
Incremental building of machine description in GCC-4.0.2

Sameera Deshpande

September 10, 2006

Contents

1 Introduction 2

1.1 GCC Structure . 2

1.2 Classification of machine description . 4

1.3 What is incremental? . 5

1.4 Why incremental? . 5

2 Role of md file in GCC 6

3 Levelised C and its correlation with md 9

3.1 level0 . 9

3.1.1 Why some information should go to machine description? 9

3.1.2 The information that goes in machine description 10

3.2 level1 . 27

3.2.1 Mapping from modify expr to movm . 27

3.2.2 What goes in Level 1? . 27

3.3 level2 . 31

3.3.1 What goes in Level 2? . 32

3.4 level3 . 33

3.5 level4 . 34

3.5.1 cbranchsi4 . 34

3.5.2 Combination of cmpsi and bcond . 35

3.5.3 How control structures are handled? . 37

3.6 Level 5 . 38

4 Problems in writting incremental machine description 38

1

1 Introduction

1.1 GCC Structure

GCC is collection of compilers for different high level languages generating code for various architectures.

Because of this ‘generic’ attribute of GCC, GCC cannot contain machine or language dependent code.

Instead, it parameterizes language or machine specific attributes, and contains the code which depends

upon these parameters. This divides the GCC source broadly into

• Generator files: These files are used to adapt the generic GCC sources for the specified target

architecture. These files take description of desired target architecture as an input at the time of

building compiler for specified language-target pair, and generates machine specific sources which

are required by actual coimpiler, xgcc.

• Build source files: These are the files that are required by final compiler xgcc being built. The

build source files can further be categorized as

– Existing files: These are the files which have language and machine independent code. These

files are available in GCC source tree before build process begins.

– Generated files: Generated files are machine or language dependent, and depending upon

language or target architecture, these files are generated by generator files.

1

GCC Source

Build system
source files

Generator Files

Existing files Generated Files

Figure 1: Structure of GCC source files

The figure 1 shows the overall structure in which GCC sources be divided.

The retargetability of compiler forces it to make use of intermediate representation in order to

have better code reusability. Without intermediate language, compiler would need m x n translators for

each combination of m languages and n target architectures supported by it. Hence for the compilers

like GCC, aiming parameterization of target, an intermediate language is needed in order to describe

higher level language in terms of generic machine properties.

Introduction of intermediate language gives rise to two main logical transformations on any input

program given to the compiler:

1Here I wish to give list of files under each specific category... But that list is too big. And I don’t know which files to

name...

2

1. Higher level language to intermediate language transformation

2. Intermediate language to assembly language transformation

which must be semantic preserving. Each high level language construct must be translatted to semanti-

cally equivalent intermediate language statement(s), which get transformed to piece of code in assembly

language. This mapping from high level language and intermediate language or intermediate language

to assembly language must be known to the compiler. This is achieved by representing intermediate

language in terms of ‘pattens’.

In GCC register transfer language (RTL) is used as intermediate language. The high level language

program represenated as parse tree is mapped to RTL language instructions through some ‘standard

pattern names’ which are predefined by the compiler. The high level construct gets mapped to semantic

preserving pattern associated with standard pattern name corresponding to that construct. This pattern

is then used to find out assembly instruction(s) representing that pattern.

The GCC binary is generated by instanciating GCC source for spcific architecture. This binary

can then be used to generate target specific assembly code for input source language program. The

execution of this binary file can be divided into 3 stages:

• Front End: For each high level language there is language specific parser which takes source

program as input and generates abstact syntax tree (AST) from it.

• Middle End: This stage gets AST as an input, and generates code in register transfer language

(RTL) as an output.

• Back End: This part gets RTL code as an input and generates assembly code for specified target

architecture from it.

Parser

Geniricizer

Gimplifier

RTL generator

Optimizer

Tree SSA
optimizer

Code Generator

Language
 Specific

code

Language and
machine

independent
generic code

generator code

gccGCC

selected

generated

generated

md

Figure 2: Structure of GCC compiler

3

The figure 2 gives the transformations input program undergoes when given to xgcc, which is the

compiler built for specific language-target pair.

While compiling any high level language, the input program is scanned and parsed to generate

abstract syntax tree (AST) using lang hooks.parse file. This AST is input language dependent, and

it is reduced to representation understood by language independent parts of compiler : GENERIC

trees. This translation is optional, in the sense, front ends for languages like Fortran convert the

AST to generic and then lower it to GIMPLE at the time of compiling function, whereas there is

no such translation in case of languages like C. For the languages like C, middle end invokes function

gimplify function tree in gimplify.c to flatten the generated AST to GIMPLE code. The middle

end then performs optimizations on GIMPLE code and finally converts gimplified function into RTL

form. The file cfgexpand.c has the function expand gimple basic block which convert the gimplified

function into RTL form basic-block wise.

The back end then performs various optimizations on RTL code, and finally generates assembly

code for desired underlying machine for which the compiler was built.

If one wants to include new higher level language in GCC, then it is sufficient to add new front end

for that language. This front end should do lexical analysis, parse tree generation, and finally generic

tree generation.

On the other hand, if one wants to add back-end for new architecture, then the information about

target machine is provided to GCC in the form of machine description. Machine description has three

parts:

• .md file : This file contains machine instruction patterns.

• .h file : The header file that define macros used to describe architecture of target machine.

• .c file : The C file defining functions.

The purpose of this project is to get to know about the information that is to be provided to GCC

to port new target machine, and try to find reasoning behind inclusion of that information.

1.2 Classification of machine description

The information that is needed by GCC to build compiler for any given processor can be broadly divided

into two groups:

• Machine Dependent information: This describes the architecture of processor under consideration.

It is detailed description of computational, communication and data storage elements (hardware)

of computer system, how those components interact (machine organization), and how they are

controlled (Instruction set).

– Instruction set architecture : This is the conceptual structure and functional behavior of

the target. It controls the logic design and the physical implementation on the target. It

describes the aspects of a computer architecture visible to a programmer, including the na-

tive datatypes, instructions, registers, addressing modes, memory architecture, interrupt and

exception handling, and external I/O. It determines computational characteristics of the pro-

cessor. It mainly deals with design of instruction set. The attributes needed for designing the

instruction set along with actual instruction set are included in this class. This class describes

the structure of computer seen by programmer.

– Microarchitecture : It is the set of processor design techniques used to implement the instruc-

tion set. It consists of low level details of a machine such as pipelining, memory management

systems, specialized instructions processors, buses for communication within and between

system, the design and layout of a microprocessor.

4

• Machine Independent information: This information does not directly depend upon target archi-

tecture. This may hold information that is needed by GCC, which depends upon selection of target

machine but has nothing to do with target architecture. This information can be further divided

as:

– GCC specific information

– function calling convention

– Assembly file output format.

– Layout of source language data-types.

– Runtime target specifications.

– Tool chain specific information.

Classifying the information required by GCC in this manner helps us in organizing the architectural

details of target machine in better way.

1.3 What is incremental?

It is not sufficient to organize the machine description in systematic way, because even though machine

description is organized successfully, it does not throw light on direct relation between higher level

language constructs and architectural details of machine. Hence, here we propose building the compiler

for small subset of C language, and then gradually go on increasing the scope of language supported by

our port. For this purpose, we have levelised complete C language as follows:

Level 0 : The macros and RTLs that are necessary to build the compiler. This might not compile a

single C program, but executable xgcc is generated.

Level 1 : The macros and RTLs that are necessary to perform assignment operation on integers.

Level 2 : The macros and RTLs needed for Arithmetic operations on integer data type.

Level 3 : The macros and RTLs needed for Control structure handling.

Level 4 : The macros and RTLs that are necessary for having various data types supported in machine.

Level 5 :The macros and RTLs needed for function handling. This involves designing activation record,

also.

Each level ci for source C code corresponds to level mi of machine code generated.

In incremental build process, we are trying to find out the minimal information that is to be given

by md writer in order to compile the programs written in some level i of C language, without crashing

the compiler.

1.4 Why incremental?

The purpose behind using incremental strategy in building compiler is

• To include a back end for new target machine in GCC, complete knowledge of target architecture

is required. From section 1.2, it can be seen, the information required to build complete port

for target machine is huge, and managing that at a stretch becomes difficult.Divide and conquer

strategy always helps in managing large tasks. So, this is an attempt to systematically divide the

task of md writing, so as to concentrate on smaller part of md at a time.

5

• To know the information that is absolutely necessary to support some higher level language con-

structs for specific target machine. Because of incremental structure, each construct can be handled

and observed carefully against variations in target machine.

• To extract underlying abstract machine assumed by GCC.

2 Role of md file in GCC

Here, we are trying to study role of md file, the target dependent source file, which is taken as input by

generator files, and the target dependent source code fragments are generated which get linked to build

final xgcc.

The machine description is used at three levels in generated compiler:

• To generate RTL code from gimple.

• To perform RTL to RTL transformations, during optimization passes.

