
The Abstraction Vs. Approximations Dilemma
in Pointer Analysis

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Nov 2017



IITD PPA Dilemma: Outline 1/43

Outline

• Disclaimer: This talk is

◮ not about accomplishments but about opinions, and hopes

◮ an idealistic view of pointer analysis
(the destination we wish to reach)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Outline 1/43

Outline

• Disclaimer: This talk is

◮ not about accomplishments but about opinions, and hopes

◮ an idealistic view of pointer analysis
(the destination we wish to reach)

• Outline:

◮ Our Meanderings

◮ Some short trips

◮ Conclusions

Uday Khedker IIT Bombay



Part 1

Our Meanderings



IITD PPA Dilemma: Our Meanderings 2/43

Pointer Analysis Musings

• A keynote address:

“The worst thing that has happened to Computer Science is C,
because it brought pointers with it . . . ”

- Frances Allen, IITK Workshop (2007)

• A couple of influential papers

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yet

2001

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 2/43

Pointer Analysis Musings

• A keynote address:

“The worst thing that has happened to Computer Science is C,
because it brought pointers with it . . . ”

- Frances Allen, IITK Workshop (2007)

• A couple of influential papers

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yet

2001

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 2/43

Pointer Analysis Musings

• A keynote address:

“The worst thing that has happened to Computer Science is C,
because it brought pointers with it . . . ”

- Frances Allen, IITK Workshop (2007)

• A couple of influential papers

◦ Which Pointer Analysis should I Use?

Michael Hind and Anthony Pioli. ISTAA 2000

◦ Pointer Analysis: Haven’t we solved this problem ?

Michael Hind PASTE

yet

2001

◦ 2017 . . .

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 3/43

The Mathematics of Pointer Analysis

In the most general situation

• Alias analysis is undecidable.

Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
Ramalingam [TOPLAS 1994]

• Flow insensitive alias analysis is NP-hard

Horwitz [TOPLAS 1997]

• Points-to analysis is undecidable

Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 4/43

So what should we expect?

To quote Hind [PASTE 2001]

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 4/43

So what should we expect?

To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 4/43

So what should we expect?

To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 4/43

So what should we expect?

To quote Hind [PASTE 2001]

• “Fortunately many approximations exist”

• “Unfortunately too many approximations exist!”

Engineering of pointer analysis is much more dominant than its science

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 5/43

Pointer Analysis: Engineering or Science?

• Engineering view ◮ Build quick approximations
◮ The tyranny of (exclusive) OR

Precision OR Efficiency?

• Science view ◮ Build clean abstractions
◮ Can we harness the Genius of AND?

Precision AND Efficiency?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 5/43

Pointer Analysis: Engineering or Science?

• Engineering view ◮ Build quick approximations
◮ The tyranny of (exclusive) OR

Precision OR Efficiency?

• Science view ◮ Build clean abstractions
◮ Can we harness the Genius of AND?

Precision AND Efficiency?

• Most common trend as evidenced by publications

◮ Build acceptable approximations guided by empirical observations

◮ The notion of acceptability is often constrained by beliefs rather than
possibilities

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 6/43

Abstraction Vs. Approximation in Static Analysis

• Static analysis needs to create abstract values that represent many
concrete values

• Mapping concrete values to abstract values

◮ Abstraction.

Deciding which properties of the concrete values are essential What

Ease of understanding, reasoning, modelling etc. Why

◮ Approximation.

Deciding which properties of the concrete values cannot What

be represented accurately and should be summarized

Decidability, tractability, or efficiency and scalability Why

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 7/43

Abstraction Vs. Approximation in Static Analysis

• Abstractions

◮ focus on precision and conciseness of modelling
◮ tell us what we can ignore without being imprecise

• Approximations

◮ focus on efficiency and scalability
◮ tell us the imprecision that we have to tolerate

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 7/43

Abstraction Vs. Approximation in Static Analysis

• Abstractions

◮ focus on precision and conciseness of modelling
◮ tell us what we can ignore without being imprecise

• Approximations

◮ focus on efficiency and scalability
◮ tell us the imprecision that we have to tolerate

• Build clean abstractions before surrendering to the approximations

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 8/43

The Basis of My Hope

• Common belief:

• The possibility that I dream of:

• The basis of my hope:

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 8/43

The Basis of My Hope

• Common belief:

