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Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a
fixed set of rules or dynamics.

— state: valuation to variables (discrete or continuous) of the system
— time: discrete or continuous

— dynamics: discrete, continuous, or hybrid
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Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a
fixed set of rules or dynamics.

— state: valuation to variables (discrete or continuous) of the system

— time: discrete or continuous

— dynamics: discrete, continuous, or hybrid

Discrete System Continuous System Hybrid Systems.
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Discrete Dynamical Systems
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Abstract Model for Dynamical Systems

Definition (State Transition Systems)
A state transition system is a tuple 7 = (S, Sp, X, A) where:
— S'is a (potentially infinite) set of states;
— Sy C S is the set of initial states;
— XY is a (potentially infinite) set of actions; and
— A C S x X xS is the transition relation;
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State Transition Systems

Definition (State Transition Systems)
A state transition system is a tuple 7 = (S, Sp, 2, A) where:

S is a (potentially infinite) set of states;
So C S is the set of initial states;

Y is a (potentially infinite) set of actions; and
A C S x ¥ xS is the transition relation;

Finite and countable state transition systems

A finite run is a sequence
<50a ala 817 523 827 ctt 5n>

such that sg € Sy and for all 0 < i < n we have that (s;,a;t1, Si+1) € A.

Reachability and Safe-Schedulability problems
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State Transition Systems

Definition (State Transition Systems)
A state transition system is a tuple 7 = (S, Sp, 2, A) where:
— Sis a (potentially infinite) set of states;
— Sp C S is the set of initial states;
— X is a (potentially infinite) set of actions; and
- A C S x XY xS is the transition relation;

— Finite and countable state transition systems

— A finite run is a sequence
<50a ala 517 523 827 ctt 5n>

such that sg € Sy and for all 0 < i < n we have that (s;,a;t1, Si+1) € A.
— Reachability and Safe-Schedulability problems
We need efficient computer-readable representations of infinite systems!
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Extended Finite State Machines

Let X be the set of variables (real-valued) of the system
let | X| = N.
A valuation v of X is a function v : X — R.

We consider a valuation as a point in RY equipped with Euclidean Norm.
— A predicate is defined simply as a subset of RY represented (non-linear)
algebraic equations involving X.

— Non-linear predicates, e.g. x + 9.8sin(z) =0

— Polyhedral predicates:

121 + @222 + -+ ann ~ k

where a; € R, z; € X, and ~= {<, <, =, >, >}
— Octagonal predicates
ri—xj~korxz;~k
where z;,z; € X, and ~= {<, <, =, >, >1}.
— Rectangular predicates
XTq ~ k
where z; € X, and ~= {<,<,=,>,>}.
— Singular Predicates z; = c.
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Extended Finite State Machines

<3, tick, »’=x+1 T, start, 2'=x T, tick, 2’'=x
T, pause, z'=x
start —( count pause
=3, tick, 2'=0

Extended Finite State Machines (EFSMs):
Finite state-transition systems coupled with a finite set of variables

The valuation remains unchanged while system stays in a mode (state)

The valuation changes during a transition when it jumps to the valuation
governed by a predicate over XUX' specified in the transition relation.

Transitions are guarded by predicates over X

Mode invariants

Initial state and valuation
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Extended Finite State Machines

r<3, tick, 2=z +1 T, start, 2'=x T, tick, 2'=xz
T, pause, z'=x
start —( count pause
=3, tick, z'=0

Definition (EFSM: Syntax)
An extended finite state machine is a tuple M = (M, My, X, X, A, I, Vp) such
that:

— M is a finite set of control modes including a distinguished initial set of
control modes My C M,

Y is a finite set of actions,

— X is a finite set of real-valued variable,

A C M x pred(X) x ¥ x pred(X U X') x M is the transition relation,
I: M — pred(X) is the mode-invariant function, and

Vo € pred(X) is the set of initial valuations.

v
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EFSM: Semantics

<3, tick, »’=x+1 T, start, 2'=x T, tick, 2’'=x
T, pause, ¥’'=x
start —( count pause
=3, tick, 2'=0
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EFSM: Semantics

The semantics of an EFSM M = (M, My, ¥, X, A, I, Vp) is given as a state
transition graph TM = (SM S, =M AM) where
- SM C (M x RIXI) is the set of configurations of M such that for all
(m,v) € SM we have that v € [I(m)];
— Sgt € SM is the set of initial configurations such that (m,v) € SM if
m € My and v € Vp;
— M = ¥ is the set of labels:
- AM C M x ¥M « §M s the set of transitions such that
((m,v),a,(m',v')) € AM if there exists a transition
d = (m,g,a,j,m’) € A such that
— current valuation satisfies the guard v € [g];