• To emit assembly code corresponding to matched RTL pattern.

In this section, we will concentrate on first use of md file: to generate RTL code from gimple.

How the RTL patterns are generated.

There is list of standard RTL pattern names, which GCC recognizes at the time of RTL generation.

GCC offers flexibility to md writer of defining RTL patterns for these standard names. User can omit

some patterns’ definition, depending upon the target architecture. This makes GCC to determine at

build time, which patterns are defined, and how named patterns are generated if definition is found in

md file.

The task of generating such information is carried our by generator files. Generator files take md

file as an input, and scans it to extract desired information from it. Here is the list of files generated by

generators, which holds such information extracted from the md file. The figure 3 gives different data

structures created at the time of building compiler from MD file .

The files which are generated from .md file at the time of build and are used while GIMPLE to

RTL transformation are as follows:

• insn-codes.h : This file is generated from source file gencodes.c, which goes through the md

file, and generates insn code CODE FOR pattern-name for each named pattern definition found in

md file for target.

enum insn_code {

CODE_FOR_nop = 0,

CODE_FOR_jump = 1,

CODE_FOR_indirect_jump = 2,

:

:

:

CODE_FOR_nothing

};

• insn-output.c : This file is generated from genoutput.c file, which goes through md file,

and creates data structures insn data and insn operand data for all the define insn and

define expand patterns. The data structure insn data gives name of the function to be invoked

in order to emit insn corresponding to named pattern defined in md file.

6

struct insn_operand_data

Predicate

constraint

mode

static const struct insn_operand_data operand_data[]

struct insn_data

output

genfun

operand

const struct insn_data insn_data[]

insn-output.c

enum insn_code = {

CODE_FOR_nop = 0,

CODE_FOR_jump = 1,

CODE_FOR_indirect_jump = 2,

}

insn-codes.h

optabs.h

struct optab

code

handlers

optab_handlers

insn_code

libfunc

optab optab_table[OTI_MAX]

typedef struct optab * optab

#define add_optab (optab_table[OTI_add])

#define sub_optab (optab_table[OTI_sub])
#define mov_optab (optab_table[OTI_mov])
#define cmp_optab (optab_table[OTI_cmp])
#define cbranch_optab (optab_table[OTI_cbranch])

#define eq_optab (optab_table[OTI_eq])

#define gt_optab (optab_table[OTI_gt])

#define lt_optab (optab_table[OTI_lt])

#define ge_optab (optab_table[OTI_ge])
#define ne_optab (optab_table[OTI_ne])

#define le_optab (optab_table[OTI_le])

icode = (int) <code>_optab ->handlers[(int) <mode>].insn_code
if(icode!=CODE_FOR_nothing)
{
 x_1 = prepare_operand (icode,x_1,1,<mode>,<wide mode>,<unsigned_p>)
 x_2 = prepare_operand (icode,x_2,2,<mode>,<wide mode>,<unsigned_p>)
 :
 :
 x_i = prepare_operand (icode,x_i, i,<mode>,<wide mode>,<unsigned_p>)

 emit_insn (GEN_FCN(icode,x_1,x_2,...,x_i))
}

#define GEN_FCN(CODE) (insn_data[CODE].genfun)

insn-opinit.c

mov_optab->handlers[SImode].insn_code=
 CODE_FOR_movsi

add_optab->handlers[SImode].insn_code=
 CODE_FOR_addsi

cmp_optab->handlers[SImode].insn_code=
 CODE_FOR_cmpsi

Figure 3: Use of MD file in GIMPLE to RTL conversion.

const struct insn_data insn_data[] =

{

/* /home/sameera/myExperiments/gcc-4.0.2/gcc/config/myToy/myToy.md:4 */

{

"nop",

#if HAVE_DESIGNATED_INITIALIZERS

{ .single =

#else

{

#endif

"NOP\t\t!In define nop.",

#if HAVE_DESIGNATED_INITIALIZERS

},

#else

0, 0 },

#endif

(insn_gen_fn) gen_nop,

&operand_data[0],

0,

7

0,

0,

1

},

:

:

:

}

• insn-emit.c : This file is generated from genemit.c. This file contains definition of all gen*

functions which generate RTL pattern to be emitted for specific named pattern, as per defined by

md writer.

• insn-extract.c : This is the file generated by genextract.c which extracts operands from the

pattern.

• insn-opinit.c : This file is generated by genopinit.c file. It initializes optab table.

add_optab->handlers[SImode].insn_code = CODE_FOR_addsi3;

mov_optab->handlers[SImode].insn_code = CODE_FOR_movsi;

cbranch_optab->handlers[SImode].insn_code = CODE_FOR_cbranchsi4;

bcc_gen_fctn[NE] = gen_bne;

:

:

:

How the RTL patterns are emitted.

The figure 3 also gives how the information generated by generator files is used in order to emit RTL

pattern matching to gimple code. optabs.h is the existing file, which defines array optab table that

holds information about standard patterns. This file associates standard names with each entry in

optab table. This association is machine independent, and hardcoded. the field insn code plays

important role in RTL pattern emission. This is the field which tells programmer if the pattern (s)he

is looking for is defined by md writter or not. If the pattern is not defined, then this field is set to

CODE FOR nothing at the time of building the compiler by function new optab in existing file optabs.c.

If the pattern is defined however, the field is set to have value CODE FOR pattern-name by generated file

insn-opinit.c as disussed in previous section.

The macro definitions in optabs.h file are like

#define add_optab (optab_table[OTI_add])

#define mov_optab (optab_table[OTI_mov])

#define cbranch_optab (optab_table[OTI_cbranch])

#define eq_optab (optab_table[OTI_eq])

:

:

:

which are then used to access appropriate optab table entry whenever needed.

The file optabs.h also defines the macro GEN FCN which invokes the function to emit the RTL

pattern associated with the named pattern under consideration. Thus, though name of the function

emitting RTL pattern is not hard-coded, the macro GEN FCN can be used by the existing sorce files.

8

At the time of compiling input programs using built system, tree expand cfg is the function

which expands basic blocks in GIMPLE to RTL. This function handles control transferring statements

and other statements separately. If the GIMPLE code under consideration is control transfer statement,

it eventually invokes the function emit cmp and jump insn otherwise it finally calls driving function

expand expr real 1.

The function expand expr real 1 handles all basic GIMPLE codes. If the GIMPLE expression

is not having target, then that expression might be dead, and need not be evaluated at all. But, there

might be few operands in that expression, which may cause side-effects. So, in such case, just the

operands causing side-effect are translated into RTL. Otherwise, it examines the code of GIMPLE tree,

and invokes expanders to emit RTLs appropriate to those codes. These expander functions use the

macro GEN FCN to emit desired RTL pattern.

3 Levelised C and its correlation with md

3.1 level0

In level 0, no C language construct is supported. In this level, aim is to find the minimal information

that is necessary to build the compiler successfully. The only input program that gets compiled using

xgcc generated by this port is

void main()

{

}

3.1.1 Why some information should go to machine description?

To add new port for some target machine in GCC, the information about target architecture must be

provided to GCC, through machine description. If the basic features of the target are not given to

compiler, it fails to build. The basic features include

• Register set.

• Storage layout.

• Activation record design.

• Addressing Modes.

• Assembly file output format.

along with some miscellaneous parameters.

The CODE FOR * is insn code for standard name pattern. When optabs.c is executed at the time

of building of compiler, it refers to CODE FOR indirect jump which will not be defined if that RTL is

not written in md file. Hence, it flashes error at build time.

The source files cfgrtl.c, cse.c,expmed.c which contribute in cc1, use the function gen jump

to generate insn corresponding to jump instruction which is generated by generator file genemit.c. If

this pattern is not defined in machine description, the compiler, fails to build.

Hence, the RTL patterns indirect jump and jump are defined in level0 md file for ‘minMd’.

The GCC documentation says that NOP insn is also necessary, but the compiler gets built success-

fully without that pattern.

9

3.1.2 The information that goes in machine description

There are only 2 RTLs necessary for target compiler to ‘build’ successfully:

1. JUMP : This standard pattern gives a jump inside a function. Operand 0 is the label ref of the

label to jump to. This pattern name is mandatory on all machines. This pattern is defined as

follows:

(define_insn "jump"

[(set (pc) (label_ref (match_operand 0 "" "")))]

""

{

return "JMP\\t%l0\\t\\t!In define jump.";

}

)

This RTL gives unconditional jump instruction for intermediate abstract machine.

2. INDIRECT JUMP : This standard pattern name gives instruction to jump to an address which is

operand 0. This pattern name is mandatory on all machines. The pattern is defined as follows:

(define_insn "indirect_jump"

[(set (pc) (match_operand:SI 0 "register_operand" ""))]

""

"JMPIN\\t%0\\t\\t!In define indirect jump."

