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Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow

Analysis: Theory and Practice. CRC Press (Taylor and Francis Group).
2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following books

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

• F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later purely for

academic or research use.
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Outline

• Live Variables Analysis

• Observations about Data Flow Analysis

• Available Expressions Analysis

• Anticipable Expressions Analysis

• Reaching Definitions Analysis

• Common Features of Bit Vector Frameworks

• Partial Redundancy Elimination
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Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start
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Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p v is not live at p
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End

p
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p
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Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

Path based
specification

v is live at p v is not live at p v is live at p

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Control Transfer
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)
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Out i
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Out j
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Defining Data Flow Analysis for Live Variables Analysis
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Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }

Killn = { v | basic block n contains a definition of v }
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Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }

Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data
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Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }

Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

anywhere in n
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
Edge based
specifications
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Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise
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Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

• Inn and Outn are sets of variables
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Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

• Inn and Outn are sets of variables

• BI is boundary information representing the effect of calling contexts

◮ ∅ for local variables except for the values being returned
◮ set of global variables used further in any calling context

(can be safely approximated by the set of all global variables)
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Data Flow Equations for Our Example

w = x1

while (x.data < max)2

x = x.rptr 3y = x.lptr4

z = New class of z5

y = y.lptr6

z.sum = x.data + y.data7

In1 = (Out1 − Kill1) ∪ Gen1

Out1 = In2

In2 = (Out2 − Kill2) ∪ Gen2

Out2 = In3 ∪ In4

In3 = (Out3 − Kill3) ∪ Gen3

Out3 = In2

In4 = (Out4 − Kill4) ∪ Gen4

Out4 = In5

In5 = (Out5 − Kill5) ∪ Gen5

Out5 = In6

In6 = (Out6 − Kill6) ∪ Gen6

Out6 = In7

In7 = (Out7 − Kill7) ∪ Gen7

Out7 = ∅
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Data Flow Equations for Our Example

w = x1

while (x.data < max)2

x = x.rptr 3y = x.lptr4

z = New class of z5

y = y.lptr6

z.sum = x.data + y.data7

Cyclic Dependence
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Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}
z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅
z.sum = x.data + y.data
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Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}
z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅
z.sum = x.data + y.data

Gen and Kill need not be
mutually exclusive
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Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}
z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅
z.sum = x.data + y.data

z is an r-value occurrence and
not an l-value occurrence
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Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}
z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅
z.sum = x.data + y.data

x , y , z are considered to be
used based purely on local use
even if the value of z is not
used later. A different analy-
sis called strongly live variables
analysis improves on this.

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Live Variables Analysis 9/100

Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}
z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅
z.sum = x.data + y.data Initialization

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅
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Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}
z = New class of z

Gen={y}, Kill ={y}
y = y.lptr

Gen={x , y , z},Kill =∅
z.sum = x.data + y.data

Traversal

Iteration #1
∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z
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Performing Live Variables Analysis

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
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Gen={y}, Kill ={y}
y = y.lptr
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z.sum = x.data + y.data
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∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

Iteration #2
∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

{x}

{x}

{x}

{x}

{x}

{x}
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Performing Live Variables Analysis

Local data flow properties when basic blocks contain multiple statements

Gen={x}, Kill ={w}
w = x

Gen={x}, Kill =∅
while (x.data < max)

Gen={x},Kill ={x}
x = x.rptr

Gen={x}, Kill ={y , z}
y = x.lptr

z = New class of z

y = y.lptr
z.sum = x.data + y.data
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Local Data Flow Properties for Live Variables Analysis

Inn = Genn ∪ (Outn − Killn)

• Genn : Use not preceded by definition

• Killn : Definition anywhere in a block
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Local Data Flow Properties for Live Variables Analysis

Inn = Genn ∪ (Outn − Killn)

• Genn : Use not preceded by definition

Upwards exposed use

• Killn : Definition anywhere in a block

Stop the effect from being propagated across a block
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Local Data Flow Properties for Live Variables Analysis

Case Local Information Example Explanation

1 v 6∈ Genn v 6∈ Killn

2 v ∈ Genn v 6∈ Killn

3 v 6∈ Genn v ∈ Killn

4 v ∈ Genn v ∈ Killn
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Local Data Flow Properties for Live Variables Analysis

Case Local Information Example Explanation

1 v 6∈ Genn v 6∈ Killn
a = b + c
b = c ∗ d

liveness of v is unaffected
by the basic block

2 v ∈ Genn v 6∈ Killn
a = b + c
b = v ∗ d

v becomes live
before the basic block

3 v 6∈ Genn v ∈ Killn
a = b + c
v = c ∗ d

v ceases to be live
before the basic block

4 v ∈ Genn v ∈ Killn
a = v + c
v = c ∗ d

liveness of v is killed
but v becomes live
before the basic block
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Using Data Flow Information of Live Variables Analysis

• Used for register allocation

If variable x is live in a basic block b, it is a potential candidate for
register allocation
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Using Data Flow Information of Live Variables Analysis

• Used for register allocation

If variable x is live in a basic block b, it is a potential candidate for
register allocation

• Used for dead code elimination

If variable x is not live after an assignment x = . . ., then the assignment is
redundant and can be deleted as dead code
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Tutorial Problem 1: Perform Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅
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Tutorial Problem 1: Perform Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2

Out In Out In

n6 ∅ ∅
n5 ∅ {a, b, c}
n4 {a, b, c} {a, b, c}
n3 ∅ {a}
n2 {a, b, c} {a, b, c , n}
n1 {a, b, c , n} ∅
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Tutorial Problem 1: Perform Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2

Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ {a, b, c} ∅ {a, b, c}
n4 {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n3 ∅ {a} {a, b, c , n} {a, b, c , n}
n2 {a, b, c} {a, b, c , n} {a, b, c , n} {a, b, c , n}
n1 {a, b, c , n} ∅ {a, b, c , n} ∅
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Tutorial Problem 1: Perform Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b, c} {a, t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2

Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ {a, b, c} ∅ {a, b, c}
n4 {a, b, c} {a, b, c} {a, b, c} {a, b, c}
n3 ∅ {a} {a, b, c , n} {a, b, c , n}
n2 {a, b, c} {a, b, c , n} {a, b, c , n} {a, b, c , n}
n1 {a, b, c , n} ∅ {a, b, c , n} ∅
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Tutorial Problem 1: Round #2 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b} {t1}
n6 ∅ ∅
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Tutorial Problem 1: Round #2 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b} {t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2
Out In Out In

n6 ∅ ∅
n5 ∅ {a, b}
n4 {a, b} {a, b}
n3 ∅ {a}
n2 {a, b} {a, b, n}
n1 {a, b, n} ∅
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Tutorial Problem 1: Round #2 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b} {t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2
Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ {a, b} ∅ {a, b}
n4 {a, b} {a, b} {a, b} {a, b}
n3 ∅ {a} {a, b, n} {a, b, n}
n2 {a, b} {a, b, n} {a, b, n} {a, b, n}
n1 {a, b, n} ∅ {a, b, n} ∅
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Tutorial Problem 1: Round #2 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 {a, b} {t1}
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2
Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ {a, b} ∅ {a, b}
n4 {a, b} {a, b} {a, b} {a, b}
n3 ∅ {a} {a, b, n} {a, b, n}
n2 {a, b} {a, b, n} {a, b, n} {a, b, n}
n1 {a, b, n} ∅ {a, b, n} ∅
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Tutorial Problem 1: Round #3 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 ∅ ∅
n6 ∅ ∅

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Live Variables Analysis 16/100

Tutorial Problem 1: Round #3 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 ∅ ∅
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2
Out In Out In

n6 ∅ ∅
n5 ∅ ∅
n4 ∅ {a}
n3 ∅ {a}
n2 {a} {a, n}
n1 {a, n} ∅
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Tutorial Problem 1: Round #3 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 ∅ ∅
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2
Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ ∅ ∅ ∅
n4 ∅ {a} ∅ {a}
n3 ∅ {a} {a, n} {a, n}
n2 {a} {a, n} {a, n} {a, n}
n1 {a, n} ∅ {a, n} ∅
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Tutorial Problem 1: Round #3 of Dead Code Elimination

a = 4
b = 2
c = 3
n = c*2

n1

if (a>n) n2

a = a+1n3

if (a≥12) n4

t1 = a+b
a = t1+c
print "Hi"

n5

print "Hello" n6

F

F

T

T

Local Data Flow Information
Gen Kill

n1 ∅ {a, b, c , n}
n2 {a, n} ∅
n3 {a} {a}
n4 {a} ∅
n5 ∅ ∅
n6 ∅ ∅

Global Data Flow Information
Iteration #1 Iteration #2
Out In Out In

n6 ∅ ∅ ∅ ∅
n5 ∅ ∅ ∅ ∅
n4 ∅ {a} ∅ {a}
n3 ∅ {a} {a, n} {a, n}
n2 {a} {a, n} {a, n} {a, n}
n1 {a, n} ∅ {a, n} ∅
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What Does Data Flow Analysis Involve?

• Defining the analysis.

• Formulating the analysis.

• Performing the analysis.
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What Does Data Flow Analysis Involve?

• Defining the analysis. Define the properties of execution paths

• Formulating the analysis.

• Performing the analysis.
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What Does Data Flow Analysis Involve?

• Defining the analysis. Define the properties of execution paths

• Formulating the analysis. Define data flow equations

◮ Linear simultaneous equations on sets rather than numbers
◮ Later we will generalize the domain of values

• Performing the analysis.
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What Does Data Flow Analysis Involve?

• Defining the analysis. Define the properties of execution paths

• Formulating the analysis. Define data flow equations

◮ Linear simultaneous equations on sets rather than numbers
◮ Later we will generalize the domain of values

• Performing the analysis. Solve data flow equations for the given program
flow graph
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What Does Data Flow Analysis Involve?

