

1

Comprehensive Analysis of Objects for Efficient handling of Java Objects

Prasanna Kumar Kalle
IBM India Software Labs

Bangalore - 560017

Abstract:

JAVA is a highly Object Oriented Language and
supports all functionality to be encapsulated
within classes. Having encapsulated
functionality within classes results in access to
all methods generally through objects, unless of
course a method is declared with a static scope.
The JAVA language, necessitates that the objects
be created on the JAVA heap. This heap needs to
be periodically scanned for stale objects and
cleaned for optimum usage of the heap. It is the
responsibility of the Garbage Collector (GC) to
do a periodic cleanup of the JAVA heap. Object
creation, allocation and cleanup are thus the
prime responsibility of the storage component of
the Java Virtual Machine (JVM).

This task impacts the performance of the JVM
highly due to the involvement of locking and
unlocking for each and every access to objects in
the heap. This adds up to the performance
restriction imposed due to the fact that JAVA is
an interpreted Language.

This paper aims at providing a mechanism to do
a comprehensive analysis of the Objects in the
JAVA heap to detect the scope and degree of
escapeness of objects. There have been multiple
papers on this subject in the past. This paper
aims at a simpler approach for analyzing the
escapeness using the set theory based analysis
implementation.

Set based analysis is simpler to both understand
and implement due to the involvement of less
complicated structures, than the traditional graph
based approach. It reduces the amount of
memory necessary for the structures during the
analysis phase. Simpler structures and algorithm
also reduces the amount of time needed for the
analysis thus enhancing the performance.

Apart from the other uses like stack allocations,
this paper also aims at using a reduced object
layout for the stack object.

1. Introduction:

Dynamically allocating objects in the Java heap
and freeing up memory is a time intensive
activity. Though this cannot be totally reduced to
zero due to the nature of the programming
language as such, certain compile time
optimizations can indeed be done so that we can
reduce the impact of the same. The algorithm
described below is termed Escape Analysis.

This algorithm analyses all the objects involved
in the method under consideration and classifies
them according to their scope of access and life
time.

The information gathered from this analysis can
them be used to do other optimizations like

Stack allocation of Objects.

Removal of unnecessary
synchronization constructs on an object
if the object under consideration is not
accessed by multiple threads.

Replacing calls to objects by scalars if
we do not need any references to the
object as such.

In this manner the number of heap controlled
objects can be reduced. Depending upon the
nature of the method getting compiled, this
would have a significant impact on the
performance of the application.

2. Escape Analysis:

2.1 Theory:

2.1.1 Source and Destination node sets:

This algorithm analyses one Java method at a
time. During the analysis, the algorithm traverses
all the basic blocks in the method and creates a
set of all the objects involved in the method. This
set is denoted by the Universal set U. This set
consists of all those local variables in the
intermediate language representation (IR), which

2

denote objects. The Universal set is then
categorized into source set S and destination set
D. This categorization depends upon whether the
local variable represents a source variable or the
destination variable in the IR.

The source and destination could have certain
nodes in common. This is due to the fact that the
destination value for a quadruple might be the
source for subsequent quadruple. Also called as
the three address notation, quadruple is a format
of IR, the others being Abstract Syntax Tree
(AST) and Directed Acyclic Graph (DAG). For
example, consider the following snippet of IR.

 LO3 = LO0 AMOVE
 LI4 = +I0 IMOVE
 LO3 NULLCHECK c

 LI5 = LO3 ARRAYLENGTH
 LI4 , LI5 SIZECHECK
 LL7 = LI4 , +I3 LOP15-scale
 LO3 = LO3 , LL7 AALOAD
 LO2 = LO3 AMOVE

In the above quadruple representation, it can be
seen that LI4 is the destination argument for the
quadruple IMOVE and is the source argument
for the SIZECHECK argument. Similarly, LO3
is the destination argument for AMOVE and the
source argument for ARRAYLENGTH
quadruple.

Since, there can be an overlap between the
source and destination arguments, we define the
Universal set U in terms of the source and
destination sets as below.

