

An Introduction to Hybrid Systems Modeling

Ashutosh Trivedi

Department of Computer Science and Engineering, IIT Bombay

CS620: New Trends in IT: Modeling and Verification of Cyber-Physical Systems (2 August 2013)

Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a fixed set of rules or dynamics.

- state: valuation to variables (discrete or continuous) of the system
- time: discrete or continuous
- dynamics: discrete, continuous, or hybrid

Dynamical Systems

Dynamical System: A system whose state evolves with time governed by a fixed set of rules or dynamics.

- state: valuation to variables (discrete or continuous) of the system
- time: discrete or continuous
- dynamics: discrete, continuous, or hybrid

Discrete System

Continuous System

Hybrid Systems.

Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems

Abstract Model for Dynamical Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T} = (S, S_0, \Sigma, \Delta)$ where:

- -S is a (potentially infinite) set of states;
- $S_0 \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;

Abstract Model for Dynamical Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T} = (S, S_0, \Sigma, \Delta)$ where:

- S is a (potentially infinite) set of states;
- $S_0 \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;

State Transition Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T} = (S, S_0, \Sigma, \Delta)$ where:

- -S is a (potentially infinite) set of states;
- $S_0 \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;
- Finite and countable state transition systems
- A finite run is a sequence

$$\langle s_0, a_1, s_1, s_2, s_2, \dots, s_n \rangle$$

such that $s_0 \in S_0$ and for all $0 \le i < n$ we have that $(s_i, a_{i+1}, s_{i+1}) \in \Delta$.

- Reachability and Safe-Schedulability problems

State Transition Systems

Definition (State Transition Systems)

A state transition system is a tuple $\mathcal{T} = (S, S_0, \Sigma, \Delta)$ where:

- -S is a (potentially infinite) set of states;
- $S_0 \subseteq S$ is the set of initial states;
- Σ is a (potentially infinite) set of actions; and
- $\Delta \subseteq S \times \Sigma \times S$ is the transition relation;
- Finite and countable state transition systems
- A finite run is a sequence

$$\langle s_0, a_1, s_1, s_2, s_2, \dots, s_n \rangle$$

such that $s_0 \in S_0$ and for all $0 \le i < n$ we have that $(s_i, a_{i+1}, s_{i+1}) \in \Delta$.

- Reachability and Safe-Schedulability problems

We need efficient computer-readable representations of infinite systems!

Extended Finite State Machines

- Let X be the set of variables (real-valued) of the system
- let |X| = N.
- A valuation ν of X is a function $\nu: X \to \mathbb{R}$.
- We consider a valuation as a point in \mathbb{R}^N equipped with Euclidean Norm.
- A predicate is defined simply as a subset of \mathbb{R}^N represented (non-linear) algebraic equations involving X.
 - Non-linear predicates, e.g. $x + 9.8 \sin(z) = 0$
 - Polyhedral predicates:

 $a_1x_1 + a_2x_2 + \dots + a_nx_n \sim k$

where $a_i \in \mathbb{R}$, $x_i \in X$, and $\sim = \{<, \leq, =, \geq, >\}$.

- Octagonal predicates

$$x_i - x_j \sim k \text{ or } x_i \sim k$$

where $x_i, x_j \in X$, and $\sim = \{<, \le, =, \ge, >\}$.

- Rectangular predicates

 $x_i \sim k$

where $x_i \in X$, and $\sim = \{<, \le, =, \ge, >\}$.

- Singular Predicates $x_i = c$.

Extended Finite State Machines

Extended Finite State Machines (EFSMs):

- Finite state-transition systems coupled with a finite set of variables
- The valuation remains unchanged while system stays in a mode (state)
- The valuation changes during a transition when it jumps to the valuation governed by a predicate over $X \cup X'$ specified in the transition relation.
- Transitions are guarded by predicates over \boldsymbol{X}
- Mode invariants
- Initial state and valuation

Extended Finite State Machines

Definition (EFSM: Syntax)

An extended finite state machine is a tuple $\mathcal{M} = (M, M_0, \Sigma, X, \Delta, I, V_0)$ such that:

- M is a finite set of control modes including a distinguished initial set of control modes $M_0\subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}(X \cup X') \times M$ is the transition relation,
- $I: M \to \operatorname{pred}(X)$ is the mode-invariant function, and
- $V_0 \in \operatorname{pred}(X)$ is the set of initial valuations.