• Defining the analysis. Define the properties of execution paths

• Formulating the analysis. Define data flow equations

◮ Linear simultaneous equations on sets rather than numbers
◮ Later we will generalize the domain of values

• Performing the analysis. Solve data flow equations for the given program
flow graph

• Many unanswered questions

Initial value? Termination? Complexity? Properties of Solutions?
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A Digression: Iterative Solution of Linear Simultaneous
Equations

• Simultaneous equations represented in the form of the product of a matrix
of coefficients (A) with the vector of unknowns (x)

Ax = b

• Start with approximate values

• Compute new values repeatedly from old values

• Two classical methods

◮ Gauss-Seidel Method (Gauss: 1823, 1826), (Seidel: 1874)
◮ Jacobi Method (Jacobi: 1845)
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A Digression: An Example of Iterative Solution of Linear
Simultaneous Equations

Equations Solution
4w = x + y + 32
4x = y + z + 32
4y = z + w + 32
4z = w + x + 32

w = x = y = z = 16

• Rewrite the equations to define w , x , y , and z

w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

• Assume some initial values of w0, x0, y0, and z0

• Compute wi , xi , yi , and zi within some margin of error
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A Digression: Gauss-Seidel Method

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5
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A Digression: Gauss-Seidel Method

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2 Iteration 3

w1 = 6 + 6 + 8 = 20
x1 = 6 + 6 + 8 = 20
y1 = 6 + 6 + 8 = 20
z1 = 6 + 6 + 8 = 20

Iteration 4 Iteration 5
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A Digression: Gauss-Seidel Method

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2 Iteration 3

w1 = 6 + 6 + 8 = 20 w2 = 5 + 5 + 8 = 18
x1 = 6 + 6 + 8 = 20 x2 = 5 + 5 + 8 = 18
y1 = 6 + 6 + 8 = 20 y2 = 5 + 5 + 8 = 18
z1 = 6 + 6 + 8 = 20 z2 = 5 + 5 + 8 = 18

Iteration 4 Iteration 5
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A Digression: Gauss-Seidel Method

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2 Iteration 3

w1 = 6 + 6 + 8 = 20 w2 = 5 + 5 + 8 = 18 w3 = 4.5 + 4.5 + 8 = 17
x1 = 6 + 6 + 8 = 20 x2 = 5 + 5 + 8 = 18 x3 = 4.5 + 4.5 + 8 = 17
y1 = 6 + 6 + 8 = 20 y2 = 5 + 5 + 8 = 18 y3 = 4.5 + 4.5 + 8 = 17
z1 = 6 + 6 + 8 = 20 z2 = 5 + 5 + 8 = 18 z3 = 4.5 + 4.5 + 8 = 17

Iteration 4 Iteration 5
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A Digression: Gauss-Seidel Method

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2 Iteration 3

w1 = 6 + 6 + 8 = 20 w2 = 5 + 5 + 8 = 18 w3 = 4.5 + 4.5 + 8 = 17
x1 = 6 + 6 + 8 = 20 x2 = 5 + 5 + 8 = 18 x3 = 4.5 + 4.5 + 8 = 17
y1 = 6 + 6 + 8 = 20 y2 = 5 + 5 + 8 = 18 y3 = 4.5 + 4.5 + 8 = 17
z1 = 6 + 6 + 8 = 20 z2 = 5 + 5 + 8 = 18 z3 = 4.5 + 4.5 + 8 = 17

Iteration 4 Iteration 5

w4 = 4.25 + 4.25 + 8 = 16.5
x4 = 4.25 + 4.25 + 8 = 16.5
y4 = 4.25 + 4.25 + 8 = 16.5
z4 = 4.25 + 4.25 + 8 = 16.5
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A Digression: Gauss-Seidel Method

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2 Iteration 3

w1 = 6 + 6 + 8 = 20 w2 = 5 + 5 + 8 = 18 w3 = 4.5 + 4.5 + 8 = 17
x1 = 6 + 6 + 8 = 20 x2 = 5 + 5 + 8 = 18 x3 = 4.5 + 4.5 + 8 = 17
y1 = 6 + 6 + 8 = 20 y2 = 5 + 5 + 8 = 18 y3 = 4.5 + 4.5 + 8 = 17
z1 = 6 + 6 + 8 = 20 z2 = 5 + 5 + 8 = 18 z3 = 4.5 + 4.5 + 8 = 17

Iteration 4 Iteration 5

w4 = 4.25 + 4.25 + 8 = 16.5 w5 = 4.125 + 4.125 + 8 = 16.25
x4 = 4.25 + 4.25 + 8 = 16.5 x5 = 4.125 + 4.125 + 8 = 16.25
y4 = 4.25 + 4.25 + 8 = 16.5 y5 = 4.125 + 4.125 + 8 = 16.25
z4 = 4.25 + 4.25 + 8 = 16.5 z5 = 4.125 + 4.125 + 8 = 16.25
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A Digression: Jacobi Method

Use values from the current iteration wherever possible

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2

Iteration 3 Iteration 4
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A Digression: Jacobi Method

Use values from the current iteration wherever possible

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2

w1 = 6 + 6 + 8 = 20
x1 = 6 + 6 + 8 = 20
y1 = 6 + 5 + 8 = 19
z1 = 5 + 5 + 8 = 18

Iteration 3 Iteration 4
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A Digression: Jacobi Method

Use values from the current iteration wherever possible

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2

w1 = 6 + 6 + 8 = 20 w2 = 5 + 4.75 + 8 = 17.75
x1 = 6 + 6 + 8 = 20 x2 = 4.75 + 4.5 + 8 = 17.25
y1 = 6 + 5 + 8 = 19 y2 = 4.5 + 4.4375 + 8 = 16.935
z1 = 5 + 5 + 8 = 18 z2 = 4.4375 + 4.375 + 8 = 16.8125

Iteration 3 Iteration 4
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A Digression: Jacobi Method

Use values from the current iteration wherever possible

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2

w1 = 6 + 6 + 8 = 20 w2 = 5 + 4.75 + 8 = 17.75
x1 = 6 + 6 + 8 = 20 x2 = 4.75 + 4.5 + 8 = 17.25
y1 = 6 + 5 + 8 = 19 y2 = 4.5 + 4.4375 + 8 = 16.935
z1 = 5 + 5 + 8 = 18 z2 = 4.4375 + 4.375 + 8 = 16.8125

Iteration 3 Iteration 4

w3 = 4.3125 + 4.23375+ 8 = 16.54625
x3 = 4.23375 + 4.23375+ 8 = 16.436875
y3 = 4.23375 + 4.1365625+ 8 = 16.370
z3 = 4.1365625+ 4.11 + 8 = 16.34375
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A Digression: Jacobi Method

Use values from the current iteration wherever possible

Equations Initial Values Error Margin
w = 0.25x + 0.25y + 8
x = 0.25y + 0.25z + 8
y = 0.25z + 0.25w + 8
z = 0.25w + 0.25x + 8

w0 = 24
x0 = 24
y0 = 24
z0 = 24

wi+1 − wi ≤ 0.35
xi+1 − xi ≤ 0.35
yi+1 − yi ≤ 0.35
zi+1 − zi ≤ 0.35

Iteration 1 Iteration 2

w1 = 6 + 6 + 8 = 20 w2 = 5 + 4.75 + 8 = 17.75
x1 = 6 + 6 + 8 = 20 x2 = 4.75 + 4.5 + 8 = 17.25
y1 = 6 + 5 + 8 = 19 y2 = 4.5 + 4.4375 + 8 = 16.935
z1 = 5 + 5 + 8 = 18 z2 = 4.4375 + 4.375 + 8 = 16.8125

Iteration 3 Iteration 4

w3 = 4.3125 + 4.23375+ 8 = 16.54625 w4 = 16.20172
x3 = 4.23375 + 4.23375+ 8 = 16.436875 x4 = 16.17844
y3 = 4.23375 + 4.1365625+ 8 = 16.370 y4 = 16.13637
z3 = 4.1365625+ 4.11 + 8 = 16.34375 z4 = 16.09504
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Our Method of Performing Data Flow Analysis

• Round robin iteration

• Essentially Jacobi method

• Unknowns are the data flow variables Ini and Out i

• Domain of values is not numbers

• Computation in a fixed order

◮ either forward (reverse post order) traversal, or
◮ backward (post order) traversal

over the control flow graph
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Tutorial Problem 2 for Liveness Analysis

Draw the control flow graph and perform live variables analysis

int f(int m, int n, int k)

{

int a,i;

for (i=m-1; i<k; i++)

{ if (i>=n)

a = n;

a = a+i;

}

return a;

}
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Tutorial Problem 2 for Liveness Analysis

Draw the control flow graph and perform live variables analysis

int f(int m, int n, int k)

{

int a,i;

for (i=m-1; i<k; i++)

{ if (i>=n)

a = n;

a = a+i;

}

return a;

}

i=m-1

if(i<k)

if (i>=n)

a=n

a=a+i
i=i+1

return a

n1

n2

n3

n4

n5

n6

T

T

F

F
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The Semantics of Return Statement for Live Variables
Analysis

“return a” is modelled by the statement “return value in stack = a”

• If we assume that the statement is executed within the block

• If we assume that the statement is executed outside of the block and
along the edge connecting the procedure to its caller
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The Semantics of Return Statement for Live Variables
Analysis

“return a” is modelled by the statement “return value in stack = a”

• If we assume that the statement is executed within the block

⇒ BI can be ∅

• If we assume that the statement is executed outside of the block and
along the edge connecting the procedure to its caller

⇒ a ∈ BI
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Solution of Tutorial Problem 2

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 {a} ∅
n5 {a, i} {a, i}
n4 {n} {a}
n3 {i , n} ∅
n2 {i , k} ∅
n1 {m} {i}
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Solution of Tutorial Problem 2

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 {a} ∅ ∅ {a}
n5 {a, i} {a, i} ∅ {a, i}
n4 {n} {a} {a, i} {i , n}
n3 {i , n} ∅ {a, i , n} {a, i , n}
n2 {i , k} ∅ {a, i , n} {a, i , k , n}
n1 {m} {i} {a, i , k , n} {a, k ,m, n}
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Solution of Tutorial Problem 2

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 {a} ∅ ∅ {a}
n5 {a, i} {a, i} ∅ {a, i} {a, i , k , n} {a, i , k , n}
n4 {n} {a} {a, i} {i , n} {a, i , k , n} {i , k , n}
n3 {i , n} ∅ {a, i , n} {a, i , n} {a, i , k , n} {a, i , k , n}
n2 {i , k} ∅ {a, i , n} {a, i , k , n} {a, i , k , n}
n1 {m} {i} {a, i , k , n} {a, k ,m, n}
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 2

i=m-1

if(i<k)

if (i>=n)

a=n

a=a+i
i=i+1

return a

n1

n2

n3

n4

n5

n6

T

T

F

F

• Is a live at the exit of n5 at the end of
iteration 1? Why?

