CS620, 00 T BOMBAY

An Introduction to Hybrid Systems Modeling

Ashutosh Trivedi
Department of Computer Science and Engineering,
IIT Bombay

Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a fixed set of rules or dynamics.

- state: valuation to variables (discrete or continuous) of the system
- time: discrete or continuous
- dynamics: discrete, continuous, or hybrid

Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a fixed set of rules or dynamics.

- state: valuation to variables (discrete or continuous) of the system
- time: discrete or continuous
- dynamics: discrete, continuous, or hybrid

Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems

Abstract Model for Dynamical Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T}=\left(S, S_{0}, \Sigma, \Delta\right)$ where:

- S is a (potentially infinite) set of states;
- $S_{0} \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;

Abstract Model for Dynamical Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T}=\left(S, S_{0}, \Sigma, \Delta\right)$ where:

- S is a (potentially infinite) set of states;
- $S_{0} \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;

State Transition Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T}=\left(S, S_{0}, \Sigma, \Delta\right)$ where:

- S is a (potentially infinite) set of states;
- $S_{0} \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;
- Finite and countable state transition systems
- A finite run is a sequence

$$
\left\langle s_{0}, a_{1}, s_{1}, s_{2}, s_{2}, \ldots, s_{n}\right\rangle
$$

such that $s_{0} \in S_{0}$ and for all $0 \leq i<n$ we have that $\left(s_{i}, a_{i+1}, s_{i+1}\right) \in \Delta$.

- Reachability and Safe-Schedulability problems

State Transition Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T}=\left(S, S_{0}, \Sigma, \Delta\right)$ where:

- S is a (potentially infinite) set of states;
- $S_{0} \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;
- Finite and countable state transition systems
- A finite run is a sequence

$$
\left\langle s_{0}, a_{1}, s_{1}, s_{2}, s_{2}, \ldots, s_{n}\right\rangle
$$

such that $s_{0} \in S_{0}$ and for all $0 \leq i<n$ we have that $\left(s_{i}, a_{i+1}, s_{i+1}\right) \in \Delta$.

- Reachability and Safe-Schedulability problems

We need efficient computer-readable representations of infinite systems!

Extended Finite State Machines

- Let X be the set of variables (real-valued) of the system
- let $|X|=N$.
- A valuation ν of X is a function $\nu: X \rightarrow \mathbb{R}$.
- We consider a valuation as a point in \mathbb{R}^{N} equipped with Euclidean Norm.
- A predicate is defined simply as a subset of \mathbb{R}^{N} represented (non-linear) algebraic equations involving X.
- Non-linear predicates, e.g. $x+9.8 \sin (z)=0$
- Polyhedral predicates:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \sim k
$$

where $a_{i} \in \mathbb{R}, x_{i} \in X$, and $\sim=\{<, \leq,=, \geq,>\}$.

- Octagonal predicates

$$
x_{i}-x_{j} \sim k \text { or } x_{i} \sim k
$$

where $x_{i}, x_{j} \in X$, and $\sim=\{<, \leq,=, \geq,>\}$.

- Rectangular predicates

$$
x_{i} \sim k
$$

where $x_{i} \in X$, and $\sim=\{<, \leq,=, \geq,>\}$.

- Singular Predicates $x_{i}=c$.

Extended Finite State Machines

Extended Finite State Machines (EFSMs):

- Finite state-transition systems coupled with a finite set of variables
- The valuation remains unchanged while system stays in a mode (state)
- The valuation changes during a transition when it jumps to the valuation governed by a predicate over $X \cup X^{\prime}$ specified in the transition relation.
- Transitions are guarded by predicates over X
- Mode invariants
- Initial state and valuation

Extended Finite State Machines

Definition (EFSM: Syntax)

An extended finite state machine is a tuple $\mathcal{M}=\left(M, M_{0}, \Sigma, X, \Delta, I, V_{0}\right)$ such that:

- M is a finite set of control modes including a distinguished initial set of control modes $M_{0} \subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}\left(X \cup X^{\prime}\right) \times M$ is the transition relation,
- $I: M \rightarrow \operatorname{pred}(X)$ is the mode-invariant function, and
- $V_{0} \in \operatorname{pred}(X)$ is the set of initial valuations.