{U} = {S} U {D} Eq 2.1

For example, if we consider a simple
HelloWorld program written in Java as below,

public class HelloWorld {
public static void main(String [] args) {
 int i = Integer.parseInt (args[0]);

 while (i-- > 0)
System.out.println (Hello

World + i);
}

}

The corresponding quadruple sequence is as
below.

LO0 = AO0 ALOCALCOPY

LI6 = LO0 ARRAYLENGTH
LO2 = LO0 ,+I0 AALOAD
AI1 = +I10 IARGCOPY
AO0 = LO2 AARGCOPY
LI1 = AO0 ,AI1 IINVOKE
LI4 = LI1 IMOVE
LI1 = LI1 ,-I-1 IOP2-add
LO9 = AGETSTATIC
LO3 = NEW
LO7 = CO188B33DC SCONST
AI2 = LI1 IARGCOPY
AO1 = LO7 AARGCOPY
AO0 = LO3 AARGCOPY
LS10 = LO9 MTLOAD
LS11 = LS10,+S36 MBLOAD
AO1 = LO3 AARGCOPY
AO0 = LO9 AARGCOPY

In the above illustration,

{S} = { Set of all nodes to the right side of = }
{D} = {Set of all nodes to the left side of = }
{U} = {Set of all nodes with no repetition. }

However, since escape analysis deals only with
objects, we redefine {S}, {D} and {U} by
restricting them to only nodes that represent
objects.

So, in general, we define {S}, {D} and {U} as

{S} = { Set of all nodes to the right side of = ,
that represent objects }
{D} = {Set of all nodes to the left side of = ,
that represent objects}
{U} = {Set of all nodes that represent objects
with no repetition. } Eq 2.2

2.1.2 Categorization of nodes:

Depending on what is the functionality of the
associated quadruple, the nodes can be classified
as below.

a. New object node: This node is
categorized by creation of a new object
or an array object of basic data type or a
derived data type. The quadruples
involved generally are NEW,
NEWARRAY, ANEWARRAY.

b. Reference load node: This node
loads a reference to any object into
another local variable. Few of the
quadruples involved are

3

ALOCALCOPY, AGETFIELD,
AMOVE, and AALOAD.

c. Argument node: Whenever an
argument needs to be passed to a
method being invoked, this is done in
the argument node. This can be treated
as a special kind of reference load node.
Generally, this node is identified by
AARGCOPY.

d. Return node: Whenever a method
returns a reference to an object to the
caller method, the node is called a
return node and is identified by
ARETURN.

2.1.3 Inside and Outside nodes :

Depending on where the actual object is created,
whether within the current method under
analysis or outside the method, the objects are
classified into inside objects and outside objects.
Accordingly, the corresponding nodes are termed
inside nodes and outside nodes respectively.

Since, a new object node is the only node
wherein a new object gets created, it is the only
type of node which is an inside node.
Whereas, reference load node and argument node
are outside node.

2.1.4 Escaping versus non-escaping nodes :

Nodes are classified into escaping and non-
escaping nodes depending on the status of the
object they represent.

Degree of escapeness of an object may be
defined as the ability to predict the state of the
object with regard to the method being analyzed.
An object is said to be escaped if at any point in
time during the analysis of the method, the status
of the object cannot be determined. This
generally happens in the following cases.

a. Object is assigned to any static (class)
variable that can be accessed and
altered from any other location within
the application. Such an object is said to
be globally escaping.

b. Object is returned from the method
where it is getting created. In this case,
the object escapes from the current
scope of creation. However, this might
then be captured further down the call

tree. If it is captured, then it is said to be
locally escaping.

c. An object might also escape if it is
assigned as a field of another object that
is escaping.

d. Any object is said to be non-escaping if
the life span of the object is only with in
the method of creation and cannot be
accessed from anywhere outside the
method.