(We have used post order traversal)
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• Is a live at the exit of n5 at the end of
iteration 2? Why?

(We have used post order traversal)
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(We have used post order traversal)
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is live at the exit of n5
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if (i>=n)

a=n

a=a+i
i=i+1

return a

n1

n2

n3

n4

n5

n6

T

T

F

F

• Is a live at the exit of n5 at the end of
iteration 1? Why?

(We have used post order traversal)

• Is a live at the exit of n5 at the end of
iteration 2? Why?

(We have used post order traversal)

• Show an execution path along which a
is live at the exit of n5

• Show an execution path along which a
is live at the exit of n3
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 2

i=m-1

if(i<k)

if (i>=n)

a=n

a=a+i
i=i+1

return a
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n6
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F

• Is a live at the exit of n5 at the end of
iteration 1? Why?

(We have used post order traversal)

• Is a live at the exit of n5 at the end of
iteration 2? Why?

(We have used post order traversal)

• Show an execution path along which a
is live at the exit of n5

• Show an execution path along which a
is live at the exit of n3

n1 → n2 → n3 → n5 → n2 → . . .
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 2

i=m-1

if(i<k)

if (i>=n)

a=n

a=a+i
i=i+1

return a

n1

n2

n3

n4

n5

n6

T

T

F

F

• Is a live at the exit of n5 at the end of
iteration 1? Why?

(We have used post order traversal)

• Is a live at the exit of n5 at the end of
iteration 2? Why?

(We have used post order traversal)

• Show an execution path along which a
is live at the exit of n5

• Show an execution path along which a
is live at the exit of n3

n1 → n2 → n3 → n5 → n2 → . . .

• Show an execution path along which a
is not live at the exit of n3
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 2

i=m-1

if(i<k)

if (i>=n)

a=n

a=a+i
i=i+1

return a

n1

n2

n3

n4

n5

n6

T

T

F

F

• Is a live at the exit of n5 at the end of
iteration 1? Why?

(We have used post order traversal)

• Is a live at the exit of n5 at the end of
iteration 2? Why?

(We have used post order traversal)

• Show an execution path along which a
is live at the exit of n5

• Show an execution path along which a
is live at the exit of n3

n1 → n2 → n3 → n5 → n2 → . . .

• Show an execution path along which a
is not live at the exit of n3

n1 → n2 → n3 → n4 → n2 → . . .
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Tutorial Problem 3 for Liveness Analysis

Also write a C program for this CFG without using goto or break

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T
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Tutorial Problem 3 for Liveness Analysis

Also write a C program for this CFG without using goto or break

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

void f()

{ int x, y, z;

int c, d;

x = 1;

y = 2;

if (c)

{ do

{ x = y+1;

y = 2*z;

if (d)

x = y+z;

z = 1;

} while (c < 20);

}

z = x;

}
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Solution of Tutorial Problem 3

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 {x} {z}
n5 {c} {z}
n4 {y , z} {x}

n3 {y , z , d} {x , y}

n2 {c} ∅

n1 ∅ {x , y}
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Solution of Tutorial Problem 3

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 {x} {z} ∅ {x}
n5 {c} {z} {x} {x , c}
n4 {y , z} {x} {x , c} {y , z , c}

n3 {y , z , d} {x , y} {x , y ,
z , c}

{y , z ,
c , d}

n2 {c} ∅ {x , y , z ,
c , d}

{x , y , z ,
c , d}

n1 ∅ {x , y} {x , y , z ,
c , d} {z , c , d}
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Solution of Tutorial Problem 3

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 {x} {z} ∅ {x}
n5 {c} {z} {x} {x , c} {x , y , z , c , d} {x , y , c , d}
n4 {y , z} {x} {x , c} {y , z , c} {x , y , c , d} {y , z , c , d}

n3 {y , z , d} {x , y} {x , y ,
z , c}

{y , z ,
c , d} {x , y , z , c , d}

n2 {c} ∅ {x , y , z ,
c , d}

{x , y , z ,
c , d}

n1 ∅ {x , y} {x , y , z ,
c , d} {z , c , d}
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?

• Why is x live at the exit of n3 inspite
of being killed in n4?
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?

• Why is x live at the exit of n3 inspite
of being killed in n4?

• Identify the instance of dead code
elimination
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• Why is x live at the exit of n3 inspite
of being killed in n4?

• Identify the instance of dead code
elimination z = x in n6

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Some Observations 29/100

Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?

• Why is x live at the exit of n3 inspite
of being killed in n4?

• Identify the instance of dead code
elimination z = x in n6

• Would the first round of dead code
elimination cause liveness information
to change?
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?

• Why is x live at the exit of n3 inspite
of being killed in n4?

• Identify the instance of dead code
elimination z = x in n6

• Would the first round of dead code
elimination cause liveness information
to change? Yes
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?

• Why is x live at the exit of n3 inspite
of being killed in n4?

• Identify the instance of dead code
elimination z = x in n6

• Would the first round of dead code
elimination cause liveness information
to change? Yes

• Would the second round of liveness
analysis lead to further dead code
elimination?
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Interpreting the Result of Liveness Analysis for Tutorial
Problem 3

n1
x = 1
y = 2 n1

n2 if (c) n2

n3
x = y + 1
y = 2 ∗ z
if (d)

n3

n4 x = y + z n4

n5
z = 1
if (c < 20) n5

n6 z = x n6

T

F

T

T
F

T

• Why is z live at the exit of n5?

• Why is z not live at the entry of n5?

• Why is x live at the exit of n3 inspite
of being killed in n4?

• Identify the instance of dead code
elimination z = x in n6

• Would the first round of dead code
elimination cause liveness information
to change? Yes

• Would the second round of liveness
analysis lead to further dead code
elimination? Yes
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CS 618 Bit Vector Frameworks: Some Observations 30/100

Choice of Initialization

What should be the initial value of internal nodes?

The role of boundary info BI explained later in the context of available

expressions analysis
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Choice of Initialization

What should be the initial value of internal nodes?

• Confluence is ∪

• Identity of ∪ is ∅

The role of boundary info BI explained later in the context of available

expressions analysis
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CS 618 Bit Vector Frameworks: Some Observations 30/100

Choice of Initialization

What should be the initial value of internal nodes?

• Confluence is ∪

• Identity of ∪ is ∅

• We begin with ∅ and let the sets at each program point grow

A revisit to a program point

◮ may consider a new execution path
◮ more variables may be found to be live
◮ a variable found to be live earlier does not become dead

The role of boundary info BI explained later in the context of available

expressions analysis
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CS 618 Bit Vector Frameworks: Some Observations 31/100

How Does the Initialization Affect the Solution?

a = b = 5

print b

print b
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How Does the Initialization Affect the Solution?

a = b = 5

print b

print b

Init.

∅

∅

∅

∅

∅

∅
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How Does the Initialization Affect the Solution?

a = b = 5

print b

print b

Init.
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∅

∅
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∅
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{b}
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How Does the Initialization Affect the Solution?

a = b = 5

print b

print b

Init.
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∅

∅

∅

∅

Iter.
#1

∅

∅

∅

{b}

{b}

∅

Iter.
#2

∅

∅

{b}

{b}

{b}

∅
a = b = 5

print b

print b

Init.

{a, b}

{a, b}

{a, b}

{a, b}

{a, b}

∅

Iter.
#1

∅

∅
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∅

a is spuriously marked live
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CS 618 Bit Vector Frameworks: Some Observations 32/100

Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information
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Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information

• Spurious inclusion of a non-live variable

x = y + 10

print y

print y

i

j

End

Out i = {x , y}
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Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information

• Spurious inclusion of a non-live variable
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Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information

• Spurious inclusion of a non-live variable

◮ A dead assignment may not be eliminated
◮ Solution is sound but may be imprecise

• Spurious exclusion of a live variable

x = y + 10

print y

print y

i

j

End

Out i = {x , y}

x = z + 10

print x , y

print y

i

j

End

Out i = {y}
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Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information

• Spurious inclusion of a non-live variable

◮ A dead assignment may not be eliminated
◮ Solution is sound but may be imprecise

• Spurious exclusion of a live variable

◮ A useful assignment may be eliminated
◮ Solution is unsound

x = y + 10

print y

print y

i

j

End

Out i = {x , y}

x = z + 10

print x , y

print y

i

j

End

Out i = {y}
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Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information

• Spurious inclusion of a non-live variable

◮ A dead assignment may not be eliminated
◮ Solution is sound but may be imprecise

• Spurious exclusion of a live variable

◮ A useful assignment may be eliminated
◮ Solution is unsound

• Given L2 ⊇ L1 representing liveness information

◮ Using L2 in place of L1 is sound
◮ Using L1 in place of L2 may not be sound

x = y + 10

print y

print y

i

j

End

Out i = {x , y}

x = z + 10

print x , y

print y

i

j

End

Out i = {y}
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Soundness and Precision of Live Variables Analysis

Consider dead code elimination based on liveness information

• Spurious inclusion of a non-live variable

◮ A dead assignment may not be eliminated
◮ Solution is sound but may be imprecise

• Spurious exclusion of a live variable

◮ A useful assignment may be eliminated
◮ Solution is unsound

• Given L2 ⊇ L1 representing liveness information

◮ Using L2 in place of L1 is sound
◮ Using L1 in place of L2 may not be sound

• The smallest set of all live variables is most precise

◮ Since liveness sets grow (confluence is ∪), we
choose ∅ as the initial conservative value

x = y + 10

print y

print y

i

j

End

Out i = {x , y}

x = z + 10

print x , y

print y

i

j

End

Out i = {y}
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Termination, Convergence, and Complexity

• For live variables analysis,

◮ The set of all variables is finite, and
◮ the confluence operation (i.e. meet) is union, hence
◮ the set associated with a data flow variable can only grow

⇒ Termination is guaranteed

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Some Observations 33/100

Termination, Convergence, and Complexity

• For live variables analysis,

◮ The set of all variables is finite, and
◮ the confluence operation (i.e. meet) is union, hence
◮ the set associated with a data flow variable can only grow

⇒ Termination is guaranteed

• Since initial value is ∅, live variables analysis converges on the smallest set

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Some Observations 33/100

Termination, Convergence, and Complexity

• For live variables analysis,

◮ The set of all variables is finite, and
◮ the confluence operation (i.e. meet) is union, hence
◮ the set associated with a data flow variable can only grow

⇒ Termination is guaranteed

• Since initial value is ∅, live variables analysis converges on the smallest set

• How many iterations do we need for reaching the convergence?