Pointer information is very large

• The possibility that I dream of:

• The basis of my hope:

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 8/43

The Basis of My Hope

• Common belief:

Pointer information is very large

• The possibility that I dream of:

Precision can reduce the size of pointer information to make it far more
manageable

• The basis of my hope:

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 8/43

The Basis of My Hope

• Common belief:

Pointer information is very large

• The possibility that I dream of:

Precision can reduce the size of pointer information to make it far more
manageable

• The basis of my hope:

At any program point, the usable pointer information is much smaller than
the total pointer information

Current methods perform many repeated and possibly avoidable
computations

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 9/43

Why Avoid Approximations?

• Approximations may create a vicious cycle

Approximation
Imprecision

causes

Inefficiency

may
cause

may seem
to warrant

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 9/43

Why Avoid Approximations?

• Approximations may create a vicious cycle

Approximation
Imprecision

causes

Inefficiency

may
cause

may seem
to warrant

• Two examples of inefficiency cause by approximations

◮ k-limited call strings may create “butterfly cycles” causing spurious
fixed point computations [Hakjoo, 2010]

◮ Imprecision in function pointer analysis overapproximates calls

may create spurious recursion in call graphs

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 10/43

Which Approximations Would I like to Avoid?

Approximation Admits

Flow insensitivity

Context insensitivity (or
partial context sensitivity)

Imprecision in call graphs

Allocation site based
heap abstraction

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 10/43

Which Approximations Would I like to Avoid?

Approximation Admits

Flow insensitivity Spurious intraprocedural paths

Context insensitivity (or
partial context sensitivity) Spurious interprocedural paths

Imprecision in call graphs Spurious call sequences

Allocation site based
heap abstraction Spurious paths in memory graph

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 11/43

The Classical Precision-Efficiency Dilemma

Abstraction
Role in precision Cause of inefficiency

Distinguishes between Needs to consider

Flow sensitivity

Context sensitivity

Precise heap abstraction

Precise call structure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 11/43

The Classical Precision-Efficiency Dilemma

Abstraction
Role in precision Cause of inefficiency

Distinguishes between Needs to consider

Flow sensitivity Information at different
program points

Context sensitivity Information in
different contexts

Precise heap abstraction Different heap
locations

Precise call structure
Indirect calls made to
different callees from
the same program point

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 11/43

The Classical Precision-Efficiency Dilemma

Abstraction
Role in precision Cause of inefficiency

Distinguishes between Needs to consider

Flow sensitivity Information at different
program points

A large number of
program points

Context sensitivity Information in
different contexts

Exponentially large
number of contexts

Precise heap abstraction Different heap
locations

Unbounded number
of heap locations

Precise call structure
Indirect calls made to
different callees from
the same program point

Precise points-to
information

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 12/43

Flow Insensitivity in Data Flow Analysis

• Assumption: Statements can be executed in any order.

• Instead of computing point-specific data flow information, summary data
flow information is computed.

The summary information is required to be a safe approximation of
point-specific information for each point.

• No data flow information is killed

If a statement kills data flow information, there is an alternate path that
excludes the statement.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 13/43

Flow Insensitivity in Data Flow Analysis

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 13/43

Flow Insensitivity in Data Flow Analysis

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 13/43

Flow Insensitivity in Data Flow Analysis

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

Allows arbitrary compositions of flow functions in any order

⇒ Flow insensitivity

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 13/43

Flow Insensitivity in Data Flow Analysis

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

In practice, dependent constraints are collected in a global

repository in one pass and then are solved independently

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 14/43

If I am Allowed to Nitpick . . .

• Context sensitivity should involve all of the following

[A] Full context sensitivity regardless of the call depth even in recursion
[B] Ability to store data flow information parameterized by contexts at

each program point
[C] Flow sensitivity at the intraprocedural level (otherwise distinct calls

to the same procedure within a procedure cannot be distinguished)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 14/43

If I am Allowed to Nitpick . . .

• Context sensitivity should involve all of the following

[A] Full context sensitivity regardless of the call depth even in recursion
[B] Ability to store data flow information parameterized by contexts at

each program point
[C] Flow sensitivity at the intraprocedural level (otherwise distinct calls

to the same procedure within a procedure cannot be distinguished)

• In particular

◮ k-limiting violates [A]
◮ Treating recursion as an SCC violates [A]
◮ Functional approaches violate [B]
◮ Object sensitivity violates [C]

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 14/43

If I am Allowed to Nitpick . . .

