only if” direction):

There exists a non-Zeno periodic safe schedule only if for some non-negative
fi we have

|M |∑
i=1

R(i) · fi = 0 and

|M |∑
i=1

fi = 1

1. Assume that it is not feasible.

2. Then by Farkas’s lemma there is (v1, v2, . . . , vn) ∈ Rn such that

(v1, v2, . . . , vn) ·R(i) > 0 for all modes i.

3. Taking any mode contributes to some progress in the direction
(v1, v2, . . . , vn)

4. Any non-Zeno schedule will eventually leave the safety set.
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Farkas’s Lemma

Gyula Farkas (1847–1930)

Theorem
Let A be a real N ×M matrix and b be an N -dimensional vector.
Then exactly one of the following two statements is true.

– There exists a vector x ∈ RM such that Ax = b and x ≥ 0.

– There exists a vector y ∈ RN such that AT y ≥ 0 and bT y < 0.
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Farkas’s lemma application

There exists a vector (f1, f2, . . . , fm) such that for

A =


R(1)(1) R(2)(1) · · · R(m)(1)
R(1)(2) R(2)(2) · · · R(m)(2)
R(1)(3) R(2)(3) · · · R(m)(3)

1 1 · · · 1


x = (f1, f2, . . . , fm) and b = (0, 0, . . . , 1),

we have that Ax = b and x ≥ 0.

By Farkas’s lemma, either our equations are feasible or the following is feasible.
There exists a vector (v1, v2, . . . , vn, d) such that for

AT =


R(1)(1) R(1)(2) R(1)(3) 1
R(2)(1) R(2)(2) R(2)(3) 1
R(3)(1) R(3)(2) R(3)(3) 1
· · ·

R(m)(1) R(m)(2) R(m)(3) 1


and bt = (0, 0, 0, . . . , 1)T , AT y ≥ 0 and bT y < 0.
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Safe Schedulability Problem: Interior Case
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(v1, v2, . . . , vn) ·R(i) > 0 for all modes i.

3. Taking any mode contributes to some progress in the direction
(v1, v2, . . . , vn)

4. Any non-Zeno schedule will eventually leave the safety set.
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Reachability Problem: Geometry
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Reachability Problem: Geometry
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Safe Reachability Problem

Lemma
Assume that the starting state s0 and the target state st lie in the interior of
the safety set.
A safe schedule exists from s0 to st exists if and only if

s0 +

|M |∑
i=1

R(i) · ti = st

for some t1, t2, . . . , t|M | ≥ 0.

Proof Sketch:

“Only if” direction is trivial.
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Safe Reachability Problem

Proof Sketch: (“if” direction):
If for some t1, t2, . . . , t|M | ≥ 0 we have that

s0 +

|M |∑
i=1

R(i) · ti = st

then a safe schedule exists from s0 to st.

1. There exists a t > 0 such that all modes are safe at s0 and st for t-time.
Notice all points on the line connecting s0 and st.

2. Let ` be a natural number greater than
∑|M|

i=1 ti
t .

3. The periodic schedule (m1, t1/`), (m2, t2/`), . . . , (mM , t|M |/`) reaches
the target in ` · |M | steps.

4. Each intermediate state is in the safety set.
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Thumb Rules: Schedulability

The following is feasible:

|M |∑
i=1

R(i) · fi = 0 and

|M |∑
i=1

fi = 1

Or, the following in infeasible:

(v1, v2, . . . , vn)·R(i) > 0 for all modes i.

m1

(−2, 3)

m4

(2,−2)

m6

(2, 3)

m2

(−1,−1)

m3

(−1, 3)

m5

(2,−1)
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Thumb Rules: Reachability

The following is feasible:

s0 +

|M |∑
i=1

R(i) · ti = st
s0

st

R1

R2
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Reachability: Boundary Case

s1 s2 . . .
s s′

1. Rate vectors are (1, 1) and (1,−1)
2. Angle at s′ is 30o.

3. ‖sk, s‖ = ‖s, s′‖ · (
√
3−1√
3+1

)k.
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Schedulability: Boundary Case

X

Y
Z

s0



A. Trivedi – 31 of 42

Schedulability: Boundary Case

X

Y
Z

s0



A. Trivedi – 31 of 42

Schedulability: Boundary Case

X

Y
Z

s0



A. Trivedi – 31 of 42

Schedulability: Boundary Case

X

Y
Z

s0



A. Trivedi – 32 of 42

Schedulability: Boundary Case

Lemma

For any finite safe schedule σ there exists a finite safe schedule σ′ s.t.:

1. All modes that were ever safe during the trajectory with σ will be safe in
the final state of σ′, and

2. The set of safe modes in every state of σ′ will always be increasing.

x0, y0

x1

x2

x3

y1
y2

y3

σ : t1 t2 t3

σ′ :
t1/2

t1/4 t2/2

t1/8 t2/4
t3/2
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Algorithm: Interior Case

1. Compute the sequence of set of modes M1,M2, . . . ,Mk such that

– M1 is the set of safe modes at x0, and
– Mi is the set of safe modes at states reachable from x0 using only modes

from Mi−1.