EFSM: Semantics

EFSM: Semantics

The semantics of an EFSM $\mathcal{M}=\left(M, M_{0}, \Sigma, X, \Delta, I, V_{0}\right)$ is given as a state transition graph $T^{\mathcal{M}}=\left(S^{\mathcal{M}}, S_{0}^{\mathcal{M}}, \Sigma^{\mathcal{M}}, \Delta^{\mathcal{M}}\right)$ where

- $S^{\mathcal{M}} \subseteq\left(M \times \mathbb{R}^{|X|}\right)$ is the set of configurations of \mathcal{M} such that for all $(m, \nu) \in S^{\mathcal{M}}$ we have that $\nu \in \llbracket I(m) \rrbracket$;
- $S_{0}^{\mathcal{M}} \subseteq S^{\mathcal{M}}$ is the set of initial configurations such that $(m, \nu) \in S^{\mathcal{M}}$ if $m \in M_{0}$ and $\nu \in V_{0}$;
- $\Sigma^{\mathcal{M}}=\Sigma$ is the set of labels;
- $\Delta^{\mathcal{M}} \subseteq S^{\mathcal{M}} \times \Sigma^{\mathcal{M}} \times S^{\mathcal{M}}$ is the set of transitions such that $\left((m, \nu), a,\left(m^{\prime}, \nu^{\prime}\right)\right) \in \Delta^{\mathcal{M}}$ if there exists a transition $\delta=\left(m, g, a, j, m^{\prime}\right) \in \Delta$ such that
- current valuation satisfies the guard $\nu \in \llbracket g \rrbracket$;
- current and next valuations satisfy the jump constraint $\left(\nu, \nu^{\prime}\right) \in \llbracket j \rrbracket$; and
- next valuation satisfies the invariant of the target mode $\nu^{\prime} \in \llbracket I\left(m^{\prime}\right) \rrbracket$.

Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems

Continuous Dynamical Systems

- A finite set of continuous variables,
- a set of ordinary differential equations (ODE) characterizing the flow of these variables as a function of time
- $F: \dot{X} \rightarrow \operatorname{pred}(X)$ where \dot{x} is the first derivative of x.
- Higher-order derivatives can be written using first derivatives by introducing auxiliary variables, e.g. write $\ddot{\theta}+(g / \ell) \sin (\theta)=0$ can be written as

$$
\dot{\theta}=y \text { and } \dot{y}=-(g / \ell) \sin (\theta)
$$

- an initial valuation to the variables.

Continuous Dynamical Systems

- A finite set of continuous variables,
- a set of ordinary differential equations (ODE) characterizing the flow of these variables as a function of time
- $F: \dot{X} \rightarrow \operatorname{pred}(X)$ where \dot{x} is the first derivative of x.
- Higher-order derivatives can be written using first derivatives by introducing auxiliary variables, e.g. write $\ddot{\theta}+(g / \ell) \sin (\theta)=0$ can be written as

$$
\dot{\theta}=y \text { and } \dot{y}=-(g / \ell) \sin (\theta) .
$$

- an initial valuation to the variables.

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple $\mathcal{M}=\left(X, F, \nu_{0}\right)$ such that

- X is a finite set of real-valued variable,
- $F: \dot{X} \rightarrow \operatorname{pred}(X)$ is the flow function, and
- $\nu_{0} \in \mathbb{R}^{|X|}$ is the initial valuation.

Continuous Dynamical Systems

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple $\mathcal{M}=\left(X, F, \nu_{0}\right)$ such that

- X is a finite set of real-valued variable,
- $F: \dot{X} \rightarrow \operatorname{pred}(X)$ is the flow function, and
- $\nu_{0} \in \mathbb{R}^{|X|}$ is the initial valuation.
- A run or a trajectory of $\mathcal{M}=\left(X, F, \nu_{0}\right)$ is given as a solution to the differential equations $\dot{X}=F(X)$ with initial valuation ν_{0}.
- Let a differentiable function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{|X|}$ be a solution to $\dot{X}=F(X)$ that provides the valuations of the variables as a function of time:

$$
\begin{aligned}
f(0) & =\nu_{0} \\
\dot{f}(t) & =F(f(t)) \text { for every } t \in \mathbb{R}_{\geq 0}
\end{aligned}
$$

where $\dot{f}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}|X|$ is the time derivative of the function f.

- a run of a continuous dynamical system may not exist or may not be unique!

Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz-continuous if there exists a constant $K>0$, called the Lipschitz constant, such that for all $x, y \in \mathbb{R}^{n}$ we have that $\|F(x)-F(y)\|<K\|x-y\|$.

Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz-continuous if there exists a constant $K>0$, called the Lipschitz constant, such that for all $x, y \in \mathbb{R}^{n}$ we have that $\|F(x)-F(y)\|<K\|x-y\|$.

Theorem (Picard-Lindelöf Theorem)

If a function $F: \mathbb{R}^{|X|} \rightarrow \mathbb{R}^{|X|}$ is Lipschitz-continuous then the differential equation $\dot{X}=F(X)$ with initial valuation $\nu_{0} \in \mathbb{R}^{|X|}$ has a unique solution $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{|X|}$ for all $\nu_{0} \in \mathbb{R}^{|X|}$.

Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz-continuous if there exists a constant $K>0$, called the Lipschitz constant, such that for all $x, y \in \mathbb{R}^{n}$ we have that $\|F(x)-F(y)\|<K\|x-y\|$.

Theorem (Picard-Lindelöf Theorem)

If a function $F: \mathbb{R}^{|X|} \rightarrow \mathbb{R}^{|X|}$ is Lipschitz-continuous then the differential equation $\dot{X}=F(X)$ with initial valuation $\nu_{0} \in \mathbb{R}^{|X|}$ has a unique solution $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{|X|}$ for all $\nu_{0} \in \mathbb{R}^{|X|}$.

Theorem (Stability wrt initial valuation)

Let F be a Lipschitz-continuous function with constant $K>0$ and let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{|X|}$ and $f^{\prime}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^{|X|}$ be solutions to the differential equation $\dot{X}=F(X)$ with initial valuation $\nu_{0} \in \mathbb{R}^{|X|}$ and $\nu_{0}^{\prime} \in \mathbb{R}^{|X|}$, respectively. Then, for all $t \in \mathbb{R}_{\geq 0}$ we have that $\left\|f(t)-f^{\prime}(t)\right\| \leq\left\|\nu-\nu_{0}\right\| e^{K t}$.

Example: Simple Pendulum

- Variables y and θ
- flow equations: $m \ell^{2} \ddot{\theta}=-m g \ell \sin (\theta)$, or

$$
\begin{aligned}
\dot{\theta} & =y \\
\dot{y} & =-(g / \ell) \sin (\theta),
\end{aligned}
$$

- initial valuations $(\theta, y)=\left(\theta_{0}, 0\right)$.

Simple Pendulum

- To analytically solve these equations, assume that initial angular displacement θ is small.
- hence $\sin (\theta) \approx \theta$.
- Now the equations simplify to

$$
\dot{\theta}=y \text { and } \dot{y}=-(g / \ell) \theta .
$$

- The solution for these differential equations is

$$
\begin{aligned}
\theta(t) & =A \cos (K t)+B \sin (K t) \\
y(t) & =-A K \sin (K t)+B K \cos (K t)
\end{aligned}
$$

where $K=\sqrt{g / \ell}$.

- Substituting $\theta(0)=\theta_{0}$ and $y(0)=0$ from the initial valuation, we get that $A=\theta_{0}$ and $B=0$.
- The unique run of the pendulum system can be given as the function $f: \mathbb{R}_{\geq 0} \rightarrow\{\theta, y\}$ as

$$
t \mapsto\left(\theta_{0} \cos (K t),-\theta_{0} K \sin (K t)\right)
$$

Pendulum Motion

(b)

Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems

Another example: Bouncing Ball

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0 .
- Is it a continuous system?

Another example: Bouncing Ball

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0 .
- Is it a continuous system?
- variables of interest: height of the ball x_{1} and velocity of the ball x_{2}
- flow function:

Another example: Bouncing Ball

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0 .
- Is it a continuous system?
- variables of interest: height of the ball x_{1} and velocity of the ball x_{2}
- flow function:

$$
\dot{x_{1}}=x_{2} \text { and } \dot{x_{2}}=-g
$$

- What happens at impact?

Another example: Bouncing Ball

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0 .
- Is it a continuous system?
- variables of interest: height of the ball x_{1} and velocity of the ball x_{2}
- flow function:

$$
\dot{x_{1}}=x_{2} \text { and } \dot{x_{2}}=-g
$$

- What happens at impact?
- $x_{1}^{\prime}=x_{1}$ and $x_{2}^{\prime}=-c x_{2}$ where c is Restituition coefficient.

