
A. Trivedi – 1 of 39

CS620, IIT BOMBAY

Finite Automata and Languages

Ashutosh Trivedi
Department of Computer Science and Engineering,

IIT Bombay

CS620: New Trends in IT: Modeling and Verification of Cyber-Physical Systems
(2 August 2013)

A. Trivedi Hybrid Systems



A. Trivedi – 2 of 39

Computation With Finitely Many States

Nondeterministic Finite State Automata

Alternation

A. Trivedi Hybrid Systems



A. Trivedi – 3 of 39

Machines and their Mathematical Abstractions

Finite instruction machine with finite memory (Finite State Automata)

Sstart C

no coin
coin

ready dispense

not ready

Finite instruction machine with unbounded memory (Turing machine)

b. . .⊥ . . . $

P Q

b/a,R
b/a,R

a/⊥,L

a/⊥,L

A. Trivedi Hybrid Systems



A. Trivedi – 4 of 39

Finite State Automata

Sstart C

no coin
coin

ready dispense

not ready

– Introduced first by two neuro-psychologists Warren
S. McCullough and Walter Pitts in 1943 as a model
for human brain!

– Finite automata can naturally model
microprocessors and even software programs
working on variables with bounded domain

– Capture so-called regular sets of sequences that
occur in many different fields (logic, algebra, regEx)

– Nice theoretical properties
– Applications in digital circuit/protocol verification,

compilers, pattern recognition, etc.

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.

– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.

– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.

– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.

– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.

– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.

– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.

– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.

– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 5 of 39

Calculemus! — Gottfried Wilhelm von Leibniz

Let us observe our mental process while we compute the following:
– Recognize a string of an even length.
– Recognize a binary string of an even number of 0’s.
– Recognize a binary string of an odd number of 0’s.
– Recognize a string that contains your roll number.
– Recognize a binary (decimal) string that is a multiple of 2.
– Recognize a binary (decimal) string that is a multiple of 3.
– Recognize a string with well-matched parenthesis.
– Recognize a # separated string of the form w#w.
– Recognize a string with a prime number of 1’s

A. Trivedi Hybrid Systems



A. Trivedi – 6 of 39

Finite State Automata
Automaton accepting strings of even length:

Estart O

0, 1

0, 1

Automaton accepting strings with an even number of 1’s:

Estart O

0
1

1

0

Automaton accepting even strings (multiple of 2):

Estart O

0
1

0

1

A. Trivedi Hybrid Systems



A. Trivedi – 7 of 39

Deterministic Finite State Automata (DFA)

Estart O

0
1

0

1

A finite state automaton is a tuple A = (S,Σ, δ, s0,F), where:
– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× Σ→ S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

For a function δ : S× Σ→ S we define extended transition function
δ̂ : S× Σ∗ → S using the following inductive definition:

δ̂(q,w) =

{
q if w = ε

δ(δ̂(q, x), a) if w = xa s.t. x ∈ Σ∗ and a ∈ Σ.

A. Trivedi Hybrid Systems



A. Trivedi – 7 of 39

Deterministic Finite State Automata (DFA)

Estart O

0
1

0

1

A finite state automaton is a tuple A = (S,Σ, δ, s0,F), where:
– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× Σ→ S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

For a function δ : S× Σ→ S we define extended transition function
δ̂ : S× Σ∗ → S using the following inductive definition:

δ̂(q,w) =

{
q if w = ε

δ(δ̂(q, x), a) if w = xa s.t. x ∈ Σ∗ and a ∈ Σ.

A. Trivedi Hybrid Systems



A. Trivedi – 8 of 39

Deterministic Finite State Automata (DFA)

Estart O

0
1

0

1

A finite state automaton is a tuple A = (S,Σ, δ, s0,F), where:
– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× Σ→ S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

The language L(A) accepted by a DFA A = (S,Σ, δ, s0,F) is defined as:

L(A)
def
= {w : δ̂(w) ∈ F}.

A. Trivedi Hybrid Systems



A. Trivedi – 9 of 39

Computation or Run of a DFA

Estart O

0
1

0

1

computation

Estart

E

O

E

string

.

.

.

.

0

1

0

computation

Estart

E

E

O

string

.

.

.

.

0

0

1

A. Trivedi Hybrid Systems



A. Trivedi – 10 of 39

Deterministic Finite State Automata
Semantics using extended transition function:

– The language L(A) accepted by a DFA A = (S,Σ, δ, s0,F) is defined as:

L(A)
def
= {w : δ̂(w) ∈ F}.