2. M1 ⊂M2 ⊂ · · · ⊂Mk.

3. Modes outside Mk are never reachable from x0.

4. The set Mk can be computed in polynomial time.

5. MMS is schedulable from x0 if and only if:∑
m∈Mk

R(m) · fm = 0 and
∑

m∈Mk

fm = 1

6. That can, again, be checked in polynomial time.
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Motivation

Constant-Rate Multi-Mode Systems

Optimization, Discretization, and Undecidability

Summary
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Optimization Schedulability and Reachability

– MMS H = (M,n,R) and price function π :M → R
– Price of a finite schedule (m1, t1), (m2, t2), . . . , (mk, tk) is

k∑
i=1

π(mi)ti.

– Average price of an infinite schedule (m1, t1), (m2, t2), . . . is

lim sup
n→∞

∑k
i=1 π(mi)ti∑k

i=1 ti
.

– Optimal reachability-price and average-price problems

– Minimize
∑|M |

i=1 ti · π(mi) subject to:

s0 +

|M |∑
i=1

R(i) · ti = st, and ti ≥ 0.

– Minimize
∑|M |

i=1 fi · π(mi) subject to:

|M |∑
i=1

R(i) · fi = 0 and

|M |∑
i=1

fi = 1, fi ≥ 0.
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Discrete Schedulability and Undecidability

Discrete Schedulability:

– Requiring schedules with delays that are multiples of a given sampling rate

– For a bounded safety set only a finite number of states reachable using
such discrete schedulers.

– Such reachable state-transition graph is of exponential size.

– schedulability/optimization problems can be solved in PSPACE.

– PSPACE-hardness can be shown by a reduction from the acceptance
problem for linear-bounded automata.

Generalizations:

– One can add some structure to the system by adding

– guards on mode-switches
– mode-dependent invariants

– Corresponds to a variant (singular) of hybrid automata [HKPV98]

– Each of these generalizations lead to undecidability of the reachability
problem.
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Undecidability Proof

Marvin Minsky (1927)

A Minsky machine A is a tuple (L,C,D) where:

– L = {`0, `1, . . . , `n} is the set of states including the distinguished
terminal state `n;

– C = {c1, c2} is the set of two counters;

– D = {δ0, δ1, . . . , δn−1} is the set of transitions of the following type:

1. c := c+ 1; goto `k,
2. if (c > 0) then (c := c− 1; goto `k) else goto `m,
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Undecidability Proof

– Let A = (L,C,D) be a Minsky machine.

– A configuration of a Minsky machine is a tuple (`, c, d)

– The initial configuration (`0, 0, 0)

– The run of a Minsky machine is a (finite or infinite) valid sequence of
configurations 〈k0, k1, . . .〉

– The run is a finite sequence (halting) if and only if the last configuration
is the terminal state `n.

– The halting problem for a Minsky machine asks whether its unique run is
finite.

Theorem ( [Min67] )

The halting problem for the two-counter Minsky machines is undecidable.

We reduce Minsky machine halting problem to singular hybrid automata
reachability problem.

Theorem
The reachability problem for singular hybrid automata is undecidable.
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Summary

1. Discussed a model for constant-rate multi-mode systems

2. Polynomial-time algorithms for safe schedulability and safe reachability

3. Energy peak demand reduction problem

4. Discrete schedulers lead to PSPACE-hardness

5. Adding either local invariants or guards lead to undecidability

6. Bounded-rate Multi-mode systems
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Course overview

1. Formal Modeling of CPS

– Discrete Dynamical Systems (Extended Finite State Machines)
– Continuous Dynamical Systems (Ordinary Differential Equations)
– Hybrid Dynamical Systems

– Timed automata,
– Hybrid automata,
– PCDs, Multi-mode systems, and other decidable subclasses

2. Tools for modeling CPS

– UPPAAL
– HyTech
– Stateflow/Simulink

3. Verification and Synthesis

– Classical temporal logics LTL and CTL
– Real-time extensions of these logics, in particular MTL
– Model-Checking for timed and hybrid automata
– Automatic Synthesis for CPS (satisfiability, controller-environment games,

code-generations, etc.)
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Grading

30%

30%

20%

20%

End-semester Project Mid-semester Quizzes
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