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Some Observations 33/100

Termination, Convergence, and Complexity

• For live variables analysis,

◮ The set of all variables is finite, and
◮ the confluence operation (i.e. meet) is union, hence
◮ the set associated with a data flow variable can only grow

⇒ Termination is guaranteed

• Since initial value is ∅, live variables analysis converges on the smallest set

• How many iterations do we need for reaching the convergence?

• Going beyond live variables analysis

◮ Do the sets always grow for other data flow frameworks?
◮ What is the complexity of round robin analysis for other analyses?
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Termination, Convergence, and Complexity

• For live variables analysis,

◮ The set of all variables is finite, and
◮ the confluence operation (i.e. meet) is union, hence
◮ the set associated with a data flow variable can only grow

⇒ Termination is guaranteed

• Since initial value is ∅, live variables analysis converges on the smallest set

• How many iterations do we need for reaching the convergence?

• Going beyond live variables analysis

◮ Do the sets always grow for other data flow frameworks?
◮ What is the complexity of round robin analysis for other analyses?

Answered formally in module 2 (Theoretical Abstractions)
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Conservative Nature of Analysis (1)

x=abs(x)b1

if (x < 0)b2

x=a+yb3 x=a+z b4

x=a+zb5

T F
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• abs(n) returns the absolute value of n
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Conservative Nature of Analysis (1)

x=abs(x)b1

if (x < 0)b2

x=a+yb3 x=a+z b4

x=a+zb5

T F

• abs(n) returns the absolute value of n

• Is y live on entry to block b2?

• By execution semantics, NO

Path b1→b2→b3 is an infeasible
execution path

• A compiler makes conservative
assumptions:

All branch outcomes are possible

⇒ Consider every path in CFG as a po-
tential execution path

• Our analysis concludes that y is live on
entry to block b2
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Conservative Nature of Analysis (2)

if (x < 0)b1

a=a+yb2 x=a+z b3

if (x < 0)b4

x=c+1b5 x=b+1 b6

if (x < 0)b7

T F

T F
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Conservative Nature of Analysis (2)

if (x < 0)b1

a=a+yb2 x=a+z b3

if (x < 0)b4

x=c+1b5 x=b+1 b6

if (x < 0)b7

T F

T F

• Is b live on entry to block b2?

• By execution semantics, NO

Path b1→b2→b4→b6 is an infeasible
execution path
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Conservative Nature of Analysis (2)

if (x < 0)b1

a=a+yb2 x=a+z b3

if (x < 0)b4

x=c+1b5 x=b+1 b6

if (x < 0)b7

T F

T F

• Is b live on entry to block b2?

• By execution semantics, NO

Path b1→b2→b4→b6 is an infeasible
execution path

• Is c live on entry to block b3?

Path b1→b3→b4→b6 is a feasible
execution path
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T F
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• By execution semantics, NO

Path b1→b2→b4→b6 is an infeasible
execution path

• Is c live on entry to block b3?

Path b1→b3→b4→b6 is a feasible
execution path

• A compiler make conservative assumptions
⇒ our analysis is path insensitive

Note: It is flow sensitive (i.e. information
is computed for every control flow points)

• Our analysis concludes that b is live at the
entry of b2
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Conservative Nature of Analysis (2)

if (x < 0)b1

a=a+yb2 x=a+z b3

if (x < 0)b4

x=c+1b5 x=b+1 b6

if (x < 0)b7

T F

T F

• Is b live on entry to block b2?

• By execution semantics, NO

Path b1→b2→b4→b6 is an infeasible
execution path

• Is c live on entry to block b3?

Path b1→b3→b4→b6 is a feasible
execution path

• A compiler make conservative assumptions
⇒ our analysis is path insensitive

Note: It is flow sensitive (i.e. information
is computed for every control flow points)

• Our analysis concludes that b is live at the
entry of b2

• Is c live at the entry of b3?
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Conservative Nature of Analysis at Intraprocedural Level

• We assume that all paths are potentially executable

• Our analysis is path insensitive

◮ The data flow information at a program point p is path insensitive

◦ information at p is merged along all paths reaching p

◮ The data flow information reaching p is computed path insensitively

◦ information is merged at all shared points in paths reaching p

◦ may generate spurious information due to non-distributive flow
functions

More about it in module 2
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Conservative Nature of Analysis at Interprocedural Level

• Context insensitivity

◮ Merges of information across all calling contexts

• Flow insensitivity

◮ Disregards the control flow

More about it in module 4
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What About Soundness of Analysis Results?

• No compromises

• We will study it in module 2
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Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e
which is not followed by a definition of any operand of e.

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start
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An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e
which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End
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Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e
which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Available Expressions Analysis 40/100

Local Data Flow Properties for Available Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not followed by a definition of
any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Downwards
Killn Expression Modification Anywhere
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Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)
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Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)
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p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

• Inn and Outn are sets of expressions
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Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

• Inn and Outn are sets of expressions

• BI is ∅ for expressions involving a local variable
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Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination
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Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block n (Inn) and
◮ a computation of the expression exists in n such that
◮ it is not preceded by a definition of any of its operands (AntGenn)

Then the expression is redundant

Redundantn = Inn ∩ AntGenn
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Using Data Flow Information of Available Expressions
Analysis

• Common subexpression elimination

◮ If an expression is available at the entry of a block n (Inn) and
◮ a computation of the expression exists in n such that
◮ it is not preceded by a definition of any of its operands (AntGenn)

Then the expression is redundant

Redundantn = Inn ∩ AntGenn

• A redundant expression is upwards exposed whereas the expressions in
Genn are downwards exposed
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An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Gen Kill Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000
2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000
3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000
4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000
5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000
6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001
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An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Initialisation

0000

1111

1111

1111

1111

1111

1111

1111
1111

1111

1111

1111

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Gen Kill Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000
2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000
3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000
4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000
5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000
6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001
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An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Iteration #1

0000

1100

1100

1110

1110

1000

1110

1100
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Gen Kill Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000
2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000
3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000
4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000
5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000
6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001
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An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Iteration #2

0000

1100

1000

1010

1010

1000

1010

1000
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Gen Kill Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000
2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000
3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000
4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000
5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000
6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001
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An Example of Available Expressions Analysis

1
a ∗ b
b ∗ c 1

2 c ∗ d 2

3 c = 2 3 4 d = 3 4

5
d ∗ e
a ∗ b 5

6 d ∗ e 6

Final Result

0000

1100

1000

1010

1010

1000

1010

1000
1000

1001

1001

1001

Let e1 ≡ a ∗ b, e2 ≡ b ∗ c , e3 ≡ c ∗ d , e4 ≡ d ∗ e

N
o
d
e

Gen Kill Available Redund.

1 {e1, e2} 1100 ∅ 0000 ∅ 0000 ∅ 0000
2 {e3} 0010 ∅ 0000 {e1} 1000 ∅ 0000
3 ∅ 0000 {e2, e3} 0110 {e1, e3} 1010 ∅ 0000
4 ∅ 0000 {e3, e4} 0011 {e1, e3} 1010 ∅ 0000
5 {e1, e4} 1001 ∅ 0000 {e1} 1000 {e1} 1000
6 {e4} 0001 ∅ 0000 {e1, e4} 1001 {e4} 0001
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Tutorial Problem 2 for Available Expressions Analysis

n1
d = a ∗ b
e = b + c n1

n2 if (c) n2

n3 a = b + c n3n4
c = a ∗ b
a = 10 n4

n5 if (d) n5

n6 print a, b, c , d n6
Expr = { a ∗ b, b + c }
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Solution of the Tutorial Problem 2

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn

n1 11 00 11
n2 00 00 00
n3 01 10 01
n4 00 11 10
n5 00 00 00
n6 00 00 00
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Solution of the Tutorial Problem 2

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn

n1 11 00 11 00 11
n2 00 00 00 11 11
n3 01 10 01 11 01
n4 00 11 10 11 00
n5 00 00 00 00 00
n6 00 00 00 00 00
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Solution of the Tutorial Problem 2

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn

n1 11 00 11 00 11
n2 00 00 00 11 11 00 00
n3 01 10 01 11 01 00
n4 00 11 10 11 00 00
n5 00 00 00 00 00
n6 00 00 00 00 00
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Solution of the Tutorial Problem 2

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn

n1 11 00 11 00 11 00
n2 00 00 00 11 11 00 00 00
n3 01 10 01 11 01 00 00
n4 00 11 10 11 00 00 00
n5 00 00 00 00 00 00
n6 00 00 00 00 00 00
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Tutorial Problem 3 for Available Expressions Analysis

n1
c = a ∗ b
d = b + c n1

n2 d = a + b n2

n3 d = b + c n3

n4
a = 5
d = a + b n4 c = 10 n5

n6
d = a+ b
print a, b, c , d n6

Expr = { a ∗ b, b + c , a+ b }
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Solution of the Tutorial Problem 3

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
Iteration # 2

Changes in
Iteration # 3 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn Inn Outn

n1 110 010 100
n2 001 000 001
n3 010 000 010
n4 001 101 000
n5 000 010 000
n6 001 000 001
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Solution of the Tutorial Problem 3

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
Iteration # 2

Changes in
Iteration # 3 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn Inn Outn

n1 110 010 100 000 110
n2 001 000 001 110 111
n3 010 000 010 111 111
n4 001 101 000 111 011
n5 000 010 000 111 101
n6 001 000 001 101 101
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Solution of the Tutorial Problem 3

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
Iteration # 2

Changes in
Iteration # 3 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn Inn Outn

n1 110 010 100 000 110
n2 001 000 001 110 111 100 101
n3 010 000 010 111 111 001 011
n4 001 101 000 111 011 011
n5 000 010 000 111 101 001 001
n6 001 000 001 101 101 001 001
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Solution of the Tutorial Problem 3

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
Iteration # 2

Changes in
Iteration # 3 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn Inn Outn

n1 110 010 100 000 110
n2 001 000 001 110 111 100 101 000 001
n3 010 000 010 111 111 001 011
n4 001 101 000 111 011 011
n5 000 010 000 111 101 001 001
n6 001 000 001 101 101 001 001
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Solution of the Tutorial Problem 3