Semantics using accepting computation:
– A computation or a run of a DFA A = (S,Σ, δ, s0,F) on a string

w = a0a1 . . . an−1 is the finite sequence

s0, a1s1, a2, . . . , an−1, sn

where s0 is the starting state, and δ(si−1, ai) = si+1.
– A string w is accepted by a DFA A if the last state of the unique

computation of A on w is an accept state, i.e. sn ∈ F.
– Language of a DFA A

L(A) = {w : string w is accepted by DFA A}.

Proposition

Both semantics define the same language. Proof by induction.

A. Trivedi Hybrid Systems



A. Trivedi – 11 of 39

Properties of Regular Languages

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

– Union: A ∪ B = {w : w ∈ A or w ∈ B}
– Concatenation: AB = {wv : w ∈ A and v ∈ B}
– Closure (Kleene Closure, or Star):

A∗ = {w1w2 . . .wk : k ≥ 0 and wi ∈ A}. In other words:

A∗ = ∪i≥0Ai

where A0 = ∅, A1 = A, A2 = AA, and so on.
– Complementation Σ∗ \ A = {w ∈ Σ∗ : w 6∈ A}.

A. Trivedi Hybrid Systems



A. Trivedi – 12 of 39

Properties of Regular Languages

– The class of regular languages is closed under
– union,
– intersection,
– complementation
– concatenation, and
– Kleene closure.

– Decidability of language-theoretic problems
– Emptiness Problem
– Membership Problem
– Universality Problem
– Equivalence Problem
– Language Inclusion Problem
– Minimization Problem

Goal: To study these problems for timed automata

A. Trivedi Hybrid Systems



A. Trivedi – 13 of 39

Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
– Let A1 and A1 be regular languages.

– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite
automata accepting these languages.

– Simulate both automata together!
– The language A ∪ B is accept by the resulting finite state automaton,

and hence is regular.

Class Exercise: Extend this construction for intersection.

A. Trivedi Hybrid Systems



A. Trivedi – 13 of 39

Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
– Let A1 and A1 be regular languages.
– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite

automata accepting these languages.

– Simulate both automata together!
– The language A ∪ B is accept by the resulting finite state automaton,

and hence is regular.

Class Exercise: Extend this construction for intersection.

A. Trivedi Hybrid Systems



A. Trivedi – 13 of 39

Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
– Let A1 and A1 be regular languages.
– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite

automata accepting these languages.
– Simulate both automata together!
– The language A ∪ B is accept by the resulting finite state automaton,

and hence is regular.

Class Exercise: Extend this construction for intersection.

A. Trivedi Hybrid Systems



A. Trivedi – 13 of 39

Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
– Let A1 and A1 be regular languages.
– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite

automata accepting these languages.
– Simulate both automata together!
– The language A ∪ B is accept by the resulting finite state automaton,

and hence is regular.

Class Exercise: Extend this construction for intersection.

A. Trivedi Hybrid Systems



A. Trivedi – 14 of 39

Closure under Concatenation

Lemma
The class of regular languages is closed under concatenation.

Proof.
(Attempt).

– Let A1 and A1 be regular languages.
– Let M1 = (S1,Σ, δ1, s1,F1) and M2 = (S2,Σ, δ2, s2,F2) be finite

automata accepting these languages.
– How can we find an automaton that accepts the concatenation?
– Does this automaton fit our definition of a finite state automaton?
– Determinism vs Non-determinism

A. Trivedi Hybrid Systems



A. Trivedi – 15 of 39

Nondeterministic Finite State Automata

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

Michael O. Rabin Dana Scott

A. Trivedi Hybrid Systems



A. Trivedi – 16 of 39

Non-deterministic Finite State Automata

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

A non-deterministic finite state automaton (NFA) is a tuple
A = (S,Σ, δ, s0,F), where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

For a function δ : S× Σ→ 2S we define extended transition function
δ̂ : S× Σ∗ → 2S using the following inductive definition:

δ̂(q,w) =

{q} if w = ε⋃
p∈δ̂(q,x)

δ(p, a) if w = xa s.t. x ∈ Σ∗ and a ∈ Σ.

A. Trivedi Hybrid Systems



A. Trivedi – 16 of 39

Non-deterministic Finite State Automata

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

A non-deterministic finite state automaton (NFA) is a tuple
A = (S,Σ, δ, s0,F), where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

For a function δ : S× Σ→ 2S we define extended transition function
δ̂ : S× Σ∗ → 2S using the following inductive definition:

δ̂(q,w) =

{q} if w = ε⋃
p∈δ̂(q,x)

δ(p, a) if w = xa s.t. x ∈ Σ∗ and a ∈ Σ.