)

The macros that define target architecture that must be specified to build the compiler successfully

are:

• Register Usage

– Basic Characteristics of registers :

∗ FIRST PSEUDO REGISTER : This macro gives total number of registers in target ma-

chine. ‘MinMd’ has 16 general purpose registers and 16 floating point registers. Hence,

first pseudo register will be numbered as 32 0 to 31 being hardware registers.

#define FIRST_PSEUDO_REGISTER \

32

∗ FIXED REGISTERS : This macro gives the hardware registers which have fixed func-

tionality hence, which cannot be allocated by register allocator. The registers fixed in

‘MinMd’ are:

0-Return value,

1-Struct return,

14-Frame pointer,

15-Stack pointer.

Hence definition of this macro is

#define FIXED_REGISTERS \

{1,1,0,0,0,0,0,0, \

0,0,0,0,0,0,1,1, \

0,0,0,0,0,0,0,0, \

0,0,0,0,0,0,0,0}

10

∗ CALL USED REGISTERS : Function call may modify contents of some registers. Hence,

if those registers are used to store data across function boundaries, the data contained in

those registers, might get lost. Hence, GCC must know the registers which get clobbered

across function calls. This macro is used to list registers, clobbered because of function

call. All fixed registers must also be call clobbered. ‘MinMd’ does not have any call

clobbered register than fixed registers. Hence, this macro is defined as follows:

#define CALL_USED_REGISTERS \

{1,1,0,0,0,0,0,0, \

0,0,0,0,0,0,1,1, \

0,0,0,0,0,0,0,0, \

0,0,0,0,0,0,0,0}

– How values fit in registers :

∗ HARD REGNO NREGS : This macro gives number of consecutive hard registers required

to hold value of given mode, starting from register REGNO. On most of the processors,

the size of registers is same. Hence this is the definition used by most of the processors.

But if the size of registers in register set is different, then depending upon REGNO, the

number of registers required to hold data of mode MODE will be computed.

#define HARD_REGNO_NREGS(REGNO, MODE) \

((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \

/ UNITS_PER_WORD)

∗ HARD REGNO MODE OK : This macro returns 1 if it is permissible to hold value of

mode MODE in register REGNO. If data is real and size of data is greater than word size,

then 2 consecutive floating point registers on even boundary are required to hold data. If

the real data is of size less than unit word, then any floating point register will be allowed.

Similarly, for integer data with size greater than word size, will need 2 consecutive general

purpose registers aligned on even boundaries. And any general purpose register is suffice

to hold integer value smaller than word size. The function hard regno mode ok handles

all these cases.

#define HARD_REGNO_MODE_OK(REGN, MODE) \

hard_regno_mode_ok (REGN, MODE)

hard_regno_mode_ok (int REGN, enum machine_mode MODE)

{

if(GET_MODE_CLASS(MODE) == MODE_FLOAT)

{

if(GET_MODE_SIZE(MODE) > UNITS_PER_WORD)

{

if(REGN >= 16 && (REGN % 2) == 0)

/*Floating point data with size = 64 bits.*/

return IITB_YES;

return IITB_NO;

}

else

{

if(REGN >= 16)

return IITB_YES;

return IITB_NO;

}

11

}

else

{

if(GET_MODE_SIZE(MODE) >= UNITS_PER_WORD)

/*Double Integer value.*/

{

if(REGN >= 0 && REGN <= 15 && (REGN % 2) == 0)

return IITB_YES;

return IITB_NO;

}

else

{

if(REGN >= 0 && REGN <= 15)

return IITB_YES;

return IITB_NO;

}

}

}

∗ MODES TIEABLE P : This macro gives C expression that is nonzero if a value of mode

MODE1 is accessible in mode MODE2 without copying. This is is valid in ‘MinMd’ only

if both modes are same or both modes are from same mode class and MODE1 is of smaller

size.

#define MODES_TIEABLE_P(MODE1, MODE2) \

modes_tieable_p (MODE1,MODE2)

int

modes_tieable_p(enum machine_mode MODE1, enum machine_mode MODE2)

{

if((MODE1 == MODE2)

|| (GET_MODE_SIZE(MODE1) <= GET_MODE_SIZE(MODE2)

&& GET_MODE_CLASS(MODE1) == GET_MODE_CLASS(MODE2)))

return IITB_YES;

return IITB_NO;

}

• Register Classes There may be some restrictions on use of registers in some instructions. The

registers can be classified on the basis of their use in the instructions. The ‘register class’ divides

register set according to their use. Once classified, one can specify register classes that are allowed

as operands to particular instruction patterns. In the our processor, the basic classes considered

are NO REGS which indicates that no register can be used in the instruction under consideration.

ALL REGS, lists all registers in the processor, and indicates that the instruction can use any register.

GENERAL REGS lists general purpose registers, indicating that few instructions can use only registers

in this class and cannot use special registers for that purpose. Moreover we have INDEX REGS,

BASE REGS and FLOAT REGS which gives registers that can be used for specific operation.

Usage of registers in different addressing modes can be specified using different macros coming

under this catagory.

– enum reg class: An enumerated type that must be defined with each register class name.

NO REGS must be first. ALL REGS must be the last register class, followed by one more enumeral

12

value, LIM REG CLASSES, which is not a register class but rather tells how many classes are

there. In our example, we are assuming 6 register classes, dividing the register set into index

registers, base registers, floating point registers and general purpose registers.

enum reg_class \

{\

NO_REGS,\

INDEX_REGS,\

BASE_REGS,\

GENERAL_REGS,\

FLOAT_REGS,\

ALL_REGS,\

LIM_REG_CLASSES \

};

– N REG CLASSES : This macro gives number of register classes. The hardware registers are

managed as various classes of registers. This information can be used for register usage in var-

ious addressing modes. Moreover this information can be used to have constraints on registers

used while using some assembly instructions. By default, this is LIM REG CLASSES.

#define N_REG_CLASSES LIM_REG_CLASSES

– REG CLASS NAMES : This macro gives the register class names in the sequence given in

enum reg class. these names are used in writing debugging dumps.

#define REG_CLASS_NAMES \

{\

"NO_REGS",\

"INDEX_REGS",\

"BASE_REGS",\

"GEN_REGS",\

"FLOAT_REGS",\

"ALL_REGS"\

}

– REG CLASS CONTENTS : This macro gives registers in specific register class. nth entry in

this array gives bitmask for contents of nth class. We have decided to have Registers from

0 to 7 as index registers, from 8 to 15 as base registers, all index and base registers can be

used as general purpose registers,and registers from 16 to 31 as single prcision floating point

registers. Hence this macro is defined as

#define REG_CLASS_CONTENTS \

{0x00000000,0x000000ff,0x0000ff00,0x0000ffff,0xffff0000,0xffffffff}

If the number of registers is larger than size of integer (on host machine), then intgers are

replaced by set of integers per register class.

– REGNO REG CLASS : This macro gives register class in which certain register lies. If register

is member of more than one classes, then name of smaller class is returned.

#define REGNO_REG_CLASS(REGNO) \

regno_reg_class(REGNO)

enum reg_class

13

regno_reg_class(int REGN)

{

if(is_index_reg(REGN))

return INDEX_REGS;

if(is_base_reg(REGN))

return BASE_REGS;

if(is_float_reg(REGN))

return FLOAT_REGS;

if(REGN<16)

return GENERAL_REGS;

return NO_REGS;

}

– BASE REG CLASS : This macro gives name of the class to which a valid base register must

belong. We have seperate BASE REGs class for base registers.

#define BASE_REG_CLASS \

BASE_REGS

– INDEX REG CLASS : This macro gives name of the class to which a valid index register

must belong. We have seperate INDEX REGs class for index registers.

#define INDEX_REG_CLASS \

INDEX_REGS

– REG CLASS FROM LETTER : This macro defines constraint letter for each register class.

If the letter is one of the character defiend by this function, then corresponding register class

is returned, else, the macro returns NO REGS. Constraint characters are used at the time of

RTL matching and assembly code emission.

#define REG_CLASS_FROM_LETTER(ch)\

reg_class_from_letter (ch)

enum reg_class

reg_class_from_letter (char ch)

{

switch(ch)

{

case ’b’:return BASE_REGS;

case ’x’:return INDEX_REGS;

case ’f’:return FLOAT_REGS;

}

return NO_REGS;

}

– REGNO OK FOR BASE P : This macro gives a C expression which is nonzero if the register

number given is suitable for use as a base register in operand addresses. In this example, if

predicate is base reg defined by us is true, then the register can be used as base register,

otherwise it cannot be used as base register.

#define REGNO_OK_FOR_BASE_P(REGNO)\

regno_ok_for_base_p (REGNO)

14

int

regno_ok_for_base_p (int REGN)

{

if(is_base_reg(REGN)

|| (REGN >= FIRST_PSEUDO_REGISTER

&& is_base_reg(reg_renumber[REGN])))

return IITB_YES;

return IITB_NO;

}

– REGNO OK FOR INDEX P :This macro gives a C expression which is nonzero if the register

number given is suitable for use as an index register in operand addresses. In this example, if

predicate is index reg defined by us is true, then the register can be used as base register,

otherwise it cannot be used as index register.