— current and next valuations satisfy the jump constraint (v,v’) € [4]; and
— next valuation satisfies the invariant of the target mode v’ € [I(m/)].
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Continuous Dynamical Systems
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Continuous Dynamical Systems

— A finite set of continuous variables,

— a set of ordinary differential equations (ODE) characterizing the flow of
these variables as a function of time
— F: X — pred(X) where & is the first derivative of z.
— Higher-order derivatives can be written using first derivatives by
introducing auxiliary variables, e.g. write 6 + (g/f)sin() = 0 can be
written as

0 =y and § = —(g/¢)sin(0).
— an initial valuation to the variables.
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Continuous Dynamical Systems

— A finite set of continuous variables,

— a set of ordinary differential equations (ODE) characterizing the flow of
these variables as a function of time

— F: X — pred(X) where & is the first derivative of z.

— Higher-order derivatives can be written using first derivatives by
introducing auxiliary variables, e.g. write 6 + (g/f)sin() = 0 can be
written as

0 =y and § = —(g/¢)sin(0).
— an initial valuation to the variables.

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple M = (X, F, 1) such that
— X is a finite set of real-valued variable,
— F: X — pred(X) is the flow function, and
— 1 € RIXl is the initial valuation.
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Continuous Dynamical Systems

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple M = (X, F, 1) such that
— X is a finite set of real-valued variable,
- F: X — pred(X) is the flow function, and
— 1 € RIXl is the initial valuation.

— A run or a trajectory of M = (X, F, 1) is given as a solution to the
differential equations X = F(X) with initial valuation vy.

— Let a differentiable function f : R>o—R!*! be a solution to X = F(X)
that provides the valuations of the variables as a function of time:

f.(o) = v
f(t) = F(f(t)) for every t € R>g,

where f : R>g—R|X| is the time derivative of the function f.

— a run of a continuous dynamical system may not exist or may not be
unique!
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Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function F': R™ — R™ is Lipschitz-continuous if there exists a
constant K >0, called the Lipschitz constant, such that for all z,y € R™ we

have that ||F(z) — F(y)|| < K|z — y||.
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Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function F': R™ — R™ is Lipschitz-continuous if there exists a
constant K >0, called the Lipschitz constant, such that for all z,y € R™ we

have that ||F(z) — F(y)|| < K|z — y||.

Theorem (Picard-Lindelof Theorem)

If a function F : RIXI — RIX| js Lipschitz-continuous then the differential
equation X=F(X) with initial valuation vo€RX| has a unique solution

f: Rso—RIX!I for all yyeRIX1,

A. Trivedi — 14 of 24



Existence and Uniqueness

Definition (Lipschitz-continuous Function)

We say that a function F': R™ — R™ is Lipschitz-continuous if there exists a
constant K >0, called the Lipschitz constant, such that for all z,y € R™ we
have that ||F(z) — F(y)|| < K|z — y||.

Theorem (Picard-Lindelof Theorem)

If a function F : RIXI — RIXI js Lipschitz-continuous then the differential
equation X=F(X) with initial valuation vo€R!X! has a unique solution
f : Rso—RIX! for all vyeRIX1,

Theorem (Stability wrt initial valuation)

Let F' be a Lipschitz-continuous function with constant K>0 and let

f R>0—>R| I'and f’: R>0—>R|X| be solutions to the differential equation

X= F(X) with initial valuation V0€R|X| and v €R|X|, respectively. Then, for
all teR>o we have that || f(t)—f'(t)]| < ||lv— u0||e

o’
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Example: Simple Pendulum

— Variables y and 6

— flow equations: m¢26 = —mglsin(f), or
0 =y,
g = —(g/0)sin(0),

— initial valuations (6,y) = (6o, 0).
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Simple Pendulum

To analytically solve these equations, assume that initial angular
displacement 6 is small.

hence sin(6) = 6.

Now the equations simplify to

0=y and j=—(g/0)0.

The solution for these differential equations is

0(t) = Acos(Kt)+ Bsin(Kt)
y(t) = —AKsin(Kt)+ BK cos(Kt),

where K = /g/t.

— Substituting 6(0) = 6y and y(0) = 0 from the initial valuation, we get
that A =6y and B = 0.

