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Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a
fixed set of rules or dynamics.

– state: valuation to variables (discrete or continuous) of the system

– time: discrete or continuous

– dynamics: discrete, continuous, or hybrid

Discrete System Continuous System Hybrid Systems.
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Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems
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Abstract Model for Dynamical Systems

Definition (State Transition Systems)

A state transition system is a tuple T = (S, S0,Σ,∆) where:

– S is a (potentially infinite) set of states;

– S0 ⊆ S is the set of initial states;

– Σ is a (potentially infinite) set of actions; and

– ∆ ⊆ S × Σ× S is the transition relation;
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State Transition Systems

Definition (State Transition Systems)

A state transition system is a tuple T = (S, S0,Σ,∆) where:

– S is a (potentially infinite) set of states;

– S0 ⊆ S is the set of initial states;

– Σ is a (potentially infinite) set of actions; and

– ∆ ⊆ S × Σ× S is the transition relation;

– Finite and countable state transition systems

– A finite run is a sequence

〈s0, a1, s1, s2, s2, . . . , sn〉

such that s0 ∈ S0 and for all 0 ≤ i < n we have that (si, ai+1, si+1) ∈ ∆.

– Reachability and Safe-Schedulability problems

We need efficient computer-readable representations of infinite systems!
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Extended Finite State Machines

– Let X be the set of variables (real-valued) of the system

– let |X| = N .

– A valuation ν of X is a function ν : X → R.

– We consider a valuation as a point in RN equipped with Euclidean Norm.

– A predicate is defined simply as a subset of RN represented (non-linear)
algebraic equations involving X.

– Non-linear predicates, e.g. x+ 9.8 sin(z) = 0
– Polyhedral predicates:

a1x1 + a2x2 + · · ·+ anxn ∼ k

where ai ∈ R, xi ∈ X, and ∼= {<,≤,=,≥, >}.
– Octagonal predicates

xi − xj ∼ k or xi ∼ k
where xi, xj ∈ X, and ∼= {<,≤,=,≥, >}.

– Rectangular predicates
xi ∼ k

where xi ∈ X, and ∼= {<,≤,=,≥, >}.
– Singular Predicates xi = c.
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Extended Finite State Machines

countstart pause
>, pause, x′=x

x<3, tick, x′=x+ 1

x=3, tick, x′=0

>, start, x′=x >, tick, x′=x

Extended Finite State Machines (EFSMs):

– Finite state-transition systems coupled with a finite set of variables

– The valuation remains unchanged while system stays in a mode (state)

– The valuation changes during a transition when it jumps to the valuation
governed by a predicate over X∪X ′ specified in the transition relation.

– Transitions are guarded by predicates over X

– Mode invariants

– Initial state and valuation
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Extended Finite State Machines

countstart pause
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Definition (EFSM: Syntax)

An extended finite state machine is a tuple M = (M,M0,Σ, X,∆, I, V0) such
that:

– M is a finite set of control modes including a distinguished initial set of
control modes M0 ⊆M ,

– Σ is a finite set of actions,

– X is a finite set of real-valued variable,

– ∆ ⊆M × pred(X)× Σ× pred(X ∪X ′)×M is the transition relation,

– I : M → pred(X) is the mode-invariant function, and

– V0 ∈ pred(X) is the set of initial valuations.
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EFSM: Semantics
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EFSM: Semantics

The semantics of an EFSM M = (M,M0,Σ, X,∆, I, V0) is given as a state
transition graph TM = (SM, SM0 ,ΣM,∆M) where

– SM ⊆ (M × R|X|) is the set of configurations of M such that for all
(m, ν) ∈ SM we have that ν ∈ JI(m)K;

– SM0 ⊆ SM is the set of initial configurations such that (m, ν) ∈ SM if
m ∈M0 and ν ∈ V0;

– ΣM = Σ is the set of labels;

– ∆M ⊆ SM × ΣM × SM is the set of transitions such that
((m, ν), a, (m′, ν′)) ∈ ∆M if there exists a transition
δ = (m, g, a, j,m′) ∈ ∆ such that

– current valuation satisfies the guard ν ∈ JgK;
– current and next valuations satisfy the jump constraint (ν, ν′) ∈ JjK; and
– next valuation satisfies the invariant of the target mode ν′ ∈ JI(m′)K.
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Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems
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Continuous Dynamical Systems

– A finite set of continuous variables,

– a set of ordinary differential equations (ODE) characterizing the flow of
these variables as a function of time

– F : Ẋ → pred(X) where ẋ is the first derivative of x.
– Higher-order derivatives can be written using first derivatives by

introducing auxiliary variables, e.g. write θ̈ + (g/`) sin(θ) = 0 can be
written as

θ̇ = y and ẏ = −(g/`) sin(θ).

– an initial valuation to the variables.

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple M = (X,F, ν0) such that

– X is a finite set of real-valued variable,

– F : Ẋ → pred(X) is the flow function, and

– ν0 ∈ R|X| is the initial valuation.
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Continuous Dynamical Systems

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple M = (X,F, ν0) such that

– X is a finite set of real-valued variable,

– F : Ẋ → pred(X) is the flow function, and

– ν0 ∈ R|X| is the initial valuation.

– A run or a trajectory of M = (X,F, ν0) is given as a solution to the
differential equations Ẋ = F (X) with initial valuation ν0.

– Let a differentiable function f : R≥0→R|X| be a solution to Ẋ = F (X)
that provides the valuations of the variables as a function of time:

f(0) = ν0

ḟ(t) = F (f(t)) for every t ∈ R≥0,

where ḟ : R≥0→R|X| is the time derivative of the function f .