Outside nodes are always treated as escaping
nodes whereas inside nodes may be escaping or
non-escaping. If escaping, they might be locally
escaping or globally escaping. A globally
escaping node will never be captured. A locally
escaping node can be captured down the call tree
whereas a non-escaping node is captured in the
method where it is created.

Fig 2.1.4

2.1.5 Set theory representation :

We represent new object node set, reference load
node set, argument node set and return node set
as {No}, {Nl}, {Na} and {Nr} respectively. The
union of all these nodes adds to the universal set.

{U} = {No} U {Nl} U {Na} U {Nr} Eq 2.3

Globally escaping nodes are represented by
{Ngl}, locally escaping nodes are represented by
{Nlo} and non-escaping nodes are represented by
{Nne}.

{Ngl} {Nlo} =

{Nne} {Nlo} =

{Nne} {Ngl} = Eq 2.4

Nodes (Objects)

Inside nodes Outside nodes

Non-Escaping Escaping

Globally Escaping

Locally Escaping

4

{Nne} = {U}

({Ngl} U {Nlo}) Eq 2.5

Outside nodes are represented by {Nout} and
inside node by {Nin}.

{Nout} {Nin} =

{Nout} U {Nin} = {U} Eq 2.6

2.2 Algorithm:

The algorithm followed below is relatively
simple to comprehend.

2.2.1 Phase 1 (Scan Phase):

In this phase, we scan through all the quadruples
in the IR of the method that is being analyzed.
The universal set U is populated in this phase.
Each node in U is then further classified as a
source node or a destination node and then {S},
{D} are accordingly populated.

Diagrammatically, this phase can be represented
as in Fig 2.2.1.

So, at the end of this phase, we have fully
populated {S} and {D} sets.

Also, we classify the nodes into new object node,
reference load node, argument nodes (for
invocation sites if any) and return nodes. So, we
also have {No}, {Nl}, {Na} and {Nr} fully
populated.

2.2.1(a) How loops are handled:

Loops are one special kind of programming
constructs which result in cyclic control flow. It
is but natural that such control flows need special
treatment in any analysis done in programming
languages. We could have any kind of the above
listed nodes to be part of the loop body.

In general we could provide the following
structure for a loop.

Begin Loop:

New object node
Return node
Argument node
Reference load node

End Loop:

If the structure is as simple as that then we would
not need any special analysis. The default
approach would suffice which we do in the
algorithm.

However, if the looping is slightly more
complicated then there are chances of getting
misled due to the reverse control flow.

Consider a condition where, a reference load
node, occurs prior to the object creation.

LO1 = new Classx();
Begin Loop:

LO2 = LO1
Call xyz(LO2)
LO1 = new Classy()

End Loop:

The above structure looks complex. If the graph
or tree approach for analysis is employed, then
we would need to take care of the control flow.

This is where the set theory approach is different.
Since the nodes are initially appropriately
categorized into sets, we just need to scan
through the appropriate sets before deciding on if
a node has escaped or not. There is not any
chance of having potentially endless loops. This
makes the entire algorithm and the
implementation simpler.

Scan
phase

{S}, {D},
{No}, {Nl},
{Na}, {Nr}

and {U}

Input

Output

Quadruple
sequence
for the
method
being
analyzed.

Fig 2.2.1

5

2.2.2 Phase 2 (Analysis Phase):

In this phase, we initialize the various other sets
that are necessary for our analysis. This includes
the locally escaping node set {Nlo}, the globally
escaping node set {Ngl} and the non-escaping
node set {Nne}.

We initialize {Nlo}, {Ngl} and {Nne} to .
Similarly, we initialize {Nin} and {Nout} to .

{Nlo} = {Ngl} = {Nne} =
{Nout} = {Nin} = Eq 2.7

Then, we analyze the actual flow of control in
the program. During this we populate the {Nout}
and {Nin} sets. We define a relation set {R},
between the source and destination sets {S} and
{D}.

We define, relation set {R} as,

{R} = { ri : ri < si, dj > where si S and dj D,
for all 0 <= (i, j) <= M } where M is the
number of elements in U Eq 2.8

Once {R} is populated then we analyze each
element of this set with regard to the nodes that it
connects.