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
Iteration # 2

Changes in
Iteration # 3 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn Inn Outn

n1 110 010 100 000 110 000
n2 001 000 001 110 111 100 101 000 001 000
n3 010 000 010 111 111 001 011 000
n4 001 101 000 111 011 011 000
n5 000 010 000 111 101 001 001 000
n6 001 000 001 101 101 001 001 001
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Solution of the Tutorial Problem 3

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
Iteration # 2

Changes in
Iteration # 3 Redundantn

Genn Killn AntGenn Inn Outn Inn Outn Inn Outn

n1 110 010 100 000 110 000
n2 001 000 001 110 111 100 101 000 001 000
n3 010 000 010 111 111 001 011 000
n4 001 101 000 111 011 011 000
n5 000 010 000 111 101 001 001 000
n6 001 000 001 101 101 001 001 001

Why do we need 3 iterations as against 2 for previous problems?
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1

2

3

U

1

2

3
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10

2 10 11

3 10 11

U

1

2

3
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1

2

3
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11

2 11 11

3 11 11
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11 11 11

2 11 11 00 01

3 11 11 01 11
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11 11 11

2 11 11 00 01

3 11 11 01 11
This represents the expected

availability information leading to
elimination of a + c in node 3

(a ∗ c is not redundant in node 3)
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11 11 11

2 11 11 00 01

3 11 11 01 11

This misses the
availability of a+ c

in node 3
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11 11 11

2 11 11 00 01

3 11 11 01 11

This makes a ∗ c available
in node 3 although its

computation in node 3 is
not redundant
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11 11 11

2 11 11 00 01

3 11 11 01 11

This make a ∗ c available
in node 3 and but misses
the availability of a+ c in

node 3
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The Effect of BI and Initialization on a Solution

1 w = a+ c 1

2 x = a ∗ c 2

3
y = a+ c
z = a ∗ c 3

Bit Vector

a+ c a ∗ c

BI Node
Initialization U Initialization ∅

Inn Outn Inn Outn

∅

1 00 10 00 10

2 10 11 00 01

3 10 11 01 11

U

1 11 11 11 11

2 11 11 00 01

3 11 11 01 11

Sound &
Precise

Sound &
Imprecise

Unsound Unsound
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Some Observations

• Data flow equations do not require a particular order of computation

◮ Specification. Data flow equations define what needs to be computed
and not how it is to be computed

◮ Implementation. Round robin iterations perform the actual
computation

◮ Specification and implementation are distinct

• Initialization governs the quality of solution found

◮ Only precision is affected, soundness is guaranteed
◮ Associated with “internal” nodes

• BI depends on the semantics of the calling context

◮ May cause unsoundness
◮ Associated with “boundary” node (specified by data flow equations)

Does not vary with the method or order of traversal
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Still More Tutorial Problems

A New Data Flow Framework: Partially available expressions analysis

• Expressions that are computed and remain unmodified along some path
reaching p

• The data flow equations are same as that of available expressions analysis
except that the confluence is changed to ∪

Perform partially available expressions analysis for the example program used for

available expressions analysis
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Solution of the Tutorial Problem 2 for Partial Availability
Analysis

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1
ParRedundn

Genn Killn AntGenn PavInn PavOutn

n1 11 00 11
n2 00 00 00
n3 01 10 01
n4 00 11 10
n5 00 00 00
n6 00 00 00
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Solution of the Tutorial Problem 2 for Partial Availability
Analysis

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1
ParRedundn

Genn Killn AntGenn PavInn PavOutn

n1 11 00 11 00 11
n2 00 00 00 11 11
n3 01 10 01 11 01
n4 00 11 10 11 00
n5 00 00 00 01 01
n6 00 00 00 01 01
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Solution of the Tutorial Problem 2 for Partial Availability
Analysis

Bit vector a ∗ b b + c

Local Information
Global Information

N
o
d
e

Iteration # 1
ParRedundn

Genn Killn AntGenn PavInn PavOutn

n1 11 00 11 00 11 00
n2 00 00 00 11 11 00
n3 01 10 01 11 01 01
n4 00 11 10 11 00 10
n5 00 00 00 01 01 00
n6 00 00 00 01 01 00
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Solution of the Tutorial Problem 3 for Partial Availability
Analysis

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 ParRedundn

Genn Killn AntGenn PavInn PavOutn Inn Outn

n1 110 010 100
n2 001 000 001
n3 010 000 010
n4 001 101 000
n5 000 010 000
n6 001 000 001
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Solution of the Tutorial Problem 3 for Partial Availability
Analysis

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 ParRedundn

Genn Killn AntGenn PavInn PavOutn Inn Outn

n1 110 010 100 000 110
n2 001 000 001 110 111
n3 010 000 010 111 111
n4 001 101 000 111 011
n5 000 010 000 111 101
n6 001 000 001 101 101
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Solution of the Tutorial Problem 3 for Partial Availability
Analysis

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 ParRedundn

Genn Killn AntGenn PavInn PavOutn Inn Outn

n1 110 010 100 000 110
n2 001 000 001 110 111 111
n3 010 000 010 111 111
n4 001 101 000 111 011
n5 000 010 000 111 101
n6 001 000 001 101 101
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Solution of the Tutorial Problem 3 for Partial Availability
Analysis

Bit vector a ∗ b b + c a+ b

Local Information
Global Information

N
o
d
e

Iteration # 1 Changes in
iteration # 2 ParRedundn

Genn Killn AntGenn PavInn PavOutn Inn Outn

n1 110 010 100 000 110 000
n2 001 000 001 110 111 111 001
n3 010 000 010 111 111 010
n4 001 101 000 111 011 000
n5 000 010 000 111 101 000
n6 001 000 001 101 101 001

Jul 2017 IIT Bombay



Part 5

Reaching Definitions Analysis



CS 618 Bit Vector Frameworks: Reaching Definitions Analysis 53/100

Defining Reaching Definitions Analysis

• A definition dx : x = e reaches a program point p if it appears (without a
redefinition of x) on some path from program entry to p

(x is a variable and e is an expression)

• Application : Copy Propagation

A use of a variable x at a program point p can be replaced by y if
dx : x = y is the only definition which reaches p and y is not modified
between the point of dx and p.
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Using Reaching Definitions for Def-Use and Use-Def Chains

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Def-Use Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Using Reaching Definitions for Def-Use and Use-Def Chains

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Def-Use Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Using Reaching Definitions for Def-Use and Use-Def Chains

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Def-Use Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Using Reaching Definitions for Def-Use and Use-Def Chains

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Def-Use Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Use-Def Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Using Reaching Definitions for Def-Use and Use-Def Chains

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Def-Use Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Use-Def Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Using Reaching Definitions for Def-Use and Use-Def Chains

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Def-Use Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

Use-Def Chains

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

There is a need to distinguish
between different occurrences
of lexically identical definitions

Hence a definition is identified
by the label of the statement
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Defining Data Flow Analysis for Reaching Definitions
Analysis

Let dv be a definition of variable v

Genn = { dv | variable v is defined in basic block n and
this definition is not followed (within n)
by a definition of v}

Killn = { dv | basic block n contains a definition of v}

Entity Manipulation Exposition

Genn Definition Occurrence Downwards
Killn Definition Occurrence Anywhere
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Data Flow Equations for Reaching Definitions Analysis

Inn =







BI n is Start block
⋃

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

BI = {dx : x = undef | x ∈ Var}

Inn and Outn are sets of definitions
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

Local copy
propagation and
constant folding
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = c∗2

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

Local copy
propagation and
constant folding

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

Gen Kill

n1 {a1, b1, c1, n1}
{a0, a1, a2, a3, b0,
b1, c0, c1, n0, n1}

n2 ∅ ∅
n3 {a2} {a0, a1, a2, a3}
n4 ∅ ∅
n5 {a3} {a0, a1, a2, a3}
n6 ∅ ∅
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

• Temporary variable t1 is ignored

• For variable v , v0 denotes the
definition v = ?

This is used for defining BI

Gen Kill

n1 {a1, b1, c1, n1}
{a0, a1, a2, a3, b0,
b1, c0, c1, n0, n1}

n2 ∅ ∅
n3 {a2} {a0, a1, a2, a3}
n4 ∅ ∅
n5 {a3} {a0, a1, a2, a3}
n6 ∅ ∅
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

Gen Kill

n1 {a1, b1, c1, n1}
{a0, a1, a2, a3, b0,
b1, c0, c1, n0, n1}

n2 ∅ ∅
n3 {a2} {a0, a1, a2, a3}
n4 ∅ ∅
n5 {a3} {a0, a1, a2, a3}
n6 ∅ ∅

Iteration #1

In Out

n1 {a0, b0, c0, n0} {a1, b1, c1, n1}
n2 {a1, b1, c1, n1} {a1, b1, c1, n1}
n3 {a1, b1, c1, n1} {a2, b1, c1, n1}
n4 {a1, b1, c1, n1} {a1, b1, c1, n1}
n5 {a1, b1, c1, n1} {a3, b1, c1, n1}
n6 {a1, a3, b1, c1, n1} {a1, a3, b1, c1, n1}
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

a2: a = a+13

if (a≥12)4

t11: t1 = a+b
a3: a = t1+c5

print a6

F

F

T

T

Gen Kill

n1 {a1, b1, c1, n1}
{a0, a1, a2, a3, b0,
b1, c0, c1, n0, n1}

n2 ∅ ∅
n3 {a2} {a0, a1, a2, a3}
n4 ∅ ∅
n5 {a3} {a0, a1, a2, a3}
n6 ∅ ∅

Iteration #2

In Out

n1 {a0, b0, c0, n0} {a1, b1, c1, n1}
n2 {a1, a2, b1, c1, n1} {a1, a2, b1, c1, n1}
n3 {a1, a2, b1, c1, n1} {a2, b1, c1, n1}
n4 {a1, a2, b1, c1, n1} {a1, a2, b1, c1, n1}
n5 {a1, a2, b1, c1, n1} {a3, b1, c1, n1}
n6 {a1, a2, a3, b1, c1, n1} {a1, a2, a3, b1, c1, n1}
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