• Context sensitivity should involve all of the following

[A] Full context sensitivity regardless of the call depth even in recursion
[B] Ability to store data flow information parameterized by contexts at

each program point
[C] Flow sensitivity at the intraprocedural level (otherwise distinct calls

to the same procedure within a procedure cannot be distinguished)

• In particular

◮ k-limiting violates [A]
◮ Treating recursion as an SCC violates [A]
◮ Functional approaches violate [B]
◮ Object sensitivity violates [C]

• Object sensitivity can be completely modelled by calling context sensitivity

◮ by a flow sensitive propagation of values representing objects, and
◮ identifying a procedure by an (object, procedure) pair, and
◮ identifying a context by a call site and the pairs defined as above

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 15/43

Context Sensitivity in Interprocedural Analysis

Sr

Er

Ss

Es

Ci

Ri

ci

St

Et

Cj

Rj

cj

x

x

x ′ = fr (x)

x ′

y

y

y ′ = fr (y)

y ′

fr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 15/43

Context Sensitivity in Interprocedural Analysis

Sr

Er

Ss

Es

Ci

Ri

ci

St

Et

Cj

Rj

cj

x

x

x ′

y

y

y ′

fr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 15/43

Context Sensitivity in Interprocedural Analysis

Sr

Er

Ss

Es

Ci

Ri

ci

St

Et

Cj

Rj

cj

x

x

x ′

y

y

y ′

fr

×

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 15/43

Context Sensitivity in Interprocedural Analysis

Sr

Er

Ss

Es

Ci

Ri

ci

St

Et

Cj

Rj

cj

x

x

x ′

y

y

y ′

fr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 15/43

Context Sensitivity in Interprocedural Analysis

Sr

Er

Ss

Es

Ci

Ri

ci

St

Et

Cj

Rj

cj

x

x

x ′

y

y

y ′

fr

×

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 16/43

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call

return

stop
calling

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 16/43

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call

return

stop
calling

• Paths from Starts to Ends should constitute
a context free language

calln · stop · returnn

• If we treat cycle of recursion as an SCC

◮ Calls and returns become jumps, and
◮ paths are approximated by a regular

language

call∗ · stop · return∗

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

• What is the value range of a?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 2)

• What is the value range of a?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 2)

(2, 2)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 2)

(2, 2)

(2, 2)

(3, 3)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 2)

(2, 2)

(2, 2)

(3, 3)

(3, 3)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 2)

(2, 2)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 2)

(1, 2)

(2, 3)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)
(1, 2)

(2, 3)

(2, 3)

(2, 3)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 3)

(1, 3)

(2, 4)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)
(1, 3)

(2, 4)

(2, 4)

(2, 4)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)

(2, 4)

(1, 4)

(2, 5)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

(1, 1)
(1, 4)

(2, 5)

(2, 5)

(2, 5)

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

◮ Range of a at Endmain is (2, . . .)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

◮ Range of a at Endmain is (2, . . .)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

◮ Range of a at Endmain is (2, . . .)

• Spurious interprocedural loops

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 17/43

Context Insensitivity = Imprecision + Potential Inefficiency

Startmain

a = 1

Call P

Call P

Call P

Endmain

Startp

a = a+1

Endp

• What is the value range of a?

• Context sensitive analysis

◮ Data flow value propagated back
to the current caller of P

◮ Range of a at Endmain is (3, 3)

• Context insensitive analysis

◮ Data flow value propagated back
to every caller

◮ Range of a at Endmain is (2, . . .)