EFSM: Semantics

EFSM: Semantics

The semantics of an EFSM $\mathcal{M} = (M, M_0, \Sigma, X, \Delta, I, V_0)$ is given as a state transition graph $T^{\mathcal{M}} = (S^{\mathcal{M}}, S_0^{\mathcal{M}}, \Sigma^{\mathcal{M}}, \Delta^{\mathcal{M}})$ where

- $\begin{array}{l} \ S^{\mathcal{M}} \subseteq (M \times \mathbb{R}^{|X|}) \text{ is the set of configurations of } \mathcal{M} \text{ such that for all} \\ (m,\nu) \in S^{\mathcal{M}} \text{ we have that } \nu \in \llbracket I(m) \rrbracket; \end{array}$
- $S_0^{\mathcal{M}} \subseteq S^{\mathcal{M}}$ is the set of initial configurations such that $(m, \nu) \in S^{\mathcal{M}}$ if $m \in M_0$ and $\nu \in V_0$;
- $\Sigma^{\mathcal{M}} = \Sigma$ is the set of labels;
- $\Delta^{\mathcal{M}} \subseteq S^{\mathcal{M}} \times \Sigma^{\mathcal{M}} \times S^{\mathcal{M}}$ is the set of transitions such that $((m, \nu), a, (m', \nu')) \in \Delta^{\mathcal{M}}$ if there exists a transition $\delta = (m, g, a, j, m') \in \Delta$ such that
 - current valuation satisfies the guard $\nu \in \llbracket g \rrbracket$;
 - current and next valuations satisfy the jump constraint $(\nu, \nu') \in [j]$; and
 - next valuation satisfies the invariant of the target mode $\nu' \in \llbracket I(m') \rrbracket$.

Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems

Continuous Dynamical Systems

- A finite set of continuous variables,
- a set of ordinary differential equations (ODE) characterizing the flow of these variables as a function of time
 - $F: \dot{X} \to \operatorname{pred}(X)$ where \dot{x} is the first derivative of x.
 - Higher-order derivatives can be written using first derivatives by introducing auxiliary variables, e.g. write $\ddot{\theta}+(g/\ell)\sin(\theta)=0$ can be written as

$$\dot{\theta} = y$$
 and $\dot{y} = -(g/\ell)\sin(\theta)$.

- an initial valuation to the variables.

Continuous Dynamical Systems

- A finite set of continuous variables,
- a set of ordinary differential equations (ODE) characterizing the flow of these variables as a function of time
 - $F: \dot{X} \to \operatorname{pred}(X)$ where \dot{x} is the first derivative of x.
 - Higher-order derivatives can be written using first derivatives by introducing auxiliary variables, e.g. write $\ddot{\theta}+(g/\ell)\sin(\theta)=0$ can be written as

$$\dot{\theta} = y$$
 and $\dot{y} = -(g/\ell)\sin(\theta)$.

- an initial valuation to the variables.

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple $\mathcal{M} = (X, F, \nu_0)$ such that

- X is a finite set of real-valued variable,
- $F: \dot{X} \rightarrow \operatorname{pred}(X)$ is the flow function, and
- $\nu_0 \in \mathbb{R}^{|X|}$ is the initial valuation.

Continuous Dynamical Systems

Definition (Continuous Dynamical System)

A continuous dynamical system is a tuple $\mathcal{M} = (X, F, \nu_0)$ such that

- X is a finite set of real-valued variable,
- $F: \dot{X} \rightarrow \operatorname{pred}(X)$ is the flow function, and
- $\nu_0 \in \mathbb{R}^{|X|}$ is the initial valuation.
- A run or a trajectory of $\mathcal{M} = (X, F, \nu_0)$ is given as a solution to the differential equations $\dot{X} = F(X)$ with initial valuation ν_0 .
- Let a differentiable function $f:\mathbb{R}_{\geq 0}\to\mathbb{R}^{|X|}$ be a solution to $\dot{X}=F(X)$ that provides the valuations of the variables as a function of time:

$$\begin{array}{lll} f(0) & = & \nu_0 \\ \dot{f}(t) & = & F(f(t)) \text{ for every } t \in \mathbb{R}_{\geq 0}, \end{array}$$

where $\dot{f}:\mathbb{R}_{\geq0}{\rightarrow}\mathbb{R}|X|$ is the time derivative of the function f.

 a run of a continuous dynamical system may not exist or may not be unique!