#define REGNO_OK_FOR_INDEX_P(REGNO)\

regno_ok_for_index_p (REGNO)

int

regno_ok_for_index_p (int REGN)

{

if(is_index_reg(REGN)

|| (REGN >= FIRST_PSEUDO_REGISTER

&& is_index_reg(reg_renumber[REGN])))

return IITB_YES;

return IITB_NO;

}

– PREFERRED RELOAD CLASS :A C expression that places additional restrictions on the

register class to use when it is necessary to copy value ‘X’ into a register in class ‘CLASS’.

We don’t put any restriction on the register class usage, hence, we assume default definition.

#define PREFERRED_RELOAD_CLASS(X, CLASS) \

CLASS

– CLASS MAX NREGS : A C expression for the maximum number of consecutive registers of

class CLASS needed to hold a value of mode MODE.

#define CLASS_MAX_NREGS(CLASS, MODE) \

((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1)/UNITS_PER_WORD)

• Stack layout and Calling convensions The macros under this class give information about

stack layout and actions to be taken during function calls and returns. We can specify register

pointing to stack, a frame (i.e. activation record), direction of growth for stack, position of local

variables and function arguments in activation record relative to the frame or stack pointers.

– Basic stack layout :

∗ STACK GROWS DOWNWARD : Define this macro if pushing a word onto the stack

moves the stack pointer to a smaller address. This macro is checked in #ifdef. So, if this

macro is not defined, it is assumed that the stack growth is in upward direction.

#define STACK_GROWS_DOWNWARD

15

∗ FRAME GROWS DOWNWARD : Define this macro if the addresses of local variable

slots are at negative offsets from the frame pointer. If this macro is not defined, it is

assumed that the local variables are at positive offset from frame pointer.

#define FRAME_GROWS_DOWNWARD

∗ ARGS GROW UPWARD : This macro does not have any significance as such. The

macro supported by GCC is ARGS GROW DOWNWARD. But for our stack design, that is not

true. Hence, to indecate that, we have defined this new macro.

#define ARGS_GROW_UPWARD

∗ STARTING FRAME OFFSET : This macro gives offset from the frame pointer to the

first local variable slot to be allocated. In our actvation record design, the local frame is

pushed on return address and dynamic chain address. Hence, we add offset of 2 words in

frame pointer to address first local variable slot.

#define STARTING_FRAME_OFFSET \

starting_frame_offset ()

int

starting_frame_offset ()

{

unsigned int num_words = 0;

int i;

num_words += 1;

num_words += 1;

return (-1 * num_words * UNITS_PER_WORD);

}

∗ STACK POINTER OFFSET :Offset from the stack pointer register to the first location

at which outgoing arguments are placed. If not specified, the default value of zero is used.

This is the proper value for most machines.

#define STACK_POINTER_OFFSET \

0

∗ FIRST PARM OFFSET :Offset from the argument pointer register to the first argu-

ment’s address. On some machines it may depend on the data type of the function.

#define FIRST_PARM_OFFSET(FUN)\

0

– Registers Used to access the Stack Frame :

∗ STACK POINTER REGNUM :This macro gives register number of dedicated stack pointer

register in target machine which must also be a fixed register specified through FIXED REGISTERS

#define STACK_POINTER_REGNUM \

15

∗ FRAME POINTER REGNUM : The register number of the frame pointer register which

is used to access automatic variables in the stack frame.

The macro FRAME POINTER REGNUM must be defined by every processor. But whether

to use the register FRAME POINTER REGNUM to access the local variables of a function or

eliminate it depends upon definition of macro FRAME POINTER REQUIRED.

#define FRAME_POINTER_REGNUM \

14

16

∗ ARG POINTER REGNUM : The register number of the arg pointer register which is

used to access the function’s argument list. It is same as

FRAME POINTER REGNUM in our processor.

#define ARG_POINTER_REGNUM \

FRAME_POINTER_REGNUM

∗ FRAME POINTER REQUIRED :A C expression which is nonzero if a function must

have and use a frame pointer. This expression is evaluated in the reload pass. If its value

is nonzero the function will have a frame pointer. If dynamic stack allocation is there,

then there is no way in which frame pointer can be eliminated. But, otherwise, if this

macro holds non-zero value, compiler tries to address each stack element with the help

of stack pointer.

#define FRAME_POINTER_REQUIRED \

1

∗ INITIAL FRAME POINTER OFFSET : A C statement to store in the variable DEPTH

the difference between the frame pointer and the stack pointer values immediately after

the function prologue.

#define INITIAL_FRAME_POINTER_OFFSET(DEPTH)\

DEPTH=initial_frame_pointer_offset (DEPTH)

int

initial_frame_pointer_offset (int DEPTH)

{

int size,i;

size = get_frame_size() + 2 * UNITS_PER_WORD;

for(i=0;i<FIRST_PSEUDO_REGISTER;i++)

{

if(IITB_LIVE_REG_CONDITION(i))

{

size = size + UNITS_PER_WORD;

}

}

return (size);

}

According to our stack design, the frame pointer points to base of new activation record,

and stack pointer points to top of the stack. Hence, the difference between frame pointer

and stack pointer values is sizeof(register save area) + sizeof(local frame) + starting frame

offset.

– Passing function arguments :

∗ ACCUMULATE OUTGOING ARGS : This is a C expression. If nonzero, the maximum

amount of space required for outgoing arguments will be computed and placed into the

variable current function outgoing args size. In our processor, this value is set to

0, as we don’t want to accumulate arguments, instead pass the arguments on the stack,

as and when function is invoked.

#define ACCUMULATE_OUTGOING_ARGS \

0

∗ RETURN POPS ARGS : This is again C expression that should indicate the number of

bytes of its own arguments that a function pops on returning, or 0 if the function pops

17

no arguments and the caller must therefore pop them all after the function returns. This

is true for our case. Hence, we set this macro to have value 0.

#define RETURN_POPS_ARGS(FUN, TYPE, SIZE) \

0

∗ FUNCTION ARG : This is C expression that controls whether a function argument is

passed in a register, and which register. We are passing all the arguments on stack, hence

the macro should have value 0.

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \

0

∗ FUNCTION ARG REGNO P : A C expression that is nonzero if regno is the number of

a hard register in which function arguments are sometimes passed.

#define FUNCTION_ARG_REGNO_P(r) \

0

∗ CUMULATIVE ARGS : A C type for declaring a variable that is used to summerise all

information about previous arguments in FUNCTION ARG.

#define CUMULATIVE_ARGS \

int

∗ INIT CUMULATIVE ARGS : This is the C code fragment which initialises the variable

CUM at the beginning of argument list.

#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, NAMED_ARGS) \

{\

CUM = 0;\

}

∗ FUNCTION ARG ADVANCE : This macro gives a C statement to update the summa-

rizer variable cum to advance past an argument in the argument list.

#define FUNCTION_ARG_ADVANCE(cum, mode, type, named) \

cum++

– How Scalar Function Values Are Returned :

∗ FUNCTION VALUE : A C expression to create an RTX representing the place where

function returns a value of data type VALTYPE. As the value can be returned in return-

register, this gives us the RTX which sets the value returned by function to fixed register

Return-pointer.

#define FUNCTION_VALUE(valtype, func)\

function_value()

rtx

function_value ()

{

//Return register is register 0 when value is of type SImode.

return (gen_rtx_REG(SImode,0));

}

∗ LIBCALL VALUE : A C expression to create an RTX representing the place where a

library function returns a value of mode mode. If the precise function being called is

known, func is a tree node (FUNCTION DECL) for it; otherwise, func is a null pointer.

#define LIBCALL_VALUE(MODE) \

function_value()

18

∗ FUNCTION VALUE REGNO P : A C expression that is nonzero if regno is the number

of a hard register in which the values of called function may come back.

#define FUNCTION_VALUE_REGNO_P(REGN) \

((REGN) == 0)

• Addressing modes

– CONST OK FOR LETTER P : This macro gives constraint characters for constant values.

If the value lies in specified range for some character, the macro returns True, False otherwise.

#define CONST_OK_FOR_LETTER_P(VALUE, CH)\

const_ok_for_letter_p (VALUE, CH)

int

const_ok_for_letter_p(int VALUE,char CH)

{

switch(CH)

{

case ’I’:if((unsigned)VALUE < 0x256) return IITB_YES;

return IITB_NO;

case ’J’:if((unsigned)VALUE < 0x1024) return IITB_YES;

return IITB_NO;

case ’K’:if((unsigned)VALUE < 0x8192) return IITB_YES;

return IITB_NO;

}

}

– CONST DOUBLE OK FOR LETTER P :A C expression that defines the machine-dependent

operand constraint letters that specify particular ranges of const double values (G or H).