• Spurious interprocedural loops

• Spurious fixed point computations

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 18/43

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call

return

stop
calling

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 18/43

Context Sensitivity in the Presence of Recursion

Starts

Ci

Ri

Ends

call

return

stop
calling

• Paths from Starts to Ends should constitute
a context free language

calln · stop · returnn

• If we treat cycle of recursion as an SCC

◮ Calls and returns become jumps, and
◮ paths are approximated by a regular

language

call∗ · stop · return∗

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Data Structures: BDDs, probabilistic

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Data Structures: BDDs, probabilistic

Methods: parallel, on demand, randomized

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Data Structures: BDDs, probabilistic

Methods: parallel, on demand, randomized
Refinement: Level-wise, bootstrapping

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Crowded Area

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Crowded Area

Th
inl
y

po
pu
lat
ed

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 19/43

Pointer Analysis: An Engineer’s Landscape

F
lo
w

S
en
si
ti
vi
ty

In
cr
ea
se
s

Context Sensitivity
Increases

FI=

FI⊆

FISSA

FSNoKill

FS

CI CSObjSens CSRecIns CS

Crowded Area

Th
inl
y

po
pu
lat
ed

That’s the
corner we are trying to

occupy :-)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Context sensitivity
(Caller sensitivity)

Precise heap
abstraction

Precise call structure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

Context sensitivity
(Caller sensitivity)

Precise heap
abstraction

Precise call structure

Restrict the computation
only to the usable data.
Weave liveness discovery
into the analysis

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Precise heap
abstraction

Precise call structure

Postpone low level
connections explicated
by the classical
points-to facts

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

Precise heap
abstraction

Precise call structure

Distinguish between
contexts by their
data flow values and
not their call chains

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Precise call structure

Avoid recomputations
for each context.
Use a higher level
abstraction of memory.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Liveness access
graphs

Partial accomplishment
(TOPLAS07)

Precise call structure

Identify the part of heap
actually accessed in terms
of patterns of accesses

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Liveness access
graphs

Partial accomplishment
(TOPLAS07)

Access based
abstraction

Mature accomplishment
(ISMM17)

Precise call structure

Distinguish between heap
locations based on how
they are accessed and not
how they are allocated

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Liveness access
graphs

Partial accomplishment
(TOPLAS07)

Access based
abstraction

Mature accomplishment
(ISMM17)

Precise call structure
Callee sensitivity Work in progress

Call strings record call
history. We need to
record call future also.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Liveness access
graphs

Partial accomplishment
(TOPLAS07)

Access based
abstraction

Mature accomplishment
(ISMM17)

Precise call structure
Callee sensitivity Work in progress

Virtual call resolution Work in progress

Make the call graph more
precise by computing a
more precise set of callees

Uday Khedker IIT Bombay



IITD PPA Dilemma: Our Meanderings 20/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Liveness access
graphs

Partial accomplishment
(TOPLAS07)

Access based
abstraction

Mature accomplishment
(ISMM17)

Precise call structure
Callee sensitivity Work in progress

Virtual call resolution Work in progress

We are destined

to a long haul with no

guarantees :-)

Uday Khedker IIT Bombay



Part 2

Some Short Trips



IITD PPA Dilemma: Some Short Trips 21/43

In Search of Abstractions for Precision Without Inefficiency

Desired
Abstraction Enabling Abstraction Status of our work

Flow
sensitivity

Joint liveness and
points-to analysis

Partial accomplishment
(SAS12)

High level abstraction
of memory

Partial accomplishment
(SAS16)

Context sensitivity
(Caller sensitivity)

Value contexts
Mature accomplishment
(CC08, SAS12, SOAP13)

GPG based bottom-up
summary flow functions

Mature accomplishment
(SAS16)

Precise heap
abstraction

Liveness access
graphs

Partial accomplishment
(TOPLAS07)

Access based
abstraction

Mature accomplishment
(ISMM17)

Precise call structure
Callee sensitivity Work in progress

Virtual call resolution Work in progress

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u
Is all this

information really
useful?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 22/43

Liveness Based Pointer Analysis: Motivation

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4

y = &x

use u

use x

n4

∅

x y z u

x y z u

x y z u

x y z u

x y zx y z u

x y z u

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 23/43

Liveness Based Points-to Analysis (SAS-2012)

• Mutual dependence of liveness and points-to information

◮ Define points-to information only for live pointers
◮ For pointer indirections, define liveness information using points-to

information

• Use call strings method for full flow and context sensitivity

◮ Value based termination of call strings construction (CC-2008)

• Use strong liveness

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 24/43

Liveness Based Interprocedural Points-to Analysis: Empirical
Measurements

• Observations on SPEC CPU 2006 benchmarks in GCC 4.6.0

(Prashant Singh Rawat, IITB 2012)