According to the nodes < si, dj > that ri connects,
and the quadruple involved, we can different
kind of relations.

Accordingly, the relations are as below.

Copy Relation: Relation in which
destination node dj is equated to si .

LO2 = LO1 AMOVE

Store Relation: Relation in which
destination node dj is assigned as a field
of si .

LO2 = LO1 APUTFIELD x
In simpler terms, LO1.x = LO2

Load Relation: Relation in which
destination node dj is a loaded with a
field of si .

LO2 = LO1 AGETFIELD y
In simpler terms, LO2 = LO1.y

Return value Relation: Relation in
which destination node dj is the return
value of a method that takes si as an
argument.

LO2 = M1(LO1)

Once the relations in the relations set {R} are
classified as above, we apply the principles of
escapeness to determine which objects have
escaped. These are the below principles.

a. Any outside node is always treated as
escaped node since we do not have the
information regarding the history of the
object prior to the invocation of the
current method.

b. Any class variable globally escapes.
c. Object which is assigned to a static

member of a class is treated as having
escaped. This is denoted by the copy
relation. If LO1 is a static member then
LO2 globally escapes.

d. Object setup as a field of an escaped
object always escapes. This is denoted
by the store relation. If LO1 escapes
then LO2 is also treated as an escaped
object.

e. The return value relation is a slightly
different kind of a relation because it
involves invocation of another method.
Under such scenarios, the arguments
passed to the method being invoked
may or may not escape depending on
the below conditions.

i. If the method to be invoked is
not yet resolved, then all
arguments passed to this
method are treated as globally
escaped. This is because of the
fact that for an unresolved
method, the characteristics or
escapeness behavior is
unknown.

ii. If the method to be invoked is
resolved, then check if the
escape summary for this
method is already available. If
the escape summary is already
available, then map and
correlate the argument nodes
from the caller method to the
callee method. If a node in the

6

callee globally escapes and is
mapped to a node in the caller,
the the caller node globally
escapes. If a callee node
locally escapes, then the
escape data for the
corresponding mapped caller
node needs to be computed

iii. If the method to be invoked is
resolved and the escape
summary is not yet available,
then do a recursive escape
analysis this method to obtain
the escape summary.

Any node that globally escapes is added to the
set of globally escaping nodes {Ngl}. Similarly,
the {Nlo} and {Nne} are populated.

The set theory equivalent of the above is as
below.

Assume, x is a class variable. So, it is added to
the set of globally escape nodes.

Then with intention of determining the
escapeness of all the nodes in the method which
is currently being analyzed, we consider each
member ri of the relations set {R}. Consider
relation ri as a relation between source si and dj

as below.
ri = < si, dj > Eq 2.9

Translating rules a. to e above, results in the
following equations.

a. If x {Nout}, then {Nlo} U x Eq 2.10

b. If x is class variable, then {Ngl} U x
 Eq 2.11

c. If x is class variable, and y is another
object such that y {Nin}, then,
{Ngl} U y
 Eq 2.12

d. If x

{Nlo} || x

{Ngl} and y {Nin} and
ri = < x, y >, then x U {Nlo} or x U {Ngl}
respectively. Eq 2.13

e. If x {Nin} in the caller method, and is
sent as an argument to the callee
method then once of the below holds
good.

i. If callee not resolved then {Ngl} U
x Eq 2.14

ii. If callee is resolved and escape
summary for callee is , then
escape summary for callee is
computed.

iii. If callee is resolved and escape
summary exists then the mapping
is done as below

If node x(caller) is mapped to node
y(callee) and y

{Ngl} in the callee
then {Ngl} U x Eq 2.15

If node x(caller) is mapped to node
y(callee) and y

{Nlo} in the callee
then escape info for x needs to be
computed. Eq 2.16

Analysing all the nodes in the method and their
corresponding relation, we can finally populate
the {Nlo} and {Ngl} sets.

Then using Eq 2.5 we can compute the elements
in {Nne}.