{a1, a2, b1, c1, n1}

a2: a = a+13

{a1, a2, b1, c1, n1}

if (a≥12)4

{a1, a2, b1, c1, n1}

t11: t1 = a+b
a3: a = t1+c5

{a1, a2, b1, c1, n1}

print a6
{a1, a2, a3, b1, c1, n1}

F

F

T

T
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>n)2

{a1, a2, b1, c1, n1}

a2: a = a+13

{a1, a2, b1, c1, n1}

if (a≥12)4

{a1, a2, b1, c1, n1}

t11: t1 = a+b
a3: a = t1+c5

{a1, a2, b1, c1, n1}

print a6
{a1, a2, a3, b1, c1, n1}

F

F

T

T

• RHS of n1 is constant and hence
cannot change
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>6)2

{a1, a2, b1, c1, n1}

a2: a = a+13

{a1, a2, b1, c1, n1}

if (a≥12)4

{a1, a2, b1, c1, n1}

t11: t1 = a+b
a3: a = t1+c5

{a1, a2, b1, c1, n1}

print a6
{a1, a2, a3, b1, c1, n1}

F

F

T

T

• RHS of n1 is constant and hence
cannot change

• In block 2, n can be replaced by 6
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>6)2

{a1, a2, b1, c1, n1}

a2: a = a+13

{a1, a2, b1, c1, n1}

if (a≥12)4

{a1, a2, b1, c1, n1}

t11: t1 = a+b
a3: a = t1+c5

{a1, a2, b1, c1, n1}

print a6
{a1, a2, a3, b1, c1, n1}

F

F

T

T

• RHS of n1 is constant and hence
cannot change

• In block 2, n can be replaced by 6

• RHS of b1 and c1 are constant and
hence cannot change
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>6)2

{a1, a2, b1, c1, n1}

a2: a = a+13

{a1, a2, b1, c1, n1}

if (a≥12)4

{a1, a2, b1, c1, n1}

t11: t1 = a+2
a3: a = t1+35

{a1, a2, b1, c1, n1}

print a6
{a1, a2, a3, b1, c1, n1}

F

F

T

T

• RHS of n1 is constant and hence
cannot change

• In block 2, n can be replaced by 6

• RHS of b1 and c1 are constant and
hence cannot change

• In block 5, b can be replaced by 2
and c can be replaced by 3
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>6)2

a2: a = a+13

if (a≥12)4

{a}

t11: t1 = a+2
a3: a = t1+35

print a6

F

F

T

T
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>6)2

a2: a = a+13

if (a≥12)4

{a}

t11: t1 = a+2
a3: a = t1+35

print a6

F

F

T

T

So what is the advantage?
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

if (a>6)2

a2: a = a+13

if (a≥12)4

{a}

t11: t1 = a+2
a3: a = t1+35

print a6

F

F

T

T

So what is the advantage?

Dead Code Elimination
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

{a}

if (a>6)2

a2: a = a+13

if (a≥12)4

{a}

t11: t1 = a+2
a3: a = t1+35

print a6

F

F

T

T

So what is the advantage?

Dead Code Elimination

• Only a is live at the exit of 1
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

{a}

if (a>6)2

a2: a = a+13

if (a≥12)4

{a}

t11: t1 = a+2
a3: a = t1+35

print a6

F

F

T

T

So what is the advantage?

Dead Code Elimination

• Only a is live at the exit of 1

• Assignments of b, c , and n are dead code
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Tutorial Problem for Copy Propagation

a1: a = 4
b1: b = 2
c1: c = 3
n1: n = 6

1

{a}

if (a>6)2

a2: a = a+13

if (a≥12)4

{a}

t11: t1 = a+2
a3: a = t1+35

print a6

F

F

T

T

So what is the advantage?

Dead Code Elimination

• Only a is live at the exit of 1

• Assignments of b, c , and n are dead code

• Can be deleted
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Part 6

Anticipable Expressions Analysis
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Defining Anticipable Expressions Analysis

• An expression e is anticipable at a program point p, if every path from p

to the program exit contains an evaluation of e which is not preceded by a
redefinition of any operand of e.

• Application : Safety of Code Placement

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 62/100

Safety of Code Placement

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

Placing a/b at the exit of 1 is unsafe
(≡ can change the behaviour of

the optimized program)
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Safety of Code Placement

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

1 if (b == 0) 1

2 c = a/b 2 3 print a/b 3

False True

Placing a/b at the exit of 1 is unsafe
(≡ can change the behaviour of

the optimized program)
??
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Safety of Code Placement

1 if (b == 0) 1

2 c = a/b 2 3 f (a/b) 3

False True

1 if (b == 0) 1

2 c = a/b 2 3 print a/b 3

False True

Placing a/b at the exit of 1 is unsafe
(≡ can change the behaviour of

the optimized program)
??

A guarded computation of an expression should not be converted to an

unguarded computation
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Defining Data Flow Analysis for Anticipable Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not preceded (within n) by a
definition of any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Upwards
Killn Expression Modification Anywhere

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Anticipable Expressions Analysis 64/100

Data Flow Equations for Anticipable Expressions Analysis

Inn = Genn ∪ (Outn − Killn)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Inn and Outn are sets of expressions
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Tutorial Problem 1 for Anticipable Expressions Analysis

n1
a = 5;
b = 10; n1

n2
e = b − c ;
c = 6; n2

n4
d = b + c ;
c = 2; n4

n3
d = b + c ;
a = 10; n3

n5 d = b − c ; n5

n6
d = b + c ;
e = a ∗ b; n6

Expr = { a ∗ b, b + c , b − c }
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Solution of Tutorial Problem 1

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 110 000
n5 001 000
n4 010 011
n3 010 100
n2 001 011
n1 000 111
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Solution of Tutorial Problem 1

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 110 000 000 110
n5 001 000 110 111
n4 010 011 111 110
n3 010 100 110 010
n2 001 011 010 001
n1 000 111 001 000
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Solution of Tutorial Problem 1

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 110 000 000 110
n5 001 000 110 111
n4 010 011 111 110 001 010
n3 010 100 110 010
n2 001 011 010 001
n1 000 111 001 000
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Tutorial Problem 2 for Anticipable Expressions Analysis

n1
d = a ∗ b;
if (d) n1

n2 a = a ∗ b; n2

n3 c = a ∗ b; n3

n4 if (c) n4

n5
d = c + d ;
a = 5; n5

n6 print a ∗ b; n6

Expr = { a ∗ b, c + d }
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Solution of Tutorial Problem 2

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 10 00
n5 01 11
n4 00 00
n3 10 01
n2 10 10
n1 10 01
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Solution of Tutorial Problem 2

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 10 00 00 10
n5 01 11 10 01
n4 00 00 01 01
n3 10 01 01 10
n2 10 10 01 11
n1 10 01 10 10
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Solution of Tutorial Problem 2

Local Global Information
Block Information Iteration # 1 Change in iteration # 2

Genn Killn Outn Inn Outn Inn

n6 10 00 00 10
n5 01 11 10 01 00
n4 00 00 01 01 00 00
n3 10 01 01 10 00
n2 10 10 01 11
n1 10 01 10 10
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Part 7

Common Features of Bit

Vector Data Flow Frameworks
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Defining Local Data Flow Properties

• Live variables analysis

Entity Manipulation Exposition

Genn Variable Use Upwards
Killn Variable Modification Anywhere

• Analysis of expressions

Entity Manipulation
Exposition

Availability Anticipability

Genn Expression Use Downwards Upwards
Killn Expression Modification Anywhere Anywhere
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Common Form of Data Flow Equations

Xi = f (Yi )

Yi = ⊓ Xj
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Common Form of Data Flow Equations

Xi = f (Yi )

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.
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Common Form of Data Flow Equations

Xi = f (Yi )

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.

Flow Function

So far we have seen
constant Gen and Kill .
Could be dependent Gen
and Kill .
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Common Form of Data Flow Equations

Xi = f (Yi )

Yi = ⊓ Xj

Data Flow Information So far we have seen sets (or bit vectors).
Could be entities other than sets.

Flow Function

So far we have seen
constant Gen and Kill .
Could be dependent Gen
and Kill .

Confluence
So far we have seen ∪ and ∩.
Could be other operations.
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A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Expressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)
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Backward Live Variables Anticipable Expressions
Bidirectional Partial Redundancy Elimination
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Any Path
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A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Expressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths
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Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

a∗b a∗b

a∗b

Anticipability

a∗b

a∗b

a∗b

Availability

a∗b

Partial
Availability

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 72/100

Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

Sequence of blocks (n1, n2, . . . , nk) which is a
prefix of some potential execution path start-
ing at n1 such that:

• nk contains an upwards exposed use of
v , and

• no other block on the path contains an
assignment to v .
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Data Flow Paths Discovered by Data Flow Analysis

a∗b a∗b

a∗b

Anticipability

Sequence of blocks (n1, n2, . . . , nk) which is a
prefix of some potential execution path start-
ing at n1 such that:

• nk contains an upwards exposed use of
a ∗ b, and

• no other block on the path contains an
assignment to a or b, and

• every path starting at n1 is an
anticipability path of a ∗ b.