— The unique run of the pendulum system can be given as the function
f:Rso — {0,y} as

t — (O cos(Kt), —0 K sin(Kt)).
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Pendulum Motion

— Oo cos((1/g/0)t)
— —00\/g/lsin((/9/0)1)

[t
o
T
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o

T

0 (in degrees) and y ( in degrees/second) —

t (in seconds) —

(b)
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Hybrid Dynamical Systems
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Another example: Bouncing Ball

Bouncing Ball
— Consider a bouncing ball system dropped from height ¢ and velocity 0.

— Is it a continuous system?
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Another example: Bouncing Ball

Bouncing Ball

Consider a bouncing ball system dropped from height ¢ and velocity O.

Is it a continuous system?

variables of interest : height of the ball x; and velocity of the ball x5

flow function:
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Another example: Bouncing Ball

Bouncing Ball

Consider a bouncing ball system dropped from height ¢ and velocity O.

Is it a continuous system?

variables of interest : height of the ball x; and velocity of the ball x5

flow function:

.fl = T2 and 1»"2 = —g

What happens at impact?
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Another example: Bouncing Ball

Bouncing Ball

Consider a bouncing ball system dropped from height ¢ and velocity O.

Is it a continuous system?

variables of interest : height of the ball x; and velocity of the ball x5

flow function:

.fl = T2 and 1»"2 = —g

What happens at impact?

— o =z and x, = —cxy where ¢ is Restituition coefficient.
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Another example: Bouncing Ball

Bouncing Ball
— Consider a bouncing ball system dropped from height ¢ and velocity 0.

Is it a continuous system?

variables of interest : height of the ball x; and velocity of the ball x5

flow function:

.fl = T2 and 1»"2 = —g

What happens at impact?

— o =z and x, = —cxy where ¢ is Restituition coefficient.

21=0 A 22 <0,
impact
#h =1 Azh=— czy
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Discrete, Continuous, and Hybrid Systems

- e- Discrete System ||

Continuous System ),

Hybrid System ||

>

10
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Hybrid Automata: Syntax

Some examples:

— Two leaking-water tanks systems

Water-level monitor with delayed switch

A leaking gas-burner

Green scheduling with lower dwell-time requirements
Light-bulb with three modes- dim, bright, and off.
Job-shop scheduling problem
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Login Protocol

restart, x > 60

user_name, z:=0

start —( start

restart,
x> 10 x < 60

pw_match,
z < 60
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Hybrid Automata: Syntax

Definition (HA: Syntax)
A hybrid automaton is a tuple H = (M, My, %, X, A, I, F, V) where:

— M is a finite set of control modes including a distinguished initial set of
control modes My C M,

— Y is a finite set of actions,

— X is a finite set of real-valued variable,

- AC M xpred(X) x ¥ x pred(X U X’) x M is the transition relation,
I: M — pred(X) is the mode-invariant function,

F: M — (X — pred(X)) is the mode-dependent flow function, and
Vo € pred(X) is the set of initial valuations.
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Hybrid Automata: Syntax

Definition (HA: Syntax)
A hybrid automaton is a tuple H = (M, My, %, X, A, I, F, V) where:

— M is a finite set of control modes including a distinguished initial set of
control modes My C M,

— Y is a finite set of actions,

— X is a finite set of real-valued variable,

- AC M xpred(X) x ¥ x pred(X U X’) x M is the transition relation,
I: M — pred(X) is the mode-invariant function,

F: M — (X — pred(X)) is the mode-dependent flow function, and
Vo € pred(X) is the set of initial valuations.

A configuration (m,v) and a timed action (¢, a)

A transition ((m,v), (¢,a), (m',v")
— solve flow ODE of mode m with v as the starting state v® p(m)t.
— invariant, guard, and jump conditions.

— A run or execution is a sequence of transitions

(m0> VO)) (tl?al)v (mla Vl)’ (t27 a’2) te
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Hybrid Automata: Semantics

Definition (HA: Semantics)

The semantics of a HA H = (M, My, X, X, A, I, F, V;) is given as a state
transition graph T" = (S*, S}t ¥H AM) where
- 8™ C (M x RIXl) is the set of configurations of # such that for all
(m,v) € S we have that v € [I(m)];

- Sg{ C SMst. (m,v) GSS" if me My and v € Vj;
- M = R>p x X is the set of labels;

— AM C S x M x S* is the set of transitions such that
((m,v), (t,a),(m’,v')) € A™ if there exists a transition
0 = (m,g,a,j,m’) € A such that
- (v®rmt) € [gl;
- (V®r@mT) € [I(m)] for all T € [0,¢];
- v € WBpmm)t)[j]; and
- v e[I(m")].
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