Usable pointer information is small and sparse

No of Points-to pairs Percentable of basic blocks

0 64-96%
1-4 9-25%
5-8 0-10%
8+ 0-4%

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 24/43

Liveness Based Interprocedural Points-to Analysis: Empirical
Measurements

• Observations on SPEC CPU 2006 benchmarks in GCC 4.6.0

(Prashant Singh Rawat, IITB 2012)

Usable pointer information is small and sparse

No of Points-to pairs Percentable of basic blocks

0 64-96%
1-4 9-25%
5-8 0-10%
8+ 0-4%

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 24/43

Liveness Based Interprocedural Points-to Analysis: Empirical
Measurements

• Observations on SPEC CPU 2006 benchmarks in GCC 4.6.0

(Prashant Singh Rawat, IITB 2012)

Usable pointer information is small and sparse

No of Points-to pairs Percentable of basic blocks

0 64-96%
1-4 9-25%
5-8 0-10%
8+ 0-4%

• Independently implemented and verified in

◮ LLVM (Dylan McDermott, Cambridge, 2016) and
◮ GCC 4.7.2 (Priyanka Sawant, IITB, 2016)

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Procedure
Body

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Multiple
interprocedural
paths reaching
the procedure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Multiple
interprocedural
paths reaching
the procedure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Multiple
interprocedural
paths reaching
the procedure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Multiple
interprocedural
paths reaching
the procedure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Multiple
interprocedural
paths reaching
the procedure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values x

x ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values x

x ′

y

y ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values x

x ′

y

y ′

y

y ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values x

x ′

y

y ′

y

y ′

y

y ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values x

x ′

y

y ′

y

y ′

y

y ′

z

z ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

x

X0

x ′

y

y ′

y

y ′

y

y ′

z

z ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

x

X0

x ′

y

X1

y ′

y

X1

y ′

y

X1

y ′

z

z ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

x

X0

x ′

y

X1

y ′

y

X1

y ′

y

X1

y ′

z

X2

z ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

Call sites

x

c0

X0

x ′

y

c1

X1

y ′

y

c2

X1

y ′

y

c3

X1

y ′

z

c4

X2

z ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

Call sites

Contexts of
the callers

x

c0

Xi

X0

x ′

y

c1

Xj

X1

y ′

y

c2

Xk

X1

y ′

y

c3

Xl

X1

y ′

z

c4

Xm

X2

z ′

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

Call sites

Contexts of
the callers

x

c0

Xi

X0

x ′

y

c1

Xj

X1

y ′

y

c2

Xk

X1

y ′

y

c3

Xl

X1

y ′

z

c4

Xm

X2

z ′

Context transition graph

Xi X0
c0

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

Call sites

Contexts of
the callers

x

c0

Xi

X0

x ′

y

c1

Xj

X1

y ′

y

c2

Xk

X1

y ′

y

c3

Xl

X1

y ′

z

c4

Xm

X2

z ′

Context transition graph

Xi X0
c0

Xj

Xk

Xl

X1

c1

c2

c3

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 25/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Start

End

Data flow values

Contexts

Call sites

Contexts of
the callers

x

c0

Xi

X0

x ′

y

c1

Xj

X1

y ′

y

c2

Xk

X1

y ′

y

c3

Xl

X1

y ′

z

c4

Xm

X2

z ′

Context transition graph

Xi X0
c0

Xj

Xk

Xl

X1

c1

c2

c3

Xm X2
c4

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 26/43

Value Contexts (CC-2008, SAS-2012, SOAP-2013)

Analyze a procedure once for an input data flow value

• The number of times a procedure is analyzed reduces dramatically

• Similar to the tabulation based method of functional approach
[Sharir-Pnueli, 1981]

However,

◮ Value contexts record calling contexts too
Useful for context matching across program analyses

◮ Can avoid some reprocessing even when a new input value is found

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 27/43

Empirical Observations About Value Contexts

• Reaching definitions analysis in GCC 4.2.0 (CC-2008)

Analysis of Towers of Hanoi

◮ Time brought down from 3.973× 106 ms to 2.37 ms
◮ No of call strings brought down from 106+ to 8

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 27/43

Empirical Observations About Value Contexts

• Reaching definitions analysis in GCC 4.2.0 (CC-2008)

Analysis of Towers of Hanoi

◮ Time brought down from 3.973× 106 ms to 2.37 ms
◮ No of call strings brought down from 106+ to 8