#define CONST_DOUBLE_OK_FOR_CONSTRAINT_P(op,ch,p) \

1

– CONST DOUBLE OK FOR CONSTRAINT P :A C expression that defines the machine-

dependent operand constraint letters that specify particular ranges of const double values (G

or H).

– CONSTANT ADDRESS P : A C expression that is 1 if the RTX x is a constant which is a

valid address.

#define CONSTANT_ADDRESS_P(X) \

constant_address_p(X)

int

constant_address_p (rtx X)

{

return (CONSTANT_P(X) &&

GET_CODE(X)!=CONST_DOUBLE);

}

In case of ‘minMd’, if the RTX is constant, and not double, we accept it as valid address.

19

– MAX REGS PER ADDRESS : A number, the maximum number of registers that can appear

in a valid memory address.

#define MAX_REGS_PER_ADDRESS \

2

This number depends upon addressing modes supported by the processor. We support all the

addressing modes, including register indirect addressing mode, base-index addressing mode,

base displacemet addressing mode, hence maximum number of registers required are 2.

– GO IF LEGITIMATE ADDRESS : A C compound statement with a conditional goto label;

executed if x (an RTX) is a legitimate memory address on the target machine for a memory

operand of mode mode.

#ifdef REG_OK_STRICT

#define GO_IF_LEGITIMATE_ADDRESS(mode,x,label) \

{\

if (go_if_legitimate_address1(mode,x))\

goto label;\

}

#else

#define GO_IF_LEGITIMATE_ADDRESS(mode,x,label) \

{\

if (go_if_legitimate_address2(mode,x))\

goto label;\

}

#endif

This macro has 2 varients: strict varient and non-strict varient. The strict variant is used in

the reload pass. It must be defined so that any pseudo-register that has not been allocated

a hard register is considered a memory reference. If the address is valid base register or if

address is addition of base register and index register or base register and constant, then this

macro returns True, False otherwise.

– REG OK FOR BASE P :A C expression that is nonzero if x is valid for use as a base register.

This macro also has strict and nonstrict varients.

#ifdef REG_OK_STRICT

#define REG_OK_FOR_BASE_P(x) \

reg_ok_for_base_p1(x)

#else

#define REG_OK_FOR_BASE_P(x) \

reg_ok_for_base_p2(x)

#endif

– REG OK FOR INDEX P ::A C expression that is nonzero if x is valid for use as an index

register. This macro also has strict and nonstrict varients.

#ifdef REG_OK_STRICT

#define REG_OK_FOR_INDEX_P(x) \

reg_ok_for_index_p1(x)

#else

#define REG_OK_FOR_INDEX_P(x) \

reg_ok_for_index_p2(x)

#endif

20

– LEGITIMIZE ADDRESS : A C compound statement that attempts to replace x with a valid

memory address for an operand of mode mode. win will be a C statement label elsewhere in

the code; the macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

#define LEGITIMIZE_ADDRESS(x,oldx,mode,win) \

{\

rtx Samop1;\

Samop1=legitimize_address(x,oldx,mode);\

if(memory_address_p(mode,Samop1)){\

x=Samop1;\

goto win;}\

}

Here, if address is represented as addition of 2 operands, then both operands are checked, and

if they are not legitimate, then those are forced in some register, to make them legitimate.

– LEGITIMATE CONSTANT P : A C expression that is nonzero if x is a legitimate constant

for an immediate operand on the target machine.

#define LEGITIMATE_CONSTANT_P(x) \

legitimate_constant_p(x)

int

legitimate_constant_p (rtx X)

{

return (GET_CODE(X)!= CONST_DOUBLE);

}

– MOVE MAX : This macro gives maximum number of bytes that can be moved

#define MOVE_MAX \

4

– SLOW BYTE ACCESS :Define this macro as a C expression which is nonzero if accessing

less than a word of memory is no faster than accessing a word of memory, i.e., if such access

require more than one instruction or if there is no difference in cost between byte and (aligned)

word loads.

#define SLOW_BYTE_ACCESS 0

– GO IF MODE DEPENDENT ADDRESS : If the memory address addr has different mean-

ings for different modes, then goto label is executed. In this processor, there is no such

condition, hence, unconditionally label is visited.

#define GO_IF_MODE_DEPENDENT_ADDRESS(addr,label) \

goto label;

• Storage Layout

– BITS BIG ENDIAN : This macro is set to 1 if most significant bit has lowest value. As this

level doesn’t support bit-wise operations, value of this macro is not significant, but this macro

must be defined. I have set this macro to have value 1.

21

– BYTES BIG ENDIAN : This macro is set to 1 if most significant byte in a word holds lowest

number. This is not true in our case, i.e larger address holds higher order bits of data. Hence,

this macro holds value 0 in myToy.

– WORDS BIG ENDIAN : This macro is set to have the value 1 if, in a multiword object, the

most significant word has the lowest number. This applies to both memory locations and

registers. This is true in our case, so we set this macro to 1 in myToy.

– BITS PER UNIT : This macro gives number of bits in addressable meory unit. This macro

defaults to 8.

#define BITS_PER_UNIT \

8

– BITS PER WORD : This macro gives number of bits in single word. I am assuming the word

size to be 32 on my machine. This allows me to define all patterns in md file in SImode.

#define BITS_PER_WORD \

32

– UNITS PER WORD : This is sort of redundant macro. Because its value is always

BITS PER WORD/BITS PER UNIT. But this is mandetory, hence defined to have value 4.

#define UNITS_PER_WORD \

4

– PARM BOUNDARY : Normal alignment required while passing parameters for function on

stack (in bits).

#define PARM_BOUNDARY \

32

– STACK BOUNDARY : This macro gives minimum boundary enforced by hardware on stack

pointer. On myToy this boundary is same as PARM BOUNDARY.

#define STACK_BOUNDARY \

32

– FUNCTION BOUNDARY : This macro gives alignment needed by function entry point, in

bits. I have considered all alignmets to be 32.

#define FUNCTION_BOUNDARY \

32

– BIGGEST ALIGNMENT : This gives the maximum alignment that any data item needs.

This is also 32 bits for my hypothtical machine.

#define BIGGEST_ALIGNMENT \

32

– STRICT ALIGNMENT : This macro is defined to be the value 1 if instructions will fail to

work if given data not on the nominal alignment. Even though this is not very common

feature, for simplicity I have assumed strict alignment.

#define STRICT_ALIGNMENT \

1

22

• targetm variable : This is the structure which contains pointers to the functions and data

describing target machine. This variable must be defined in <machine>.c file. The definition of the

structure can be found in target.h file. The file target-def.h defines macro TARGET INITIALIZER

which is used to initialize this structure to default function pointers. We can change this mapping

by overriding definitions of default macros. There are only 2 macros from this structure, which

must be defined as default values for those macros are not available, which makes compiler to crash,

if those definitions are not given by md writer. Care must be taken however, while defining macros

hooked into targetm; these macros must be defined in <machine>.c file and not in <machine>.h

file. Otherwise the desired definitions of these macros get overridden by default definitions.

• TARGET STRUCT VALUE RTX : This macro gives location of structure value address2. I have

dedicated a register to hold structure value address. so, my definition for this macro is:

#undef TARGET_STRUCT_VALUE_RTX

#define TARGET_STRUCT_VALUE_RTX \

target_struct_value_rtx

rtx

target_struct_value_rtx(tree fndecl, int incoming)

{

//register 1 is used to return pointer to

//large memory locations.

return gen_rtx_REG(Pmode, 1);

}

• TARGET ASM GLOBALIZE LABEL : This macro emits commands that will make label global,

i.e available for reference from all files. I have attached ”gl” to original label to indicate that label

is global.

#undef TARGET_ASM_GLOBALIZE_LABEL

#define TARGET_ASM_GLOBALIZE_LABEL \

target_asm_globalize_label

void

target_asm_globalize_label(FILE *stream, const char *name)

{

fprintf(stream,"gl%s",name);

return;

}

• Runtime Target Specification

– TARGET SWITCHES : This macro defines names of command options to set and clear bits

in target flags. This macro is of no use, when the compiler is used to generate assembly code.

Hence, this macro is set to have insignificant information.

#define TARGET_SWITCHES \

{"", 0, ""}

2The address of block of memory where return value of structure is stored, is called structure value address

23

– TARGET VERSION : This macro defines stream to display on stderr describing specific

target machine choice.

fprintf(stderr,"IIT Bombay, MyToy");

• Assembly File Output Formating

– Output of assembler instructions :

∗ PRINT OPERAND : A C compound statement to output to stdio stream stream the

assembler syntax for an instruction operand x. x is an RTL expression.Code is a value

that can be used to specify one of several ways of printing the operand. It is used when

identical operands must be printed differently depending on the context. code comes

from the ‘%’ specification that was used to request printing of the operand in .md file.

#define PRINT_OPERAND(STREAM, X, CODE) \

print_operand(STREAM, X, CODE)

∗ PRINT OPERAND ADDRESS : A C compound statement to output to stdio stream

stream the assembler syntax for an instruction operand that is a memory reference

whose address is x. This macro must handle all the addressing modes supported by

GO IF LEGITIMATE ADDRESS.

