CS620, 00 T BOMBAY

Formal Modeling Using Hybrid Automata

Ashutosh Trivedi
Department of Computer Science and Engineering,
IIT Bombay

Discrete, Continuous, and Hybrid Systems

Hybrid Automata

- Consider a bouncing ball system dropped from height ℓ and velocity 0 .
- variables of interest: height of the ball x_{1} and velocity of the ball x_{2}
- flow function: a system of first-order ODEs

$$
\dot{x_{1}}=x_{2} \text { and } \dot{x_{2}}=-g
$$

- Jump in the dynamics at impact!
- $x_{1}^{\prime}=x_{1}$ and $x_{2}^{\prime}=-c x_{2}$ where c is Restituition coefficient.

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple $\mathcal{H}=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ where:

- M is a finite set of control modes including a distinguished initial set of control modes $M_{0} \subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}\left(X \cup X^{\prime}\right) \times M$ is the transition relation,
$-I: M \rightarrow \operatorname{pred}(X)$ is the mode-invariant function,
- $F: M \rightarrow \operatorname{pred}(X \cup \dot{X})$ is the mode-dependent flow function, and
- $V_{0} \in \operatorname{pred}(X)$ is the set of initial valuations.

Hybrid Automata: Syntax

Definition (HA: Syntax)

A hybrid automaton is a tuple $\mathcal{H}=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ where:

- M is a finite set of control modes including a distinguished initial set of control modes $M_{0} \subseteq M$,
- Σ is a finite set of actions,
- X is a finite set of real-valued variable,
- $\Delta \subseteq M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}\left(X \cup X^{\prime}\right) \times M$ is the transition relation,
- $I: M \rightarrow \operatorname{pred}(X)$ is the mode-invariant function,
- $F: M \rightarrow \operatorname{pred}(X \cup \dot{X})$ is the mode-dependent flow function, and
- $V_{0} \in \operatorname{pred}(X)$ is the set of initial valuations.
- A configuration (m, ν) and a timed action (t, a)
- A transition $\left((m, \nu),(t, a),\left(m^{\prime}, \nu^{\prime}\right)\right.$
- solve flow ODE of mode m with ν as the starting state $\nu \oplus_{F(m)} t$.
- invariant, guard, and jump conditions.
- A run or execution is a sequence of transitions

$$
\left(m_{0}, \nu_{0}\right),\left(t_{1}, a_{1}\right),\left(m_{1}, \nu_{1}\right),\left(t_{2}, a_{2}\right) \ldots
$$

Hybrid Automata: Semantics

Definition (HA: Semantics)

The semantics of a HA $\mathcal{H}=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ is given as a state transition graph $T^{\mathcal{H}}=\left(S^{\mathcal{H}}, S_{0}^{\mathcal{H}}, \Sigma^{\mathcal{H}}, \Delta^{\mathcal{H}}\right)$ where

- $S^{\mathcal{H}} \subseteq\left(M \times \mathbb{R}^{|X|}\right)$ is the set of configurations of \mathcal{H} such that for all $(m, \nu) \in S^{\mathcal{H}}$ we have that $\nu \in \llbracket I(m) \rrbracket$;
- $S_{0}^{\mathcal{H}} \subseteq S^{\mathcal{H}}$ s.t. $(m, \nu) \in S_{0}^{\mathcal{H}}$ if $m \in M_{0}$ and $\nu \in V_{0}$;
- $\Sigma^{\mathcal{H}}=\mathbb{R}_{\geq 0} \times \Sigma$ is the set of labels;
- $\Delta^{\mathcal{H}} \subseteq S^{\mathcal{H}} \times \Sigma^{\mathcal{H}} \times S^{\mathcal{H}}$ is the set of transitions such that $\left((m, \nu),(t, a),\left(m^{\prime}, \nu^{\prime}\right)\right) \in \Delta^{\mathcal{H}}$ if there exists a transition $\delta=\left(m, g, a, j, m^{\prime}\right) \in \Delta$ such that
- $\left(\nu \oplus_{F(m)} t\right) \in \llbracket g \rrbracket ;$
- $\left(\nu \oplus_{F(m)} \tau\right) \in \llbracket I(m) \rrbracket$ for all $\tau \in[0, t]$;
- $\nu^{\prime} \in\left(\nu \oplus_{F(m)} t\right)[j]$; and
- $\nu^{\prime} \in \llbracket I\left(m^{\prime}\right) \rrbracket$.