• Generic Interprocedural Analysis Framework in SOOT (SOAP-2013)

Empirical observations on SPECJVM98 and DaCapo 2006 benchmarks for
on-the-fly call graph construction

◮ Average number of contexts per procedure lies in the range 4-25
◮ Much fewer long call chains than in the default call graph

constructed using SPARK
For legnth 7, less than 50%
For length 10, less than 5%

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

x

y

f()

{

*x = y

}

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2

a

Information
from callers

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2φ1

a

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2a

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2a

b

Information
from callers

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2a

bb

φ2

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 28/43

Classical Points-to Facts: A Low Level Abstraction of
Memory for Points-to Analysis

All variables are global

Red nodes are known named locations

Blue nodes are placeholders denoting unknown locations

x

y

f()

{

*x = y

}

φ1 φ2a b

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

x

y

f()

{

*x = y

}

φ1 φ2

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a b

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a b

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 29/43

Generalized Points-to Facts: A High Level Abstraction of
Memory for Points-to Analysis (SAS-2016)

Blue arrows are low level view of memory in terms of classical points-to facts

Black arrows are high level view of memory in terms of generalized points-to facts

x

y

f()

{

*x = y

}

φ1 φ2a b

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 30/43

Generalized Points-to Graphs (GPGs) for Points-to Analysis
(SAS-2016)

Construction of bottom up summary flow functions using GPGs

• Issues at intraprocedural level

Flow sensitivity, strong and weak updates, efficiency using SSA form

• Issues at interprocedural level

Context sensitivity: Composition of callee’s GPGs within callers

Efficiency using bypassing of irrelevant information

• Handling advanced features

Function Pointers, Heap, Structures, Union, Arrays, Pointer Arithmetic

• Theoretical issues. Soundness and complexity

• Implementation and measurements

Using LTO framework in GCC 4.7.2 scaling to 158 KLoC

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 31/43

Heap Reference Analysis [TOPLAS 2007]

• Problem.

• Our Objectives.

• Main Challenge.

• Our Key Idea.

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 31/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives.

• Main Challenge.

• Our Key Idea.

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 31/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap data to improve garbage collection
and plug memory leaks

• Main Challenge.

• Our Key Idea.

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 31/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap data to improve garbage collection
and plug memory leaks

• Main Challenge. Unlike stack and static data,

◮ heap data accessible to any procedure is unbounded. Hence,
◮ the mapping between object names and their addresses needs to

change at runtime

• Our Key Idea.

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 32/43

Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 32/43

Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

b

f
h

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 32/43

Which Heap Memory Nodes Can be Statically Marked as
Live?

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < max)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

c
e

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 33/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap data to improve garbage collection
and plug memory leaks

• Main Challenge. Unlike stack and static data,

◮ heap data accessible to any procedure is unbounded. Hence,
◮ the mapping between object names and their addresses needs to

change at runtime

• Our Key Idea.

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 33/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap data to improve garbage collection
and plug memory leaks

• Main Challenge. Unlike stack and static data,

◮ heap data accessible to any procedure is unbounded. Hence,
◮ the mapping between object names and their addresses needs to

change at runtime

• Our Key Idea. Build bounded abstractions of heap data in terms of graphs
and perform analysis using these graphs as data flow values

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed once

a

i

m

b

f
hlptr

rp
tr

rpt
r

lptr rptr

lptr

rptr

lptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 34/43

Heap Reference Analysis: Our Solution

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed twice

a

i

m

b

f
h

c
e

lptr

rp
tr

rpt
r

lptr rptr

lptr

rpt
r

rptr

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 35/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap allocated data to improve garbage
collection and plug memory leaks

• Main Challenge. Unlike stack and static data,

◮ heap data accessible to any procedure is unbounded. Hence,
◮ the mapping between object names and their addresses needs to

change at runtime

• Our Key Idea. Build bounded abstractions of heap data in terms of graphs
and perform analysis using these graphs as data flow values

• Current status.