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Common Features of Bit Vector Frameworks 72/100

Data Flow Paths Discovered by Data Flow Analysis

a∗b

a∗b

a∗b

Availability

Sequence of blocks (n1, n2, . . . , nk)
which is a prefix of some potential ex-
ecution path starting at n1 such that:

• n1 contains a downwards exposed
use of a ∗ b, and

• no other block on the path
contains an assignment to a or b,
and

• every path ending at nk is an
availability path of a ∗ b.
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Data Flow Paths Discovered by Data Flow Analysis

a∗b

Partial
Availability

Sequence of blocks (n1, n2, . . . , nk) which is a
prefix of some potential execution path start-
ing at n1 such that:

• n1 contains a downwards exposed use
of a ∗ b, and

• no other block on the path contains an
assignment to a or b.
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Data Flow Paths Discovered by Data Flow Analysis

v

Liveness

a∗b a∗b

a∗b

Anticipability

a∗b

a∗b

a∗b

Availability

a∗b

Partial
Availability
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Part 9

Partial Redundancy Elimination
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Precursor: Common Subexpression Elimination

Code Fragment Flow Graph Remarks

if (...)

c = a*b;

else

d = a*b;

e = a*b;
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Precursor: Common Subexpression Elimination

Code Fragment Flow Graph Remarks

if (...)

c = a*b;

else

d = a*b;

e = a*b;

2 c = a ∗ b 23 d = a ∗ b 3

4 e = a ∗ b 4

1 if (. . . ) 1 • a and b are not modified
along paths 1 → 2 → 4
and 1 → 3 → 4
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Code Fragment Flow Graph Remarks

if (...)

c = a*b;

else

d = a*b;

e = a*b;

2 c = a ∗ b 23 d = a ∗ b 3

4 e = a ∗ b 4

1 if (. . . ) 1 • a and b are not modified
along paths 1 → 2 → 4
and 1 → 3 → 4

• Computation of a ∗ b in
4 is redundant
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Precursor: Common Subexpression Elimination

Code Fragment Flow Graph Remarks

if (...)

c = a*b;

else

d = a*b;

e = a*b;

2 c = a ∗ b 23 d = a ∗ b 3

4 e = a ∗ b 4

1 if (. . . ) 1 • a and b are not modified
along paths 1 → 2 → 4
and 1 → 3 → 4

• Computation of a ∗ b in
4 is redundant

• Previous value can be
used
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Precursor: Common Subexpression Elimination

Code Fragment Flow Graph Remarks

if (...)

c = a*b;

else

d = a*b;

e = a*b;

2 t = a ∗ b
c = t 23 t = a ∗ b

d = t 3

4 e = t 4

1 if (. . . ) 1 • a and b are not modified
along paths 1 → 2 → 4
and 1 → 3 → 4

• Computation of a ∗ b in
4 is redundant

• Previous value can be
used
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Partial Redundancy Elimination

2 a ∗ b 2 3 a = 5 3

4 a ∗ b 4

1 if (. . . ) 1
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Partial Redundancy Elimination

2 a ∗ b 2 3 a = 5 3

4 a ∗ b 4

1 if (. . . ) 1
• Computation of a ∗ b in 4 is

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 74/100

Partial Redundancy Elimination

2 a ∗ b 2 3 a = 5 3

4 a ∗ b 4

1 if (. . . ) 1
• Computation of a ∗ b in 4 is

◮ redundant along path
1 → 2 → 4, but . . .
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Partial Redundancy Elimination

2 a ∗ b 2 3 a = 5 3

4 a ∗ b 4

1 if (. . . ) 1
• Computation of a ∗ b in 4 is

◮ redundant along path
1 → 2 → 4, but . . .

◮ not redundant along path
1 → 3 → 4
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Code Hoisting for Partial Redundancy Elimination

2 a ∗ b 2 3 a = 5 3

4 a ∗ b 4

1 if (. . . ) 1
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Code Hoisting for Partial Redundancy Elimination

2 a ∗ b 2 3
a = 5
a ∗ b 3

4 a ∗ b 4

1 if (. . . ) 1

• Computation of a ∗ b in 3 becomes
totally redundant

• Can be deleted

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 76/100

PRE Subsumes Loop Invariant Movement
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PRE Subsumes Loop Invariant Movement

What’s that?

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3
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PRE Subsumes Loop Invariant Movement

What’s that?

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

Translate to
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PRE Subsumes Loop Invariant Movement

What’s that?

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

Translate to

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3
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PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3
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PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

1 a = b ∗ c 1

2 a = b ∗ c 1

2 a = b ∗ c 3
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PRE Subsumes Loop Invariant Movement

1 a = b ∗ c 1

2 a = b ∗ c 1

3 a = b ∗ c 3

1 a = b ∗ c 1

2 a = b ∗ c 1

2 a = b ∗ c 3

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3
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PRE Can be Used for Strength Reduction

i = 0
t1 = i ∗ 4

t1 = i ∗ 4
a = A[t1]
i = i + 1

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 78/100

PRE Can be Used for Strength Reduction

i = 0
t1 = i ∗ 4

t1 = i ∗ 4
a = A[t1]
i = i + 1

⇒

i = 0
t1 = i ∗ 4

a = A[t1]
t1 = t1 + 4

• ∗ in the loop has been replaced by +

• i = i + 1 in the loop has been eliminated
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PRE Can be Used for Strength Reduction

i = 0
t1 = i ∗ 4

t1 = i ∗ 4
a = A[t1]
i = i + 1

• Delete i = i + 1
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PRE Can be Used for Strength Reduction

i = 0
t1 = i ∗ 4

t1 = i ∗ 4
a = A[t1]
i = i + 1

• Delete i = i + 1

• Expression i ∗ 4 becomes
loop invariant
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PRE Can be Used for Strength Reduction

i = 0
t1 = i ∗ 4

t1 = t1 + 4
a = A[t1]
t1 = t1 + 4

• Delete i = i + 1

• Expression i ∗ 4 becomes
loop invariant

• Hoist it and increment t1 in
the loop
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PRE Can be Used for Strength Reduction

i = 0
t1 = i ∗ 4

t1 = t1 + 4
a = A[t1]
t1 = t1 + 4

• Delete i = i + 1

• Expression i ∗ 4 becomes
loop invariant

• Hoist it and increment t1 in
the loop

• ∗ in the loop has been replaced by +

• i = i + 1 in the loop has been eliminated
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Performing Partial Redundancy Elimination

1. Identify partial redundancies

2. Identify program points where computations can be inserted

3. Insert expressions

4. Partial redundancies become total redundancies

=⇒ Delete them.

Morel-Renvoise Algorithm (CACM, 1979.)
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Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start
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Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b
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Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.
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Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.

◮ If it is anticipable at p
then all such occurrences
should be hoisted to p.
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Defining Hoisting Criteria

• An expression can be safely inserted at a program point p if it is

Available at p Anticipable at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

Start

a ∗ b

a ∗ b

◮ If it is available at p, then
there is no need to insert
it at p.

◮ If it is anticipable at p
then all such occurrences
should be hoisted to p.

◮ An expression should be

hoisted to p provided it

can be hoisted to p along

all paths from p to exit.
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Safety of Hoisting an Expression

Entry

Exit

Predecessor Blocks

Successor Blocks

Basic Block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

• Safety of hoisting to the entry of a block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

• Safety of hoisting to the entry of a block

• Safety of hoisting out of the entry of a block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

• Safety of hoisting out of the entry of a block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or

• Safety of hoisting out of the entry of a block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

• Safety of hoisting out of the entry of a block
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

• Safety of hoisting to the entry of a block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

• Safety of hoisting to the entry of a block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 81/100

Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.
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Safety of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

A
nt
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??
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Anticipability and Code Hoisting

a∗b

a∗b

End

p

Start

a∗b

• What is the meaning of the assertion

“a ∗ b is anticipable at program point p”

◮ a ∗ b is computed along every path from
p to End before a or b are modified

◮ The value computed at p would be same
as the next value computed on any path

◮ a ∗ b can be safely inserted at p
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Anticipability and Code Hoisting

a∗b

a∗b

End

p

Start

a∗b ??

• What is the meaning of the assertion

“a ∗ b is anticipable at program point p”

◮ a ∗ b is computed along every path from
p to End before a or b are modified

◮ The value computed at p would be same
as the next value computed on any path

◮ a ∗ b can be safely inserted at p

• It does not say that the subsequent
computations of a ∗ b can be deleted

(Expression may not be available at the
subsequent points)
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Anticipability and Code Hoisting

a∗b

a∗b

End

p

Start

a∗b ??

• What is the meaning of the assertion

“a ∗ b is anticipable at program point p”

◮ a ∗ b is computed along every path from
p to End before a or b are modified

◮ The value computed at p would be same
as the next value computed on any path

◮ a ∗ b can be safely inserted at p

• It does not say that the subsequent
computations of a ∗ b can be deleted

(Expression may not be available at the
subsequent points)

• Hoisting involves

◮ making the expressions available and
◮ deleting their subsequent computations

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 83/100

A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b

1

1

1
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b

1

1

1

0
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b

1

10

0
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b

0

0 0

0
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b

0

0 0

0

Characterises safety of hoisting
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A Comparison of Anticipability and Hoistability

Anticipability Hoistability

a ∗ b a ∗ b

a=5 a ∗ b

10

0 1

Characterises safety of placement
but not safety of hoisting

a ∗ b a ∗ b

a=5 a ∗ b

0

0 0

0

Characterises safety of hoisting

Hoist an expression to the entry of a block only if it can

be hoisted out of the block into all predecessor blocks
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Revised Safety Criteria of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.
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Revised Safety Criteria of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

• Safety of hoisting out of the entry of a block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.
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Revised Safety Criteria of Hoisting an Expression

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

Safety of hoisting out of the entry of a block
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Desirability of Hoisting an Expression
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Desirability of Hoisting an Expression

• Desirability of hoisting to the entry of a block
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Desirability of Hoisting an Expression

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available
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Final Hoisting Criteria

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available
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From Hoisting Criteria to Data Flow Equations (1)

First Level Global Data Flow Properties in PRE

• Partial Availability.

PavInn =







BI n is Start block
⋃

p∈pred(n)

PavOutp otherwise

PavOutn = Genn ∪ (PavInn − Killn)

• Total Availability.

AvInn =







BI n is Start block
⋂

p∈pred(n)

AvOutp otherwise

AvOutn = Genn ∪ (AvInn − Killn)
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available

∀s ∈ succ(n),

Outn ⊆ Ins
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available

∀s ∈ succ(n),

Outn ⊆ Ins

Inn ⊆ AntGenn ∪

(Outn − Killn)
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available

∀s ∈ succ(n),

Outn ⊆ Ins

Inn ⊆ AntGenn ∪

(Outn − Killn)

∀p ∈ pred(n),

Inn ⊆ AvOutp ∪

Outp
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available

∀s ∈ succ(n),

Outn ⊆ Ins

Inn ⊆ AntGenn ∪

(Outn − Killn)

∀p ∈ pred(n),

Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn
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From Hoisting Criteria to Data Flow Equations (2)

• Safety of hoisting to the exit of a block

S.1 Hoist only if it can be hoisted out of the
entries of all successor blocks

• Safety of hoisting to the entry of a block

S.2 Hoist only if

S.2.a it is upwards exposed, or
S.2.b it can be hoisted to its exit and is

transparent in the block

S.3 Hoist only if for each predecessor

S.3.a it can be hoisted to its exit, or
S.3.b it is available at its exit.