A. Trivedi Hybrid Systems



A. Trivedi – 17 of 39

Non-deterministic Finite State Automata

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

A non-deterministic finite state automaton (NFA) is a tuple
A = (S,Σ, δ, s0,F), where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

The language L(A) accepted by an NFA A = (S,Σ, δ, s0,F) is defined as:

L(A)
def
= {w : δ̂(w) ∩ F 6= ∅}.

A. Trivedi Hybrid Systems



A. Trivedi – 18 of 39

Computation or Run of an NFA

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

s1start

s1

s1 s2 s3

s1 s2 s3 A s4

s1s2s3 A s4s4

.

.

.

.

.

0

1

1

1

A. Trivedi Hybrid Systems



A. Trivedi – 19 of 39

Non-deterministic Finite State Automata
Semantics using extended transition function:

– The language L(A) accepted by an NFA A = (S,Σ, δ, s0,F) is defined:

L(A)
def
= {w : δ̂(w) ∩ F 6= ∅}.

Semantics using accepting computation:
– A computation or a run of a NFA on a string w = a0a1 . . . an−1 is a

finite sequence
s0, r1, s1, r2, . . . , rk−1, sn

where s0 is the starting state, and si+1 ∈ δ(si−1, ri) and
r0r1 . . . rk−1 = a0a1 . . . an−1.

– A string w is accepted by an NFA A if the last state of some
computation of A on w is an accept state sn ∈ F.

– Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.

Proposition

Both semantics define the same language. Proof by induction.

A. Trivedi Hybrid Systems



A. Trivedi – 20 of 39

Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
– {w : w contains 1 in the third last position}.
– {w : : w is a multiple of 2 or a multiple of 3}.
– Union and intersection of two DFAs as an NFA
– Exponentially succinct than DFA

– Consider the language of strings having n-th symbol from the end is 1.
– DFA has to remember last n symbols, and
– hence any DFA needs at least 2n states to accept this language.

And, surprisingly perhaps:

Theorem (DFA=NFA)
Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.

A. Trivedi Hybrid Systems



A. Trivedi – 20 of 39

Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
– {w : w contains 1 in the third last position}.
– {w : : w is a multiple of 2 or a multiple of 3}.
– Union and intersection of two DFAs as an NFA
– Exponentially succinct than DFA

– Consider the language of strings having n-th symbol from the end is 1.
– DFA has to remember last n symbols, and
– hence any DFA needs at least 2n states to accept this language.

And, surprisingly perhaps:

Theorem (DFA=NFA)
Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.

A. Trivedi Hybrid Systems



A. Trivedi – 21 of 39

Computation of an NFA: An observation

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

s1start

s1

s1 s2 s3

s1 s2 s3 A s4

s1s2s3 A s4s4

.

.

.

.

.

0

1

1

1

A. Trivedi Hybrid Systems



A. Trivedi – 22 of 39

ε-free NFA = DFA

Let A = (S,Σ, δ, s0,F) be an ε-free NFA. Consider the DFA
Det(A) = (S′,Σ′, δ′, s′0,F

′) where
– S′ = 2S,
– Σ′ = Σ,
– δ′ : 2S × Σ→ 2S such that δ′(P, a) =

⋃
s∈P δ(s, a),

– s′0 = {s0}, and
– F′ ⊆ S′ is such that F′ = {P : P ∩ F 6= ∅}.

Theorem (ε-free NFA = DFA)

L(A) = L(Det(A)). By induction, hint δ̂(s0,w) = δ̂′({s0},w).

Exercise (3.1)
Extend the proof for NFA with ε transitions. hint: ε-closure

A. Trivedi Hybrid Systems



A. Trivedi – 23 of 39

Proof of correctness: L(A) = L(Det(A)).
The proof follows from the observation that δ̂(s0,w) = δ̂′({s0},w). We
prove it by induction on the length of w.

– Base case: Let the size of w be 0, i.e. w = ε. The base case follows
immediately from the definition of extended transition functions:

δ̂(s0, ε) = ε and δ̂′({s0},w) = ε.

– Induction Hypothesis: Assume that for all strings w ∈ Σ∗ of size n we
have that δ̂(s0,w) = δ̂′({s0},w).

– Induction Step: Let w = xa where x ∈ Σ∗ and a ∈ Σ be a string of size
n + 1, and hence x is of size n. Now observe,

δ̂(s0, xa) =
⋃

s∈δ̂(s0,x)

δ(s, a), by definition of δ̂.

=
⋃

s∈δ̂′({s0},x)

δ(s, a), from inductive hypothesis.

= δ′(δ̂′({s0}, x), a), from definition δ′(P, a) =
⋃
s∈P

δ(s, a).