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 35/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap allocated data to improve garbage
collection and plug memory leaks

• Main Challenge. Unlike stack and static data,

◮ heap data accessible to any procedure is unbounded. Hence,
◮ the mapping between object names and their addresses needs to

change at runtime

• Our Key Idea. Build bounded abstractions of heap data in terms of graphs
and perform analysis using these graphs as data flow values

• Current status. Theory and prototype implementation (at the
intraprocedural level) ready for Java

• Further Work.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 35/43

Heap Reference Analysis [TOPLAS 2007]

• Problem. A lot of unused data remains unclaimed even in the best of
garbage collectors. In C/C++, memory leaks is a major problem

• Our Objectives. Static analysis of heap allocated data to improve garbage
collection and plug memory leaks

• Main Challenge. Unlike stack and static data,

◮ heap data accessible to any procedure is unbounded. Hence,
◮ the mapping between object names and their addresses needs to

change at runtime

• Our Key Idea. Build bounded abstractions of heap data in terms of graphs
and perform analysis using these graphs as data flow values

• Current status. Theory and prototype implementation (at the
intraprocedural level) ready for Java

• Further Work. Liveness based interprocedural alias analysis

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 36/43

Precise Construction of Call Graphs (or Constructing Callee
Contexts)

• Problem. Presence of function pointers obscures the caller-callee
relationship between procedures.

◮ Significant imprecision in the result of any analysis
◮ Efficiency and scalability is adversely affected

• Main Challenges.

• Research Goals.

• Additional Benefits.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 37/43

What Does A Callee Context Mean?

call pStartmain

fp = a[i ]n1

a = [“P ′′, “Q ′′]

call ∗ fpC1

call pR1

i = i + 1n2

if i < nn3

call pEndmain

x ∗ yStartP

. . .

call pEndP

x ∗ y StartQ

. . .

call p EndQ

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 37/43

What Does A Callee Context Mean?

call pStartmain

fp = a[i ]n1

a = [“P ′′, “Q ′′]

call ∗ fpC1

call pR1

i = i + 1n2

if i < nn3

call pEndmain

x ∗ yStartP

. . .

call pEndP

x ∗ y StartQ

. . .

call p EndQ

Is x ∗ y

available?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 37/43

What Does A Callee Context Mean?

call pStartmain

fp = a[i ]n1

a = [“P ′′, “Q ′′]

call ∗ fpC1

call pR1

i = i + 1n2

if i < nn3

call pEndmain

x ∗ yStartP

. . .

call pEndP

x ∗ y StartQ

. . .

call p EndQ

Is x ∗ y

available?

Invalid execution path!

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 37/43

What Does A Callee Context Mean?

call pStartmain

fp = a[i ]n1

a = [“P ′′, “Q ′′]

call ∗ fpC1

call pR1

i = i + 1n2

if i < nn3

call pEndmain

x ∗ yStartP

. . .

call pEndP

x ∗ y StartQ

. . .

call p EndQ

Is x ∗ y

available?

Valid execution path!

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 37/43

What Does A Callee Context Mean?

call pStartmain

fp = a[i ]n1

a = [“P ′′, “Q ′′]

call ∗ fpC1

call pR1

i = i + 1n2

if i < nn3

call pEndmain

x ∗ yStartP

. . .

call pEndP

x ∗ y StartQ

. . .

call p EndQ

Is x ∗ y

available?

Valid execution path!

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 38/43

Precise Construction of Call Graphs (or Constructing Callee
Contexts)

• Problem. Presence of function pointers obscures the caller-callee
relationship between procedures.

◮ Significant imprecision in the result of any analysis
◮ Efficiency and scalability is adversely affected

• Main Challenges.

• Research Goals.

• Additional Benefits.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 38/43

Precise Construction of Call Graphs (or Constructing Callee
Contexts)

• Problem. Presence of function pointers obscures the caller-callee
relationship between procedures.

◮ Significant imprecision in the result of any analysis
◮ Efficiency and scalability is adversely affected

• Main Challenges. Precise and efficient interprocedural analysis of

◮ pointers, and
◮ data structure hierarchy declaration and usage

• Research Goals.

• Additional Benefits.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 38/43

Precise Construction of Call Graphs (or Constructing Callee
Contexts)

• Problem. Presence of function pointers obscures the caller-callee
relationship between procedures.

◮ Significant imprecision in the result of any analysis
◮ Efficiency and scalability is adversely affected

• Main Challenges. Precise and efficient interprocedural analysis of

◮ pointers, and
◮ data structure hierarchy declaration and usage

• Research Goals. Order sensitive call disambiguation analysis

◮ Flow and context sensitive data structure analysis
◮ Creating a mechanism to identify the exact caller to which

information should be propagated

• Additional Benefits.