– a run of a continuous dynamical system may not exist or may not be
unique!
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Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function F : Rn → Rn is Lipschitz-continuous if there exists a
constant K>0, called the Lipschitz constant, such that for all x, y ∈ Rn we
have that ‖F (x)− F (y)‖ < K‖x− y‖.

Theorem (Picard-Lindelöf Theorem)

If a function F : R|X| → R|X| is Lipschitz-continuous then the differential
equation Ẋ=F (X) with initial valuation ν0∈R|X| has a unique solution
f : R≥0→R|X| for all ν0∈R|X|.

Theorem (Stability wrt initial valuation)

Let F be a Lipschitz-continuous function with constant K>0 and let
f :R≥0→R|X| and f ′:R≥0→R|X| be solutions to the differential equation

Ẋ=F (X) with initial valuation ν0∈R|X| and ν′0∈R|X|, respectively. Then, for
all t∈R≥0 we have that ‖f(t)−f ′(t)‖ ≤ ‖ν−ν0‖eKt.
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Example: Simple Pendulum

θ

mg

m`2θ̈

`

– Variables y and θ

– flow equations: m`2θ̈ = −mg` sin(θ), or

θ̇ = y,

ẏ = −(g/`) sin(θ),

– initial valuations (θ, y) = (θ0, 0).
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Simple Pendulum

– To analytically solve these equations, assume that initial angular
displacement θ is small.

– hence sin(θ) ≈ θ.

– Now the equations simplify to

θ̇ = y and ẏ = −(g/`)θ.

– The solution for these differential equations is

θ(t) = A cos(Kt) +B sin(Kt)

y(t) = −AK sin(Kt) +BK cos(Kt),

where K =
√
g/`.

– Substituting θ(0) = θ0 and y(0) = 0 from the initial valuation, we get
that A = θ0 and B = 0.

– The unique run of the pendulum system can be given as the function
f : R≥0 → {θ, y} as

t 7→ (θ0 cos(Kt),−θ0K sin(Kt)).
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Pendulum Motion
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Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems
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Another example: Bouncing Ball

Bouncing Ball

– Consider a bouncing ball system dropped from height ` and velocity 0.

– Is it a continuous system?

– variables of interest : height of the ball x1 and velocity of the ball x2

– flow function:
ẋ1 = x2 and ẋ2 = −g

– What happens at impact?

– x′1 = x1 and x′2 = −cx2 where c is Restituition coefficient.

ẋ1 = x2,
ẋ2 = −g
m

start

x1 ≥ 0

x1=0 ∧ x2≤0,
impact
x′1=x1 ∧ x′2=− cx2
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ẋ1 = x2 and ẋ2 = −g
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Discrete, Continuous, and Hybrid Systems
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Hybrid Automata: Syntax

Some examples:

– Two leaking-water tanks systems

– Water-level monitor with delayed switch

– A leaking gas-burner

– Green scheduling with lower dwell-time requirements

– Light-bulb with three modes- dim, bright, and off.

– Job-shop scheduling problem
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Login Protocol

startstart valid

delay error conn

user name, x:=0

restart, x > 60

restart,
x ≥ 10

x:=0

pw fail,
x < 60 pw match,

x < 60
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Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple H = (M,M0,Σ, X,∆, I, F, V0) where:

– M is a finite set of control modes including a distinguished initial set of
control modes M0 ⊆M ,

– Σ is a finite set of actions,

– X is a finite set of real-valued variable,

– ∆ ⊆M × pred(X)× Σ× pred(X ∪X ′)×M is the transition relation,

– I : M → pred(X) is the mode-invariant function,

– F : M → (Ẋ → pred(X)) is the mode-dependent flow function, and

– V0 ∈ pred(X) is the set of initial valuations.

– A configuration (m, ν) and a timed action (t, a)
– A transition ((m, ν), (t, a), (m′, ν′)

– solve flow ODE of mode m with ν as the starting state ν⊕F (m)t.
– invariant, guard, and jump conditions.

– A run or execution is a sequence of transitions

(m0, ν0), (t1, a1), (m1, ν1), (t2, a2) . . .



A. Trivedi – 23 of 24

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple H = (M,M0,Σ, X,∆, I, F, V0) where:

– M is a finite set of control modes including a distinguished initial set of
control modes M0 ⊆M ,

– Σ is a finite set of actions,

– X is a finite set of real-valued variable,

– ∆ ⊆M × pred(X)× Σ× pred(X ∪X ′)×M is the transition relation,

– I : M → pred(X) is the mode-invariant function,
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Hybrid Automata: Semantics

Definition (HA: Semantics)

The semantics of a HA H = (M,M0,Σ, X,∆, I, F, V0) is given as a state
transition graph TH = (SH, SH0 ,Σ

H,∆H) where

– SH ⊆ (M × R|X|) is the set of configurations of H such that for all
(m, ν) ∈ SH we have that ν ∈ JI(m)K;

– SH0 ⊆ SH s.t. (m, ν) ∈ SH0 if m ∈M0 and ν ∈ V0;

– ΣH = R≥0 × Σ is the set of labels;

– ∆H ⊆ SH × ΣH × SH is the set of transitions such that
((m, ν), (t, a), (m′, ν′)) ∈ ∆H if there exists a transition
δ = (m, g, a, j,m′) ∈ ∆ such that

– (ν⊕F (m)t) ∈ JgK;
– (ν⊕F (m)τ) ∈ JI(m)K for all τ ∈ [0, t];
– ν′ ∈ (ν⊕F (m)t)[j]; and
– ν′ ∈ JI(m′)K.
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