= δ̂′({s0}, xa), by definition of δ̂′.

A. Trivedi Hybrid Systems



A. Trivedi – 24 of 39

Equivalence of NFA and DFA

Exercise (In class)
Determinize the following automaton:

s1start s2 s3 s4

0, 1

1 0, 1 0, 1

A. Trivedi Hybrid Systems



A. Trivedi – 25 of 39

Complementation of the Language of a DFA

Estart O

0
1

0

1

computation

Estart

E

O

E

string

.

.

.

.

0

1

0

computation

Estart

E

E

O

string

.

.

.

.

0

0

1

Hint: Simply swap the accepting and non-accepting states!

A. Trivedi Hybrid Systems



A. Trivedi – 26 of 39

Complementation of a DFA

Theorem
Complementation of the language of a DFA A = (S,Σ, δ, s0,F) is the language
accepted by the DFA A′ = (S,Σ, δ, s0,S \ F).

Proof.
– L(A) = {w ∈ Σ∗ : δ̂(s0,w) ∈ F},
– Σ∗ \ L(A) = {w ∈ Σ∗ : δ̂(s0,w) 6∈ F},
– L(A′) = {w ∈ Σ∗ : δ̂(s0,w) ∈ S \ F}, and
– transition function is total.

A. Trivedi Hybrid Systems



A. Trivedi – 27 of 39

Complementation of the language of an NFA

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

s1start

s1

s1 s2 s3

s1 s2 s3 A s4

s1s2s3 A s4s4

.

.

.

.

.

0

1

1

1

Question: Can we simply swap the accepting and non-accepting states?

A. Trivedi Hybrid Systems



A. Trivedi – 28 of 39

Complementation of the language of a NFA

Question: Can we simply swap the accepting and non-accepting states?

Let the NFA A be (S,Σ, δ, s0,F) and let the NFA A′ be (S,Σ, δ, s0,S \ F) the
NFA after swapping the accepting states.

– L(A) = {w ∈ Σ∗ : δ̂(s0,w) ∩ F 6= ∅},
– L(A′) = {w ∈ Σ∗ : δ̂(s0,w) ∩ (S \ F) 6= ∅}.
– Consider, the complement language of A

Σ∗ \ L(A) = {w ∈ Σ∗ : δ̂(s0,w) ∩ F = ∅}
= {w ∈ Σ∗ : δ̂(s0,w) ⊆ S \ F}.

– Hence L(A′) does not quite capture the complement. Moreover, the
condition for Σ∗ \ L(A) is not quite captured by either DFA or NFA.

A. Trivedi Hybrid Systems



A. Trivedi – 29 of 39

Computation With Finitely Many States

Nondeterministic Finite State Automata

Alternation

A. Trivedi Hybrid Systems



A. Trivedi – 30 of 39

Universal Non-deterministic Finite Automata

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

A universal non-deterministic finite state automaton (UNFA) is a tuple
A = (S,Σ, δ, s0,F), where:

– S is a finite set called the states;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

The language L(A) accepted by a UNFA A = (S,Σ, δ, s0,F) is defined as:

L(A)
def
= {w : δ̂(w) ⊆ F}.

A. Trivedi Hybrid Systems



A. Trivedi – 31 of 39

Computation or Run of an UNFA

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

s1start

s1

s1 s2 s3

s1 s2 s3 A s4

s1s2s3 A s4s4

.

.

.

.

.

0

1

1

1

A. Trivedi Hybrid Systems



A. Trivedi – 32 of 39

Universal Non-deterministic Finite Automata
Semantics using extended transition function:

– The language L(A) accepted by an NFA A = (S,Σ, δ, s0,F) is defined
as:

L(A)
def
= {w : δ̂(w) ⊆ F}.

Semantics using accepting computation:
– A computation or a run of a NFA on a string w = a0a1 . . . an−1 is a

finite sequence
s0, r1, s1, r2, . . . , rk−1, sn

where s0 is the starting state, and si+1 ∈ δ(si−1, ri) and
r0r1 . . . rk−1 = a0a1 . . . an−1.

– A string w is accepted by an NFA A if the last state of all
computations of A on w is an accept state sn ∈ F.

– Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.

Proposition

Both semantics define the same language. Proof by induction.

A. Trivedi Hybrid Systems



A. Trivedi – 33 of 39

ε-free UNFA = DFA

Let A = (S,Σ, δ, s0,F) be an ε-free UNFA. Consider the DFA
Det(A) = (S′,Σ′, δ′, s′0,F

′) where
– S′ = 2S,
– Σ′ = Σ,
– δ′ : 2S × Σ→ 2S such that δ′(P, a) =

⋃
s∈P δ(s, a),

– s′0 = {s0}, and
– F′ ⊆ S′ is such that F′ = {P : P ⊆ F}.