#define PRINT_OPERAND_ADDRESS(STREAM, X) \

print_operand_address(STREAM, X)

∗ REGISTER NAMES : This macro gives the names by which the registers in target ma-

chine are known to assembler. This macro is defined as

#define REGISTER_NAMES \

{"RET","%r1","%r2","%r3","%r4","%r5","%r6","%r7", \

"%r8","%r9","%r10","%r11","%r12","%r13","SP","FP", \

"%f0","%f1","%f2","%f3","%f4","%f5","%f6","%f7", \

"%f8","%f9","%f10","%f11","%f12","%f13","%f14","%f15" \

}

– Assembly output and Generation of Labels :

∗ ASM GENERATE INTERNAL LABEL : A C statement to store into the string string

a label whose name is made from the string prefix and the number num.

#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \

asm_generate_internal_label(STRING, PREFIX, NUM)

void

asm_generate_internal_label(char *STRING,char *PREFIX,int NUM)

{

sprintf(STRING,"*%s%d", PREFIX,NUM);

}

∗ ASM OUTPUT INTERNAL LABEL : A C statement to output to the stdio stream

stream a label whose name is made from the string prefix and the number num.

#define ASM_OUTPUT_INTERNAL_LABEL(STREAM, PREFIX) \

asm_output_internal_label(STREAM, PREFIX)

void

asm_output_internal_label(FILE *STREAM,char *PREFIX)

{

24

fprintf(STREAM,"%s :",PREFIX);

}

– Overall framework of Assembly :

∗ TEXT SECTION ASM OP : This is C expression whose value is a string, including

spacing, containing the assembler operation that should precede instructions and read-

only data.

#define TEXT_SECTION_ASM_OP \

".text"

∗ DATA SECTION ASM OP : This is C expression whose value is a string, including

spacing, containing the assembler operation to identify the following data as writable

initialized data.

#define DATA_SECTION_ASM_OP \

".data"

• Miscellaneous Parameters

• TRULY NOOP TRUNCATION :A C expression which is nonzero if on this machine it is safe to

”convert” an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller than INPREC)

by merely operating on it as if it had only OUTPREC bits.

#define TRULY_NOOP_TRUNCATION(in,out) \

1

• Pmode :An alias for the machine mode for pointers. The pointers are of mode SImode in ‘minMd’.

#define Pmode SImode

• FUNCTION MODE :An alias for the machine mode used for memory references to functions being

called, in ‘call’ RTL expressions. It is QImode for ‘minMd’.

#define FUNCTION_MODE SImode

• CASE VECTOR MODE :An alias for a machine mode name. This is the machine mode that

elements of a jump-table should have.

#define CASE_VECTOR_MODE SImode

• DEFAULT SIGNED CHAR : This macro is set to one if type char is considered as signed by

default. This is not the case, in our processor, hence, set to value 0.

#define DEFAULT_SIGNED_CHAR 0

• TARGET CPU CPP BUILTINS :This function-like macro expands to a block of code that defines

built-in preprocessor macros and assertions for the target cpu, using the functions builtin define,

builtin define std and builtin assert. I haven’t understood use of this macro, so I have de-

fined this macro so as to have the functions stated in document.

#define TARGET_CPU_CPP_BUILTINS()\

do \

{ \

25

builtin_define_std ("myToy"); \

builtin_assert ("cpu=myToy"); \

} \

while (0)

• HAS INIT SECTION : If this macro is defined, then main does not call main function. As this

machine description will support level 0 language features, it will not have call instruction, which

will make compiler to fail even for simple program like

void main()

{

}

which will not be correct. Hence, This macro is defined even though it is not one of the *necessary*

macros in minimal set of macros.

• Generating Code For Profiling

– FUNCTION PROFILER : this is C statement or compound statement to output to file some

assembler code to call the profiling subroutine mcount.

#define FUNCTION_PROFILER(file,lab) \

function_profiler(file,lab)

void

function_profiler

(asm_file, labelno)

FILE *asm_file;

int labelno;

{

fprintf (asm_file, "\t");

fprintf (asm_file, "call\t _mcount");

fprintf (asm_file, "\n");

}

• Trampolines For Nested Functions

– INITIALIZE TRAMPOLINE : This macro is used to initialize various parts of trampoline.

As I am not supporting nested functions, may be trampolines will not prove necessary to me.

But definition of this macro is neccessary. Hence I have defined this macro as

#define INITIALIZE_TRAMPOLINE \

initialize_trampoline(a,b,c)

void

initialize_trampoline()

{

printf("This is trampoline body.");

return;

}

26

– TRAMPOLINE SIZE : This gives a C expression for the size in bytes of the trampoline, as

an integer.

#define TRAMPOLINE_SIZE 32

3.2 level1

Level 1 handles the assignment operations on integer data. So, the patterns are added to support

assignment operation.

3.2.1 Mapping from modify expr to movm

As discussed in section 1.1, each high level construct should be mapped to set of semantically equivalent

intermediate language statements and this association must be known to the compiler at build time.

The standard pattern names are listed in existing source file optabs.h along with maximum number of

operands the intermediate instruction can have. The mapping of tree node and the RTL pattern name

is given by a function in expr.c depending upon the operands of the tree-node. Thus, when a tree-node

is found in the tree dump of high level language program, the pattern associated with mapped name is

emitted to generate intermediate code.

the assignment operation in C is translated to modify expr when represented as a parse tree. GCC

associates standard name movm with MODIFY EXPR. This association is hardcoded in the driving function

expand expr real 1. It first gets lhs and rhs of assignment statement, and then invokes the function

expand assignment as shown in the snippet given below by passing lhs and rhs as parameters.

case MODIFY_EXPR:

tree lhs = TREE_OPERAND (exp, 0);

tree rhs = TREE_OPERAND (exp, 1);

gcc_assert (ignore);

://The code here is for future developements,

://and in current gcc version, it is not visited.

://Hence, it is removed here for simplicity in

://explaining MODIFY_EXPR to movm conversion.

expand_assignment (lhs, rhs);

return const0_rtx;

The figure ??ig1 gives the hierarchy of functions called at the time of converting MODIFY EXPR into

movm RTL pattern. The function expand assignment handles assignment of structure components,

array elements, call to functions, and other assignments seperately. But the function it invokes to

actually perform move operation is the function store expr.

The function store expr gets 3 parameters: the source expression, the target RTL in which the

expression is to be stored, and a flag. First the source expression is converted into RTL using the function

expand expr real. It then emits the appropriate ‘move’ instruction to move sorce to target.

The function emit move insn checks whether the operands are memory operands or not, and if

they are, then checks whether the memory addresses are legitimate or not. If the addresses are not

legitimate, the memory is legitimized, and then final emit move insn 1 function is invoked to emit the

instruction.

3.2.2 What goes in Level 1?

At this level, the pattern is added to support assignment operation. The standard name to define

pattern for assignment operation is movm. This instruction pattern moves data from operand 1 to

27

expand_assignment

store_expr

emit_move_insn

emit_move_insn_1

Figure 4: Process of converting from GIMPLE to RTL using movm pattern

28

operand 0. This instruction pattern is important in the sense, it is also used in reload pass to generate

insn which copies stack slot into register (load operation). Hence, no extra temporary register should be

used. We are also interested in exploring the way in which define expand and define insn can be used.

It is observed that when GIMPLE to RTL transformation is to be performed at compile time, named

pattern for corresponding GIMPLE code is first searched, and if the pattern is available, the operands

are modified so as to satisfy predicates, and then actual RTL is emitted. The ways in which define insn

and define expand are used in GIMPLE to RTL conversion differ a lot. In case of define insn, the insn

given in pattern cannot be modified, hence number of operands in the define insn for standard pattern

name must be same as number of operands that are actually supported by that pattern. This is not

the case with define expand. One can extend number of operands as much as needed, but in that case

(s)he must take care of actually assigning desired value to these operands in preparation statements of

define expand. Secondly, in define expand, one can modify the pattern of generated insn, or one even

use define expand as define insn. Lets see this with the help of pattern definitions.

• movsi using define expand :

Consider the movsi pattern written using define expand.

(define_expand "movsi"

[(set (match_operand:SI 0 "nonimmediate_operand" "")

(match_operand:SI 1 "general_operand" "")

)

]

""

"{

if(!reload_in_progress)

/*This is to see, if we are not in reload pass.*/

{

if(GET_CODE(operands[0]) == MEM && GET_CODE(operands[1]) != REG)

{

operands[1] = force_reg(SImode,operands[1]);

emit_insn(gen_rtx_SET(SImode,operands[0],operands[1]));

DONE;

}

}

}"

)

The RTL template sets non-immediate operand 0 to general operand 1. The condition section

is kept null, so no explicit check will be there to match the pattern. The preparation section is

C code. It checks if the current pass is reload pass or not. If it is reload pass, then force reg

function cannot be used, as force reg function uses temporary intermediate register. If reload

pass is not in progress, then one can safely use force reg. Here, if the destination (operand 0) is

memory operand, and source (operand 1) is not in register, then the source operand is first moved

into temporary register, and then that register is moved into destination by emitting the set insn

explicitly. The call to macro DONE is used to indicate end of pattern generation for that insn.