Hybrid Automata: Modeling Exercise

Some examples:

1. Leaking water-tank system
2. Leaking water-tank system with delayed switch
3. Gas-burner system
4. Light-bulb system with three modes- dim, bright, and off.
5. Job-shop scheduling problem
6. Rail-road crossing example

Job-Shop Scheduling Problem

A job-shop scheduling problem is given as a tuple:

- A finite set $\downarrow=\left\{j_{1}, \ldots, j_{n}\right\}$ of jobs
- A finite set $\mathbb{M}=\left\{m_{1}, \ldots, m_{k}\right\}$ of machines
- Strict precedence requirements between the jobs given as a partial order \prec over the set of jobs in \mathbb{J}.
- A mapping $\zeta: \downarrow \rightarrow 2^{M}$ specifies the set of machines where a job can be executed,
- a function $\delta: \downarrow \rightarrow \mathbb{R}_{\geq 0}$ specifying the time duration of a job.

We impose the following restrictions:

1. a job j can be executed iff all jobs in its precedence, $j \downarrow=\left\{j^{\prime} \mid j^{\prime} \prec j\right\}$, have terminated;
2. each machine $m \in \mathbb{M}$ can process atmost one job at a time; and
3. a job, once started, cannot be preempted.

Let's model the system using a network of hybrid automata!

Job-Shop Scheduling Problem

Job-Shop Scheduling Problem

Composition of a Network of Hybrid Automata

Let $\mathcal{C}=\left\{\mathcal{H}^{1}, \mathcal{H}^{2}, \ldots, \mathcal{H}^{n}\right\}$ be a network of hybrid automata where for each $1 \leq i \leq n$ let \mathcal{H}^{i} be $\left(M^{i}, M_{0}^{i}, \Sigma^{i}, X^{i}, \Delta^{i}, I^{i}, F^{i}, V_{0}^{i}\right)$.
The product automata $\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \mathcal{H}_{n}$ of \mathcal{C} is defined as a hybrid automaton $H=\left(M, M_{0}, \Sigma, X, \Delta, I, F, V_{0}\right)$ where

- $M=M^{1} \times M^{2} \times \cdots M^{n}$,
- $M_{0}=M_{0}^{1} \times M_{0}^{2} \times \cdots M_{0}^{n}$,
$-\Sigma=\Sigma^{1} \cup \Sigma^{2} \cup \ldots \Sigma^{n}$,
- $X=X^{1} \cup X^{2} \cup \ldots X^{n}$,
- $\Delta \subseteq\left(M \times \operatorname{pred}(X) \times \Sigma \times \operatorname{pred}\left(X \cup X^{\prime}\right) \times M\right)$ is defined such that $\left(\left(m_{1}, \ldots, m_{n}\right), g, a, j,\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)\right) \in \Delta$ if and only if:
- For all i such that $a \notin \Sigma^{i}$ we have $m_{i}=m_{i}^{\prime}$
- For all i such that $a \in \Sigma^{i}$ we have corresponding transitions $\left(m_{i}, g_{i}, a, j_{i}, m_{i}^{\prime}\right)$
- The guard g and jump function j are defined as conjunct of all such g_{i} and j_{i} resp.
$-I$ is such that $I\left(m_{1}, \ldots, m_{n}\right)=\wedge_{i=1}^{n} I^{i}\left(m_{i}\right)$;
- F is such that $F\left(m_{1}, \ldots, m_{n}\right)=\wedge_{i=1}^{n} F^{i}\left(m_{i}\right)$; and
- V_{0} is such that $V_{0}=\wedge_{i=1}^{n} V_{0}^{i}$.

Hybrid Automata: Modeling Exercise

Some examples:

1. Leaking water-tank system
2. Leaking water-tank system with delayed switch
3. Gas-burner system
4. Light-bulb system with three modes- dim, bright, and off.
5. Job-shop scheduling problem
6. Rail-road crossing problem