• Desirability of hoisting to the entry of a block

D.1 Hoist only if it is partially available

∀s ∈ succ(n),

Outn ⊆ Ins

Inn ⊆ AntGenn ∪

(Outn − Killn)

∀p ∈ pred(n),

Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn
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From Hoisting Criteria to Data Flow Equations (3)

Find out the
largest such set

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Desirability: D.1

Expressions should be partially available, and
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.2.a

Expressions should be upwards exposed, or
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.2.b

Expressions can be hoisted to the exit
and are transparent in the block
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.3.b

For every predecessor, expressions
can be hoisted to its exit, or
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.3.a

. . . expressions are available at the
exit of the same predecessor
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Boundary condition
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From Hoisting Criteria to Data Flow Equations (3)

∀s ∈ succ(n),
Outn ⊆ Ins

Inn ⊆ AntGenn ∪
(Outn − Killn)

∀p ∈ pred(n),
Inn ⊆ AvOutp ∪

Outp

Inn ⊆ PavInn

Inn = PavInn ∩
(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Safety: S.1

Expressions should be hoisted to the exit of a block
if they can be hoisted to the entry of all successors
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From Hoisting Criteria to Data Flow Equations (3)
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(

AntGenn ∪ (Outn − Killn)
)

⋂

p∈pred(n)

(

Outp ∪ AvOutp

)

Outn =







BI n is End block
⋂

s∈succ(n)

Ins otherwise

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 90/100

Anticipability and PRE (Hoistability) Data Flow Equations

PRE Hoistability Anticipability

Inn =PavInn∩ (AntGenn ∪ (Outn−Killn))
⋂

p∈pred(n)

(Outp ∪ AvOutp)

Outn =











BI n is End block
⋂

s∈succ(n)

Ins otherwise
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⋂
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⋂
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Anticipability and PRE (Hoistability) Data Flow Equations

PRE Hoistability Anticipability

Inn =PavInn∩ (AntGenn ∪ (Outn−Killn))
⋂

p∈pred(n)

(Outp ∪ AvOutp)

Outn =











BI n is End block
⋂

s∈succ(n)

Ins otherwise

Inn =AntGenn ∪ (Outn−Killn)
⋂

p∈pred(n)

(Outp ∪ AvOutp)

Outn =











BI n is End block
⋂

s∈succ(n)

Ins otherwise

PRE Hoistability is anticipability restricted by

• safety of hoisting and

• partial availability
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Deletion Criteria in PRE

• An expression is redundant in node n if

◮ it can be placed at the entry (i.e. can be “hoisted” out) of n, AND
◮ it is upwards exposed in node n.

Redundantn = Inn ∩ AntGenn

• A hoisting path for an expression e begins at n if e ∈ Redundantn

• This hoisting path extends against the control flow.
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Insertion Criteria in PRE

• An expression is inserted at the exit of node n is

◮ it can be placed at the exit of n, AND
◮ it is not available at the exit of n, AND
◮ it cannot be hoisted out of n, OR it is modified in n.

Insertn = Outn ∩ (¬AvOutn) ∩ (¬Inn ∪ Killn)

• A hoisting path for an expression e ends at n if e ∈ Insertn
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Performing PRE by Computing In/Out : Simple Cases (1)

1 c = a ∗ b 1

2 d = a ∗ b 2

⇒
1 t = a ∗ b

c = t 1

2 d = t 2
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Performing PRE by Computing In/Out : Simple Cases (1)

1 c = a ∗ b 1

2 d = a ∗ b 2

⇒
1 t = a ∗ b

c = t 1

2 d = t 2

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

2
1
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1 c = a ∗ b 1

2 d = a ∗ b 2
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Performing PRE by Computing In/Out : Simple Cases (1)
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2 d = a ∗ b 2

⇒
1 t = a ∗ b

c = t 1

2 d = t 2

N
o
d
e First Level Values Init. Iter. 1 Iter. 2
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Performing PRE by Computing In/Out : Simple Cases (1)

1 c = a ∗ b 1

2 d = a ∗ b 2
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Performing PRE by Computing In/Out : Simple Cases (1)

1 c = a ∗ b 1

2 d = a ∗ b 2

0

1

1

0

⇒
1 t = a ∗ b

c = t 1

2 d = t 2

N
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d
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Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In
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1 1 0 0 1 1 1 1 0 1 0
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Performing PRE by Computing In/Out : Simple Cases (1)

1 c = a ∗ b 1

2 d = a ∗ b 2

0

1

1

0

⇒
1 t = a ∗ b

c = t 1

2 d = t 2

Redundancy No Insertion

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

2 1 0 1 1 0 1 0 1 0 1 1 0
1 1 0 0 1 1 1 1 0 1 0 0 0
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Performing PRE by Computing In/Out : Simple Cases (1)

1 c = a ∗ b 1

2 d = a ∗ b 2

0

1

1

0

⇒
1 t = a ∗ b

c = t 1

2 d = t 2

Redundancy No Insertion

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

2 1 0 1 1 0 1 0 1 0 1 1 0
1 1 0 0 1 1 1 1 0 1 0 0 0

This is an instance of Common Subexpression Elimination
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Performing PRE by Computing In/Out : Simple Cases (2)

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1
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Performing PRE by Computing In/Out : Simple Cases (2)

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

4
3
2
1
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Performing PRE by Computing In/Out : Simple Cases (2)

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

4 1 0 1 1
3 0 1 0 0
2 1 0 0 1
1 0 0 0 0
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Performing PRE by Computing In/Out : Simple Cases (2)
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c = t 2 3 a = 5

t = a ∗ b 3
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N
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Redund. Insert
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Performing PRE by Computing In/Out : Simple Cases (2)

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5
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4 d = t 4
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N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

4 1 0 1 1 0 1 0 1 0 1
3 0 1 0 0 1 1 1 0 1 0
2 1 0 0 1 1 1 1 0 1 0
1 0 0 0 0 1 1 0 0 0 0

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 94/100

Performing PRE by Computing In/Out : Simple Cases (2)

2 c = a ∗ b 2 3 a = 5 3

4 d = a ∗ b 3

1 c = a ∗ b 1

0

0
0

1

0

1
1

0

⇒ 2 t = a ∗ b
c = t 2 3 a = 5

t = a ∗ b 3

4 d = t 4

1 c = a ∗ b 1

Redundancy Insertion

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

4 1 0 1 1 0 1 0 1 0 1 1 0
3 0 1 0 0 1 1 1 0 1 0 0 1
2 1 0 0 1 1 1 1 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0
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Performing PRE by Computing In/Out : Simple Cases (3)

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3
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Performing PRE by Computing In/Out : Simple Cases (3)

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

3
2
1
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Performing PRE by Computing In/Out : Simple Cases (3)

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

⇒

1 t = b ∗ c 1

2 a = t 1

3 a = b ∗ c 3

N
o
d
e First Level Values Init. Iter. 1 Iter. 2

Redund. Insert
AntGen Kill PavIn AvOut Out In Out In Out In

3 0 0 1 1 0 1 0 0
2 1 0 1 1 1 1 0 1
1 0 0 0 0 1 1 1 0

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 95/100

Performing PRE by Computing In/Out : Simple Cases (3)
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Performing PRE by Computing In/Out : Simple Cases (3)

1 a = b ∗ c 1

2 a = b ∗ c 2

3 a = b ∗ c 3

0

1
1
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0

RedundancyInsertion
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Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4
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0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

0

1

1

1
1

1
1

0
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Tutorial Problems for PRE

a ∗ b

a ∗ b

a ∗ b

a ∗ b

(a)

1

2

3

4

0

0

0

0

0

0

0

0

a ∗ b

a = 5

a ∗ b

a ∗ b

(b)

1

2

3

4

0

0

0

1

1

0

0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(c)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(d)

1

2

3

4

0

0

0

0
1

0
0

0

a ∗ b

a ∗ b

a ∗ b
a = 5

a ∗ b

(e)

1

2

3

4

0

1

1

1
1

1
1

0

Redundancy Insertion

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 97/100

Further Tutorial Problem for PRE

1 b ∗ c 1

2 a ∗ b 2

3 a = . . . 3 4 d = . . . 4

5 b ∗ c 5

6 b ∗ c 6

Let {a ∗ b, b ∗ c} ≡ bit string 11

Node n Killn AntGenn PavInn AvOutn

1 00 00 00 00
2 00 10 11 10
3 10 00 11 00
4 00 00 11 10
5 00 01 11 01
6 00 00 11 01

• Compute Inn/Outn/Redundantn/Insertn

• Identify hoisting paths
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Result of PRE Data Flow Analysis of the Running Example

Bit vector a ∗ b a + b a − b a− c b + c

B
lo
ck

Global Information

Constant
information

Iteration # 1 Changes in
iteration # 2

Changes in
iteration # 3

PavInn AvOutn Outn Inn Outn Inn Outn Inn

n8 11111 00011 00000 00011 00001
n7 11101 11000 00011 01001 00001
n6 11101 11001 01001 01001 01000
n5 11101 11000 01001 01001 01000
n4 11100 10100 01001 11100 11000
n3 11101 10000 01000 01001 00001
n2 10001 00010 00011 00000 00001
n1 00000 10001 00000 00000
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Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a− c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a− b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 99/100

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a− c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a− b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 99/100

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a− c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a− b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 99/100

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a− c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a− b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 99/100

Hoisting Paths for Some Expressions in the Running Example

n1
b = 4;
a = b + c ;
d = a ∗ b;

n1

n2 b = a− c ; n2

n3 c = b + c ; n3

n4
c = a ∗ b ;
f (a− b);

n4

n5 d = a + b ; n5

n6 f ( b + c ); n6

n7 g( a + b ); n7

n8
h(a − c);
f ( b + c );

n8

Jul 2017 IIT Bombay



CS 618 Bit Vector Frameworks: Partial Redundancy Elimination 99/100
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c = a ∗ b ;
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Optimized Version of the Running Example

n1

b = 4;
t2 = b + c ;
a = t2;
t0 = a ∗ b;
d = t0;

n1

n2

b = c ;
f (a − c);
t2 = b + c ;

n2

n3
c = t2
t1 = a+ b; n3

n4

c = t0;
f (a − b);
t2 = b + c ;

n4

n5
d = t1;
t2 = b + c ; n5

n6 f (t2); n6

n7 g(t1); n7

n8
h(a− c);
f (t2);

n8
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