Definition (Lipschitz-continuous Function)

We say that a function $F : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz-continuous if there exists a constant K>0, called the Lipschitz constant, such that for all $x, y \in \mathbb{R}^n$ we have that $\|F(x) - F(y)\| < K \|x - y\|$.

Definition (Lipschitz-continuous Function)

We say that a function $F : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz-continuous if there exists a constant K>0, called the Lipschitz constant, such that for all $x, y \in \mathbb{R}^n$ we have that $\|F(x) - F(y)\| < K \|x - y\|$.

Theorem (Picard-Lindelöf Theorem)

If a function $F : \mathbb{R}^{|X|} \to \mathbb{R}^{|X|}$ is Lipschitz-continuous then the differential equation $\dot{X} = F(X)$ with initial valuation $\nu_0 \in \mathbb{R}^{|X|}$ has a unique solution $f : \mathbb{R}_{\geq 0} \to \mathbb{R}^{|X|}$ for all $\nu_0 \in \mathbb{R}^{|X|}$.

Definition (Lipschitz-continuous Function)

We say that a function $F : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz-continuous if there exists a constant K>0, called the Lipschitz constant, such that for all $x, y \in \mathbb{R}^n$ we have that $\|F(x) - F(y)\| < K \|x - y\|$.

Theorem (Picard-Lindelöf Theorem)

If a function $F : \mathbb{R}^{|X|} \to \mathbb{R}^{|X|}$ is Lipschitz-continuous then the differential equation $\dot{X} = F(X)$ with initial valuation $\nu_0 \in \mathbb{R}^{|X|}$ has a unique solution $f : \mathbb{R}_{\geq 0} \to \mathbb{R}^{|X|}$ for all $\nu_0 \in \mathbb{R}^{|X|}$.

Theorem (Stability wrt initial valuation)

Let F be a Lipschitz-continuous function with constant K>0 and let $f:\mathbb{R}_{\geq 0}\to\mathbb{R}^{|X|}$ and $f':\mathbb{R}_{\geq 0}\to\mathbb{R}^{|X|}$ be solutions to the differential equation $\dot{X}=F(X)$ with initial valuation $\nu_0\in\mathbb{R}^{|X|}$ and $\nu'_0\in\mathbb{R}^{|X|}$, respectively. Then, for all $t\in\mathbb{R}_{\geq 0}$ we have that $\|f(t)-f'(t)\| \leq \|\nu-\nu_0\|e^{Kt}$.

Example: Simple Pendulum

- Variables y and θ
- flow equations: $m\ell^2\ddot{\theta}=-mg\ell\sin(\theta)$, or

$$\dot{ heta} = y,$$

 $\dot{y} = -(g/\ell)\sin(\theta),$

- initial valuations $(\theta, y) = (\theta_0, 0)$.

Simple Pendulum

- To analytically solve these equations, assume that initial angular displacement θ is small.
- hence $\sin(\theta) \approx \theta$.
- Now the equations simplify to

$$\dot{\theta} = y$$
 and $\dot{y} = -(g/\ell)\theta$.

- The solution for these differential equations is

$$\theta(t) = A\cos(Kt) + B\sin(Kt)$$

$$y(t) = -AK\sin(Kt) + BK\cos(Kt)$$

where $K = \sqrt{g/\ell}$.

- Substituting $\theta(0) = \theta_0$ and y(0) = 0 from the initial valuation, we get that $A = \theta_0$ and B = 0.
- The unique run of the pendulum system can be given as the function $f:\mathbb{R}_{\geq 0}\to \{\theta,y\}$ as

$$t \mapsto (\theta_0 \cos(Kt), -\theta_0 K \sin(Kt)).$$

A. Trivedi - 16 of 24

Pendulum Motion

Discrete Dynamical Systems

Continuous Dynamical Systems

Hybrid Dynamical Systems

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0.
- Is it a continuous system?

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0.
- Is it a continuous system?
- variables of interest : height of the ball x_1 and velocity of the ball x_2
- flow function:

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0.
- Is it a continuous system?
- variables of interest : height of the ball x_1 and velocity of the ball x_2
- flow function:

$$\dot{x_1} = x_2$$
 and $\dot{x_2} = -g$

- What happens at impact?