Theorem (ε-free UNFA = DFA)

L(A) = L(Det(A)). By induction, hint δ̂(s0,w) = δ̂′(s0,w).

Exercise (3.2)
Extend the proof for UNFA with ε transitions.

A. Trivedi Hybrid Systems



A. Trivedi – 33 of 39

ε-free UNFA = DFA

Let A = (S,Σ, δ, s0,F) be an ε-free UNFA. Consider the DFA
Det(A) = (S′,Σ′, δ′, s′0,F

′) where
– S′ = 2S,
– Σ′ = Σ,
– δ′ : 2S × Σ→ 2S such that δ′(P, a) =

⋃
s∈P δ(s, a),

– s′0 = {s0}, and
– F′ ⊆ S′ is such that F′ = {P : P ⊆ F}.

Theorem (ε-free UNFA = DFA)

L(A) = L(Det(A)). By induction, hint δ̂(s0,w) = δ̂′(s0,w).

Exercise (3.2)
Extend the proof for UNFA with ε transitions.

A. Trivedi Hybrid Systems



A. Trivedi – 34 of 39

Complementation of an NFA

Theorem
Complementation of the language of an NFA A = (S,Σ, δ, s0,F) is the language
accepted by the UNFA A′ = (S,Σ, δ, s0,S \ F).

Exercise (3.3)
Write a formal proof for this theorem.

A. Trivedi Hybrid Systems



A. Trivedi – 35 of 39

Alternating Finite State Automata

Estart O

0
1

0

1

Ashok K. Chandra Larry J. Stockmeyer

A. Trivedi Hybrid Systems



A. Trivedi – 36 of 39

Alternating Finite State Automata

Estart O

0
1

0

1

An alternating finite state automaton (AFA) is a tuple
A = (S,S∃,S∀,Σ, δ, s0,F), where:

– S is a finite set called the states with a partition S∃ and S∀;
– Σ is a finite set called the alphabet;
– δ : S× (Σ ∪ {ε})→ 2S is the transition function;
– s0 ∈ S is the start state; and
– F ⊆ S is the set of accept states.

A. Trivedi Hybrid Systems



A. Trivedi – 37 of 39

Computation or Run of an AFA

s1start s2 s3 s4

0, 1

1 0, ε 1

0, 1

s1start

s1

s1 s2 s3

s1 s2 s3 A s4

s1s2s3 A s4s4

.

.

.

.

.

0

1

1

1

A. Trivedi Hybrid Systems



A. Trivedi – 38 of 39

Universal Non-deterministic Finite Automata

– A computation or a run of a AFA on a string w = a0a1 . . . an−1 is a
game graph G(A,w) = (S× {0, 1, 2, . . . ,n− 1},E) where:

– Nodes in S∃ × {0, 1, 2, . . . , n− 1} are controlled by Eva and nodes in
S∀ × {0, 1, 2, . . . , n} are controlled by Adam; and

– ((s, i), (s′, i + 1)) ∈ E if s′ ∈ δ(s, ai).

– Initially a token is in (s0, 0) node, and at every step the controller of
the current node chooses the successor node.

– Eva wins if the node reached at level i is an accepting state node,
otherwise Adam wins.

– We say that Eva has a winning strategy if she can make her decisions
no matter how Adam plays.

– A string w is accepted by an AFA A if Eva has a winning strategy in
the graph G(A,w).

– Language of an AFA A L(A) = {w : string w is accepted by AFA A}.
– Example.

A. Trivedi Hybrid Systems



A. Trivedi – 39 of 39

ε-free AFA = NFA

Let A = (S,S∃,S∀,Σ, δ, s0,F) be an ε-free AFA. Consider the NFA
NDet(A) = (S′,Σ′, δ′, s′0,F

′) where
– S′ = 2S,
– Σ′ = Σ,

– δ′ : 2S × Σ→ 22S
such that Q ∈ δ′(P, a) if

– for all universal states p ∈ P ∩ S∀ we have that δ(p, a) ⊆ Q and
– for all existential states p ∈ P ∩ S∃ we have that δ(p, a) ∩Q 6= ∅,

– s′0 = {s0}, and
– F′ ⊆ S′ is such that F′ = 2F \ ∅.

Theorem (ε-free AFA = NFA)
L(A) = L(Det(A)).

A. Trivedi Hybrid Systems


	Computation With Finitely Many States
	Nondeterministic Finite State Automata
	Alternation