Another example: Bouncing Ball

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0 .
- Is it a continuous system?
- variables of interest: height of the ball x_{1} and velocity of the ball x_{2}
- flow function:

$$
\dot{x_{1}}=x_{2} \text { and } \dot{x_{2}}=-g
$$

- What happens at impact?
- $x_{1}^{\prime}=x_{1}$ and $x_{2}^{\prime}=-c x_{2}$ where c is Restituition coefficient.

Discrete, Continuous, and Hybrid Systems

Hybrid Automata: Syntax

Some examples:

- Two leaking-water tanks systems
- Water-level monitor with delayed switch
- A leaking gas-burner
- Green scheduling with lower dwell-time requirements
- Light-bulb with three modes- dim, bright, and off.
- Job-shop scheduling problem

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple $\mathcal{H}=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ where:

- M is a finite set of control modes including a distinguished initial set of control modes $M_{0} \subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}\left(X \cup X^{\prime}\right) \times M$ is the transition relation,
$-I: M \rightarrow \operatorname{pred}(X)$ is the mode-invariant function,
- $F: M \rightarrow(\dot{X} \rightarrow \operatorname{pred}(X))$ is the mode-dependent flow function, and
- $V_{0} \in \operatorname{pred}(X)$ is the set of initial valuations.

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple $\mathcal{H}=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ where:

- M is a finite set of control modes including a distinguished initial set of control modes $M_{0} \subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}\left(X \cup X^{\prime}\right) \times M$ is the transition relation,
$-I: M \rightarrow \operatorname{pred}(X)$ is the mode-invariant function,
- $F: M \rightarrow(\dot{X} \rightarrow \operatorname{pred}(X))$ is the mode-dependent flow function, and
- $V_{0} \in \operatorname{pred}(X)$ is the set of initial valuations.
- A configuration (m, ν) and a timed action (t, a)
- A transition $\left((m, \nu),(t, a),\left(m^{\prime}, \nu^{\prime}\right)\right.$
- solve flow ODE of mode m with ν as the starting state $\nu \oplus_{F(m)} t$.
- invariant, guard, and jump conditions.
- A run or execution is a sequence of transitions

$$
\left(m_{0}, \nu_{0}\right),\left(t_{1}, a_{1}\right),\left(m_{1}, \nu_{1}\right),\left(t_{2}, a_{2}\right) \ldots
$$

Hybrid Automata: Semantics

Definition (HA: Semantics)

The semantics of a HA $\mathcal{H}=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ is given as a state transition graph $T^{\mathcal{H}}=\left(S^{\mathcal{H}}, S_{0}^{\mathcal{H}}, \Sigma^{\mathcal{H}}, \Delta^{\mathcal{H}}\right)$ where

- $S^{\mathcal{H}} \subseteq\left(M \times \mathbb{R}^{|X|}\right)$ is the set of configurations of \mathcal{H} such that for all $(m, \nu) \in S^{\mathcal{H}}$ we have that $\nu \in \llbracket I(m) \rrbracket$;
- $S_{0}^{\mathcal{H}} \subseteq S^{\mathcal{H}}$ s.t. $(m, \nu) \in S_{0}^{\mathcal{H}}$ if $m \in M_{0}$ and $\nu \in V_{0}$;
- $\Sigma^{\mathcal{H}}=\mathbb{R}_{\geq 0} \times \Sigma$ is the set of labels;
- $\Delta^{\mathcal{H}} \subseteq S^{\mathcal{H}} \times \Sigma^{\mathcal{H}} \times S^{\mathcal{H}}$ is the set of transitions such that $\left((m, \nu),(t, a),\left(m^{\prime}, \nu^{\prime}\right)\right) \in \Delta^{\mathcal{H}}$ if there exists a transition $\delta=\left(m, g, a, j, m^{\prime}\right) \in \Delta$ such that
- $\left(\nu \oplus_{F(m)} t\right) \in \llbracket g \rrbracket ;$
- $\left(\nu \oplus_{F(m)} \tau\right) \in \llbracket I(m) \rrbracket$ for all $\tau \in[0, t]$;
- $\nu^{\prime} \in\left(\nu \oplus_{F(m)} t\right)[j]$; and
- $\nu^{\prime} \in \llbracket I\left(m^{\prime}\right) \rrbracket$.