So, when move RTL is to be generated, if destination is in memory and source is non-register entity,

2 insns get emitted, one forcing source into temporary register, and second emitted by emit insn;

otherwise, single pattern matching to RTL template will be emitted.

When the compiler is built, in this example, the code that is generated for this insn is :

29

rtx

gen_movsi (rtx operand0,

rtx operand1)

{

rtx _val = 0;

start_sequence ();

{

rtx operands[2];

operands[0] = operand0;

operands[1] = operand1;

+---+

|{ |

| if(!reload_in_progress) |

| /*This is to see, if we are not in reload pass.*/ |

| { |

| if(GET_CODE(operands[0]) == MEM && GET_CODE(operands[1]) != REG) |

| { |

| operands[1] = force_reg(SImode,operands[1]); |

| emit_insn(gen_rtx_SET(SImode,operands[0],operands[1])); |

| DONE; |

| } |

| } |

|} |

+---+

operand0 = operands[0];

operand1 = operands[1];

}

emit_insn (gen_rtx_SET (VOIDmode,

operand0,

operand1));

_val = get_insns ();

end_sequence ();

return _val;

}

The marked region indicates the code written by me while writing md file. When there is need

to move data from one operand to another (explicitly in case of tree node MODIFY EXPR, or

implicitly in case of force reg), the function gen movsi is invoked. There are few assumptions

regarding MOVE insn. As MOVE is considered as one of the basic insns, which must be present

on the machine, without which data movement is not possible, the predicate checking is NOT

done for movm pattern.

• movsi using define insn :

The named pattern written using define insn is used at the time of RTL generation as well as

assembly code emission. There is no provision to modify the RTL insn pattern matched as in

define expand. Hence, if the standard named pattern is defined using define insn, then the pattern

getting generated is same as the pattern getting matched at the time of assembly emission. Lets

have a look at this example:

(define_insn "movsi"

30

[(set (match_operand:SI 0 "nonimmediate_operand" "")

(plus:SI (match_operand:SI 1 "general_operand")

(const_int 0)))

]

""

"MOV\\t %0,%1"

)

Here, movsi instruction is represented as addition of source and constant value 0. In this level,

RTL for addition is not added. Still the code works for same set of C source programs as previous

one because we have just modified the pattern to be generated and matched. As far as number

of operands in definition of movsi in md file and actual number of operands defined for standard

pattern movm are same, this definition is also going to work fine. This is mainly because, when the

gen movsi function is generated, the pattern is emitted as it was there in md file. Whenever the

compiler tries to emit assembly output, the pattern matched is still the same. Hence the compiler

never fails. But we still cannot compile source C program having ‘+’ operation, because, still we

have not defined addsi insn, which is needed by compiler in order to generate RTL matching to

the node PLUS EXPR in GIMPLE. Thus even though RTLs generated by

(define_insn "movsi"

[(set (match_operand:SI 0 "nonimmediate_operand" "")

(plus:SI (match_operand:SI 1 "general_operand")

(const_int 0)))

]

""

"MOV\\t %0,%1"

)

and

(define_insn "addsi"

[(set (match_operand:SI 0 "nonimmediate_operand" "")

(plus:SI (match_operand:SI 1 "general_operand" "")

(const_int 0)))

]

""

"ADD -> %0 = %1 + %2"

)

are just the same, the standard pattern names referred in order to generate these RTLs are quite

different.

3.3 level2

Level 2 supports arithmetic operations on integer data. Hence, the patterns are added to support

integer addition, subtraction, multiplication and division. It should be noted that defining patterns for

multiplication and division are not necessary, as there are library functions defined to take care of those

31

operations. But in level2, we haven’t supported function calls, hence calls to library functions cannot

get emitted. Hence, in this level we have decided to add the patterns for these operations also.

3.3.1 What goes in Level 2?

We define the standard insn addm3 which adds operand 2 and operand 1, storing the result in operand

0. All operands must have mode m. This can be used even on two-address machines, by means of

constraints requiring operands 1 and 0 to be the same location.

(define_insn "addsi3"

[(set (match_operand:SI 0 "register_operand" "")

(plus:SI (match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")

)

)

]

""

"ADD %0 = %1 + %2"

)

Here, we allow addition of register operands only. This forces the compiler, to first invoke prepare operand

to satisfy predicates, and then emit the RTL which satisfies predicates for all of its operands. subm3,

mulm3, divm3 are similar to addm3 insn. These patterns are defined as:

(define_insn "subsi3"

[(set (match_operand:SI 0 "register_operand" "")

(minus:SI (match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")

)

)

]

""

"SUB %0 = %1 - %2"

)

(define_insn "mulsi3"

[(set (match_operand:SI 0 "register_operand" "")

(mult:SI (match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")

)

)

]

""

"MUL %0 = %1 * %2"

)

(define_insn "divsi3"

[(set (match_operand:SI 0 "register_operand" "")

(div:SI (match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")

32

)

)

]

""

"DIV %0 = %1 * %2"

)

3.4 level3

In level3, we have reshuffled the original sequence of levels intentionally. This is because, we can see

functions as LHS of any assignment statement. Hence, to successfully complete assignment statements,

we decided to move function handling at level 2. Secondly, we wanted to have ‘MINIMAL’ set of RTLs

in ‘MinMd’ machine description. By this we mean, the absolutely necessary RTLs at level i are added in

the machine description. Remaining operations supported in ci are handled by library functions. When

we tried to eliminate MUL, DIV operations, the program crashed because we was not having these insns

in my machine description and compiler was not able to generate library function call because CALL

insn was not supported either. Hence, function handling was done after arithmatic operations.

We define standard pattern call which is subroutine call instruction returning no value. Operand 0

is the name of the function to call; operand 1 is the number of bytes of arguments pushed as a const int;

operand 2 is the number of registers used as operands. In most of the processors operand 2 is not stored

in RTL pattern.

Our definition for this pattern is as follows:

(define_insn "call"

[(call (match_operand:SI 0 "symbolic_operand" "")

(match_operand:SI 1 "immediate_operand" ""))

]

""

"CALL %0 with %c1 number of parameters"

)

As we are not allowing parameters to be passed in register, operand 2 is not emitted.

The call value is subroutine call instruction returning a value. Operand 0 is the hard register in

which the value is returned. Operand 1 is the name of the function to call; operand 2 is the number of

bytes of arguments pushed as a const int, operand 3 is the number of registers used as operands. The

definition of this pattern is:

(define_insn "call_value"

[(set (match_operand:SI 0 "register_operand" "")

(call (match_operand:SI 1 "symbolic_operand" "")

(match_operand:SI 2 "immediate_operand" "")))

]

""

"%0=CALL %1 with %c2 number of parameters"

)

The pattern for return has predefined structure. It sets the program counter of intermediate

abstract machine to return pointer. This pattern has the form

(define_insn "return"

[(set (pc) (return))]

33

""

"RETURN\\t\\t!return from call."

)

One thing is to be noted in case of call and return patterns. Call and return insns are not handled

same as other instructions. There is no CODE FOR * macro defined for these insn patterns. When a tree

node has code CALL EXPR, the function expand call is invoked. This function takes care of parameter

passing issues and then calls function emit call 1. Following given is the part of function emit call 1

which emits call insn depending upon, the function returns some value or not.

if (HAVE_call && HAVE_call_value)

{

if (valreg)

emit_call_insn (GEN_CALL_VALUE (valreg,

gen_rtx_MEM (FUNCTION_MODE, funexp),

rounded_stack_size_rtx, next_arg_reg,

NULL_RTX));

else

emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),

rounded_stack_size_rtx, next_arg_reg,

struct_value_size_rtx));

}

where GEN CALL and GEN CALL VALUE are set to values

#define GEN_CALL(A, B, C, D) gen_call ((A), (B))

#define GEN_CALL_VALUE(A, B, C, D, E) gen_call_value ((A), (B), (C))

in file insn-flags.h, generated from genflags.c file in source code.

3.5 level4

In level4, we need to add macro NOTICE UPDATE CC in order to support conditional code handling. This

macro is a C compound statement to set the components of cc status appropriately for an insn insn

whose body is exp. It is this macro’s responsibility to recognize insns that set the condition code as a

byproduct of other activity as well as those that explicitly set (cc0).

#define NOTICE_UPDATE_CC(exp,insn) \

notice_update_cc(exp,insn)

The compare and jump operation can be handled in two different ways in md file :

• cbranchm4

• cmpm and bcond

Each patterns are discussed in detail in next subsections.

3.5.1 cbranchsi4

This standard pattern defines conditional branch instruction combined with a compare instruction.

Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and second operands of the

comparison, respectively. Operand 3 is a label ref that refers to the label to jump to.

34

(define_insn "cbranchsi4"

[(set (pc) (if_then_else

(match_operator:SI 0 "comparison_operator"

[(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "register_operand" "")])

(label_ref (match_operand 3 "" ""))

(pc)))]

""

{

char str[15],str1[40];

sprintf(str,"%s",rtx_name[GET_CODE(operands[0])]);

sprintf(str1,"DCBRANCH %s %%1 %%2 %%l3",str);

switch(GET_CODE(operands[0]))

{

case EQ: return "CBRANCH EQ %1 %2 %l3";

case NE: return "CBRANCH NE %1 %2 %l3";

/* case LT: return "CBRANCH LT %1 %2 %l3";

case LE: return "CBRANCH LE %1 %2 %l3";

case GT: return "CBRANCH GT %1 %2 %l3";

case GE: return "CBRANCH GE %1 %2 %l3";*/

default: return str1;

}

}

)

3.5.2 Combination of cmpsi and bcond

cmpm is standard pattern name to compare operand 0 and operand 1, and set the condition codes. The

RTL pattern should look like this:

(set (cc0) (compare (match_operand:m 0 ...)

(match_operand:m 1 ...)))

bcond is conditional branch instruction. Operand 0 is a label ref that refers to the label to jump to.

Jump if the condition codes meet condition cond.

To have the effect of cbranchm4 instruction, we have to use power of define expand construct, to

modify the structure of RTL to be emitted. Lets see the following code.

(define_expand "cmpsi"

[(set (cc0)

(compare:SI (match_operand:SI 0 "register_operand" "")

(match_operand:SI 1 "register_operand" "")))]

""

{

compare_op0 = operands[0];

compare_op1 = operands[1];

DONE;

}

)

Here, when gen cmpsi is invoked, the contents of operands[0] and operands[1] are stored in global

md writer defined variables compare op0 and compare op1 respectively. Because of the use of macro

35

DONE, cmpsi pattern is *not* generated. Now, we can use the stored information about operands when

we want to generate conditional branch statements. Lets see the following example to generate branch

if equal insn:

(define_expand "beq"

[(set (pc)

(if_then_else (eq (cc0)(const_int 1))

(label_ref (match_operand 0 "" ""))

(pc)))

]

""

"{

emit_jump_insn(gen_rtx_SET(VOIDmode,

pc_rtx,

gen_rtx_IF_THEN_ELSE(VOIDmode,

gen_rtx_EQ(VOIDmode,

compare_op0,

compare_op1),

gen_rtx_LABEL_REF(VOIDmode,

operands[0]),

pc_rtx)));

DONE;

}"

)

(define_insn "*beq"

[(set (pc)(if_then_else (eq (match_operand:SI 1 "" "")

(match_operand:SI 2 "" "")

)

(label_ref (match_operand 0 "" ""))

(pc)

)

)]

""

"BEQ (%1 == %2) %l0"

)

GCC internal manual says that, bcond pattern takes single argument, the code label where jump is to be

emitted. But, in our case, desired pattern must take three arguments: the operands to be compared, and

label to be jumped if comparison evaluates to be True. We can achieve this using 2 different methods.

Above given is one method to define any pattern. In this, we match the pattern with any arbi-

trary pattern, and then unconditionally correct it, by emitting the desired pattern in code area of de-

fine expand, where desired pattern contains reference to previously saved compare op0 and compare op1.

There is another method to generate desired conditional branch statement.

(define_expand "blt"

[(set (pc)(if_then_else (lt (match_dup 1)

(match_dup 2))

(label_ref (match_operand 0 "" ""))

(pc)))]

36

""

"{

operands[1] = compare_op0;

operands[2] = compare_op1;

}"

)

(define_insn "*blt"

[(set (pc)(if_then_else (lt (match_operand:SI 1 "" "")

(match_operand:SI 2 "" "")

)

(label_ref (match_operand 0 "" ""))

(pc)

)

)]

""

"BLT (%1 < %2) %l0"

)

Here, we make use of the fact that, in define expand, we can extend number of operands as much as

needed. But, one has to be very careful, because if the extra operands are not assigned any value, the

compiler may crash.

So, in above given definition of branch if less than, we write the pattern as

[(set (pc)(if_then_else (lt (match_dup 1)

(match_dup 2))

(label_ref (match_operand 0 "" ""))

(pc)))]

and then, set operands[0] and operands[1] to compare op0 and compare op1 respectively. As, here

we are not calling macro DONE, the function gen blt emits the default pattern by replacing match dup’s

with newly assigned patterns.

3.5.3 How control structures are handled?

Control structures are handled quite differently than other language constructs. Actual language con-

structs are represented as given in following definitions while converting them from C to Parse tree.

/* Used to represent a ‘for’ statement. The operands are

FOR_INIT_STMT, FOR_COND, FOR_EXPR, and FOR_BODY, respectively. */

DEFTREECODE (FOR_STMT, "for_stmt", tcc_expression, 4)

/* Used to represent a ’while’ statement. The operands are WHILE_COND

and WHILE_BODY, respectively. */

DEFTREECODE (WHILE_STMT, "while_stmt", tcc_expression, 2)

/* Used to represent a ’do’ statement. The operands are DO_BODY and

DO_COND, respectively. */

DEFTREECODE (DO_STMT, "do_stmt", tcc_expression, 2)

37

/* Used to represent a ’break’ statement. */

DEFTREECODE (BREAK_STMT, "break_stmt", tcc_expression, 0)

/* Used to represent a ’continue’ statement. */

DEFTREECODE (CONTINUE_STMT, "continue_stmt", tcc_expression, 0)

/* Used to represent a ’switch’ statement. The operands are

SWITCH_STMT_COND, SWITCH_STMT_BODY and SWITCH_STMT_TYPE, respectively. */

DEFTREECODE (SWITCH_STMT, "switch_stmt", tcc_expression, 3)

These intermediate tree nodes are then flattened while gimplification. This introduces goto expr

and cond expr in the gimplified code, which is used to generate RTL. The gimple to RTL conversion

is carried out basic-blockwise and control structures alter the flow of program. Hence the cond expr

generated because of such language constructs needs to handle specially.

The function expand gimple cond expr, subroutine of expand gimple basic block handles these

cond exprs. It first extracts information about true and false destinations of basic block, and expressions

associated with else and then part of the conditional code. It then invokes the function jumpif or

jumpifnot depending upon fall-through conditions. If there is no fall-through, jumpif function is called.

The functions jumpif, jumpifnot are defined as follows:

void

jumpifnot (tree exp, rtx label)

{

do_jump (exp, label, NULL_RTX);

}

void

jumpif (tree exp, rtx label)

{

do_jump (exp, NULL_RTX, label);

}

which call function do jump with appropriate true and false labels.

The function do jump is the function which examines the conditional code, and if conditional

code is other than basic conditional operators like EQ, LT, GT etc; then it first expands the condi-

tional code, and then invokes the function do compare rtx and jump. Otherwise it invokes function

do compare and jump with appropriate conditional code.

3.6 Level 5

4 Problems in writting incremental machine description

Even though incremental md writing has many advantages over writing machine description at a stretch,

as we have not fixed target architecture, we are still facing a lot of problems while writing incremental

md file. Few issues are resolved, but there are few we are still working on.

• Size of long int : When we were trying to handle arrays at some level of C language, we got

internal compiler error: in instantiate virtual regs lossage, at emit move insn:3092

when input program had variable to index into array. The program

38

int main()

{

int arr[5];

arr[3]=15;

return arr[3];

}

would generate code successfully, but program

int main()

{

int arr[5],i;

arr[i]=15;

return arr[i];

}

used to crash giving internal compiler error. It was then found that because we had set size of

long int type as 64 bits, and we had not defined patterns for DImode, the compiler was crashing.

There were 3 solutions to solve this problem, all of which work perfectly fine.

1. Define patterns for DImode.

2. Define LONG TYPE SIZE as 32 bits instead of 64 bits.

3. Define macro SIZE TYPE which gives name of data type to use for size values when tree is

built to be unsigned int.

• Control structure handling : The control structure handling can be done either using old method

which combines cmpsi and bcond patterns to generate conditional code or using cbranchsi4 pattern.

But when we try to fuse these two constructs, the compiler behaves in unusual way. If we define

a pattern for cmpsi and cbranchsi4, the compiler does not recognize the pattern cmpsi, and hence

calls library routine cmpsi2. If the pattern definition for cmpsi is removed, the call to this library

routine is not emitted at all. We are currently going through the source code, but we haven’t found

any thing unusual in it because of this compiler is behaving in unexpected manner.

• Floating point operations : This problem is somewhat critical. If we do not define any floating

point operation, the compiler works perfectly by converting floating point numbers into long and

then moving them into desired register. But if we define floating point move insn for SFmode, the

compiler crashes giving error. We are still fixing this error.

39