Uday Khedker IIT Bombay



IITD PPA Dilemma: Some Short Trips 38/43

Precise Construction of Call Graphs (or Constructing Callee
Contexts)

• Problem. Presence of function pointers obscures the caller-callee
relationship between procedures.

◮ Significant imprecision in the result of any analysis
◮ Efficiency and scalability is adversely affected

• Main Challenges. Precise and efficient interprocedural analysis of

◮ pointers, and
◮ data structure hierarchy declaration and usage

• Research Goals. Order sensitive call disambiguation analysis

◮ Flow and context sensitive data structure analysis
◮ Creating a mechanism to identify the exact caller to which

information should be propagated

• Additional Benefits. Precise analysis of programs in object oriented
languages

Uday Khedker IIT Bombay



Part 3

Conclusions



IITD PPA Dilemma: Conclusions 39/43

Observations

• Data flow propagation in real programs seems to involve a much smaller
subset of all possible data flow values

In large programs that work properly, pointer usage is very disciplined and

the core information is very small!

• Earlier approaches reported inefficiency and non-scalability because they
computed far more information than required because they

◮ did not separate the usable information from unusable information,
and

◮ used low level abstractions of memory

Their focus was on

◮ approximating information to reduce the size, or
◮ storing and accessing the information more efficiently

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed?

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Client

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

incremental
computation

splitting into
pre and post
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Algorithm, Data Structure

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

incremental
computation

splitting into
pre and post
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Algorithm, Data Structure

Other examples:

• Bottom up summary flow functions

• Value contexts

• Work list based methods

• BDDs

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

incremental
computation

splitting into
pre and post
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? Definition of Analysis

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

incremental
computation

splitting into
pre and post
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed? No One!

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 40/43

A Spectrum of Possible Ways of Performing Computation

exhaustive
computation

computation
restricted
to usable
information

avoiding
redundant

computation

incremental
computation

splitting into
pre and post
computation

demand driven
computation

Maximum
Computation

Minimum
Computation

Early
Computation

Late
Computation

What should be computed?

When should it be computed?

Do not compute what you don’t need!

Who defines what is needed?
These seem orthogonal
and may be used together

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 41/43

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 41/43

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Our experience of points-to analysis shows that

◮ Use of liveness reduced the pointer information . . .
◮ which reduced the number of contexts required . . .
◮ which reduced the liveness and pointer information . . .

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 41/43

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Our experience of points-to analysis shows that

◮ Use of liveness reduced the pointer information . . .
◮ which reduced the number of contexts required . . .
◮ which reduced the liveness and pointer information . . .

This encouraged us to explore bottom summary flow functions for
points-to analysis

◮ which reduced the number of times a procedure is processed and . . .
◮ gave rise to generalized points-to facts. . .
◮ which reduced the size of intermediate points-to graphs. . .

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 41/43

Conclusions

• Building quick approximations and compromising on precision may not be
necessary for efficiency

• Building clean abstractions to separate the necessary information from
redundant information is much more significant

Our experience of points-to analysis shows that

◮ Use of liveness reduced the pointer information . . .
◮ which reduced the number of contexts required . . .
◮ which reduced the liveness and pointer information . . .

This encouraged us to explore bottom summary flow functions for
points-to analysis

◮ which reduced the number of times a procedure is processed and . . .
◮ gave rise to generalized points-to facts. . .
◮ which reduced the size of intermediate points-to graphs. . .

Approximations should come after

building abstractions and not before

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 42/43

Acknowledgements

Alan Mycroft,
Alefiya Lightwala
Amey Karkare,
Amitabha Sanyal,
Avantika Gupta
Bageshri Sathe,
Prachee Yogi,
Prashant Singh Rawat,

Pritam Gharat,
Priyanka Sawant,
Rohan Padhye,
Shubhangi Agrawal,
Sudakshina Das,
Swati Rathi,
Vini Kanvar,
Vinit Deodhar

. . . and many more

Uday Khedker IIT Bombay



IITD PPA Dilemma: Conclusions 43/43

Last But Not the Least

Thank You!

Uday Khedker IIT Bombay


	Outline
	Our Meanderings
	Some Short Trips
	Conclusions