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0.
- Is it a continuous system?
- variables of interest : height of the ball x_1 and velocity of the ball x_2
- flow function:

$$\dot{x_1} = x_2$$
 and $\dot{x_2} = -g$

- What happens at impact?
- $x'_1 = x_1$ and $x'_2 = -cx_2$ where c is Restituition coefficient.

Bouncing Ball

- Consider a bouncing ball system dropped from height ℓ and velocity 0.
- Is it a continuous system?
- variables of interest : height of the ball x_1 and velocity of the ball x_2
- flow function:

$$\dot{x_1} = x_2$$
 and $\dot{x_2} = -g$

- What happens at impact?

- $x'_1 = x_1$ and $x'_2 = -cx_2$ where c is Restituition coefficient.

Discrete, Continuous, and Hybrid Systems

Some examples:

- Two leaking-water tanks systems
- Water-level monitor with delayed switch
- A leaking gas-burner
- Green scheduling with lower dwell-time requirements
- Light-bulb with three modes- dim, bright, and off.
- Job-shop scheduling problem

Login Protocol

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple $\mathcal{H} = (M, M_0, \Sigma, X, \Delta, I, F, V_0)$ where:

- M is a finite set of control modes including a distinguished initial set of control modes $M_0\subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}(X \cup X') \times M$ is the transition relation,
- $I: M \to \operatorname{pred}(X)$ is the mode-invariant function,
- $F: M \to (\dot{X} \to \operatorname{pred}(X))$ is the mode-dependent flow function, and
- $V_0 \in \operatorname{pred}(X)$ is the set of initial valuations.

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple $\mathcal{H} = (M, M_0, \Sigma, X, \Delta, I, F, V_0)$ where:

- M is a finite set of control modes including a distinguished initial set of control modes $M_0\subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}(X \cup X') \times M$ is the transition relation,
- $I: M \to \operatorname{pred}(X)$ is the mode-invariant function,
- $F: M \to (\dot{X} \to \operatorname{pred}(X))$ is the mode-dependent flow function, and
- $V_0 \in \operatorname{pred}(X)$ is the set of initial valuations.
- A configuration (m,ν) and a timed action (t,a)
- A transition $((m, \nu), (t, a), (m', \nu')$
 - solve flow ODE of mode m with ν as the starting state $\nu \oplus_{F(m)} t$.
 - invariant, guard, and jump conditions.
- A run or execution is a sequence of transitions

$$(m_0, \nu_0), (t_1, a_1), (m_1, \nu_1), (t_2, a_2) \dots$$

Definition (HA: Semantics)

The semantics of a HA $\mathcal{H}=(M,M_0,\Sigma,X,\Delta,I,F,V_0)$ is given as a state transition graph $T^{\mathcal{H}}=(S^{\mathcal{H}},S_0^{\mathcal{H}},\Sigma^{\mathcal{H}},\Delta^{\mathcal{H}})$ where

 $\begin{array}{l} - \ S^{\mathcal{H}} \subseteq (M \times \mathbb{R}^{|X|}) \text{ is the set of configurations of } \mathcal{H} \text{ such that for all} \\ (m,\nu) \in S^{\mathcal{H}} \text{ we have that } \nu \in \llbracket I(m) \rrbracket; \end{array}$

$$-S_0^{\mathcal{H}} \subseteq S^{\mathcal{H}}$$
 s.t. $(m, \nu) \in S_0^{\mathcal{H}}$ if $m \in M_0$ and $\nu \in V_0$;

–
$$\Sigma^{\mathcal{H}} = \mathbb{R}_{\geq 0} \times \Sigma$$
 is the set of labels;

- $\Delta^{\mathcal{H}} \subseteq S^{\mathcal{H}} \times \Sigma^{\mathcal{H}} \times S^{\mathcal{H}}$ is the set of transitions such that $((m, \nu), (t, a), (m', \nu')) \in \Delta^{\mathcal{H}}$ if there exists a transition $\delta = (m, g, a, j, m') \in \Delta$ such that

$$- (\nu \oplus_{F(m)} t) \in \llbracket g \rrbracket;$$

-
$$(\nu \oplus_{F(m)} \tau) \in \llbracket I(m) \rrbracket$$
 for all $\tau \in [0, t]$;

$$-\nu' \in (\nu \oplus_{F(m)} t)[j];$$
 and

$$- \nu' \in \llbracket I(m') \rrbracket.$$