Thus finally we have the escape summary data
for all the objects nodes in the method being
analysed.

2.2.3 Phase 3 (Cleanup or final Phase):

This phase is basically used as a phase to clean
up the data structures involved. The escape
summary information gathered in the above
phase is then associated with the method block
that was analysed.

3. Uses of Escape Summary:

The information that we gather by the above
analysis can further be used to do other
optimizations to improve the performance.
Following are the uses of the same.

a. Stack Allocation: If an object is
diagnosed to be a member of {Nne},
then this cannot be accessed by any
other location in the code. Hence this
object can be allocated on the stack
frame corresponding to the method that
is being compiled. This reduces the
associated overhead of storage
component of the JVM controlling the
object.

7

b. Eliminate Synchronization: In cases

wherein an object has been allocated on
a method s stackframe, we can rest
assured that there will be no other
thread that will be accessing the
method. Hence, under such scenarios
we can remove any synchronization
operations on the object. This reduces
the overhead of locking.

c. Reduced Object Layout: Also,
generally, the heap allocated objects
tend to have lot of fields in the object
layout which are primarily necessary
since they are on the heap. This
includes the implementation specific
fields which help the GC to control the
lifetime of the object. Since stack
allocated objects are not controlled by
GC, we can even have a reduced object
layout which can reduce the amount of
storage needed.

d. Scalar Replacement: Also, under
certain scenarios it is observed that
certain objects remain captured in the
method. But a certain field in the object
is returned as a return value or passed to
other programs for analysis etc. Under
these circumstances wherein the field of
the object is a scalar, we can eliminate
the entire object itself. Instead we could
use a simple scalar to replace the
object s field in the generated code.

3. Conclusion:

This paper has explained a simple algorithm for
Escape Analysis using basic Set Theory
concepts. It is a simple to understand and easy
to implement algorithm. The complications of
implementation using more complex data
structures are overcome by using the concept set
theory and relations.

Due to the simplicity of the algorithm, the
memory requirements are reduced and the time
needed to do this analysis is reduced. Since just-
in-time compilation takes time for compilation
from the actual runtime of the application, it is
necessary that we have an algorithm that takes
fairly less amount of time for compilation yet
producing efficient code.

The algorithm described above precisely does
the same. It analyses the code using fairly less
amount of memory, while it is capable of
producing fairly efficient code. Implementations

can further tune in order to restrict the analysis
for a specific number of basic blocks, specific
number of invocations, specific number of local
variables etc. However, all this is specific to
implementations.

3. Scope for enhancement:

The current algorithm necessitates that there be
no references from the heap allocated objects to
the stack allocated objects. This restriction is
because of the fact that the lifetime of a heap
object is generally greater than that of a stack
object. Hence, if a heap object has a reference to
a stack object, we might endup in a scenario
where in the stack frame is no longer existent
and hence the object on the stack frame has been
removed. But the heap object might still hold a
stale reference to the erstwhile stack object.
There needs to be some mechanism to eliminate
this limitation. Once this is eliminated, it is
possible for a more exhaustive use of the Escape
Analysis.

Since this algorithm recursively tries to compute
the escape summary for each resolved method
invocation, this analysis might become tedious in
cases where in we have large code size and
invocation tree. This is a possible disadvantage
because of the fact that it could result in larger
compile times. Since in dynamic compilation,
the compilation time is a part of the actual
execution time, larger values of compile times
are not really appreciated. On the other hand,
having complete escape information for all
methods invoked might let us do a better object
allocation and better performance. Hence,
appropriate analysis needs to be done to reduce
the dependency of the compile time on the code
size and invocations.

4. References

Whaley, John and Rinard, Martin.
Compositional Pointer and Escape Analysis for
Java Programs. In Proceedings of Object-
Oriented Programming Systems, Languages, and
Applications. November 1999.

8

Java and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.
IBM is a trademark of International Business
Machines Corporation in the United States, other
countries, or both.
Other company, product, or service names may
be trademarks or service marks of others

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

