
Program Analysis: Wrapping Up

Uday Khedker

(www.cse.iitb.ac.in/̃ uday)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

November 2017

Part 1

About These Slides

CS 618 Wrap Up: About These Slides 1/18

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at
IIT Bombay and have been made available as teaching material accompanying
the book:

• Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow
Analysis: Theory and Practice. CRC Press (Taylor and Francis Group).
2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the
following books

• A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley. 2006.

• M. S. Hecht. Flow Analysis of Computer Programs. Elsevier
North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for

academic or research use.

Nov 2017 IIT Bombay

Part 2

The Big Picture



CS 618 Wrap Up: The Big Picture 2/18

So what have learnt?

Education is what remains after you have forgotten

everything that was taught

- Albert Einstein

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 3/18

The Main Theme of the Course

Constructing suitable abstractions for
sound & precise modelling of
runtime behaviour of programs
efficiently

Abstract, Bounded, Single Instance Concrete, Unbounded, Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary Information

MemoryMemoryMemoryMemoryMemoryMemory

MemoryMemoryMemoryMemoryMemoryMemory
MemoryMemoryMemoryMemoryMemoryMemory

MemoryMemoryMemoryMemoryMemoryMemory

Static
Analysis

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 4/18

Soundness and Precision of Static Analysis

Example Program Simplified IR Control Flow Graph

int a;

int f(int b)

{ int c;

c = a*2;

while (b <= c)

b = b+1;

if (b < 9)

b = b+a;

return b;

}

1: c = a*2

2: if (b > c) goto 5

3: b = b + 1

4: goto 2

5: if (b ≥ 9) goto 7

6: b = b+a

7: return b

c = a*2

if (b>c)

b = b+1

if (b≥9)

b = b+a

return b

F

F

T

T

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 5/18

Execution Traces for Concrete Semantics

• A state: (Program Point,Variables 7→ Values)

• A trace: a valid sequence of states starting with a given initial state

1: c = a*2

2: if (b > c)

goto 5

3: b = b + 1

4: goto 2

5: if (b ≥ 9)

goto 7

6: b = b+a

7: return b

Trace 1
a b c

0 : (1, 2, 3)
1 : (1, 2, 2)
2 : (1, 2, 2)
3 : (1, 3, 2)
4 : (1, 3, 2)
2 : (1, 3, 2)
5 : (1, 3, 2)
5 : (1, 4, 2)
7 : (1, 4, 2)

Trace 2
a b c

0 : (5, 10, 7)
1 : (5, 10, 10)
2 : (5, 10, 10)
3 : (5, 11, 10)
4 : (5, 11, 10)
2 : (5, 11, 10)
5 : (5, 11, 10)
7 : (5, 11, 10)

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 5/18

Execution Traces for Concrete Semantics

• A state: (Program Point,Variables 7→ Values)

• A trace: a valid sequence of states starting with a given initial state

1: c = a*2

2: if (b > c)

goto 5

3: b = b + 1

4: goto 2

5: if (b ≥ 9)

goto 7

6: b = b+a

7: return b

Trace 1
a b c

0 : (1, 2, 3)
1 : (1, 2, 2)
2 : (1, 2, 2)
3 : (1, 3, 2)
4 : (1, 3, 2)
2 : (1, 3, 2)
5 : (1, 3, 2)
5 : (1, 4, 2)
7 : (1, 4, 2)

Trace 2
a b c

0 : (5, 10, 7)
1 : (5, 10, 10)
2 : (5, 10, 10)
3 : (5, 11, 10)
4 : (5, 11, 10)
2 : (5, 11, 10)
5 : (5, 11, 10)
7 : (5, 11, 10)

• Number of traces is
potentially infinite

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 5/18

Execution Traces for Concrete Semantics

• A state: (Program Point,Variables 7→ Values)

• A trace: a valid sequence of states starting with a given initial state

1: c = a*2

2: if (b > c)

goto 5

3: b = b + 1

4: goto 2

5: if (b ≥ 9)

goto 7

6: b = b+a

7: return b

Trace 1
a b c

0 : (1, 2, 3)
1 : (1, 2, 2)
2 : (1, 2, 2)
3 : (1, 3, 2)
4 : (1, 3, 2)
2 : (1, 3, 2)
5 : (1, 3, 2)
5 : (1, 4, 2)
7 : (1, 4, 2)

Trace 2
a b c

0 : (5, 10, 7)
1 : (5, 10, 10)
2 : (5, 10, 10)
3 : (5, 11, 10)
4 : (5, 11, 10)
2 : (5, 11, 10)
5 : (5, 11, 10)
7 : (5, 11, 10)

Trace 3
a b c

0 : (−1, 1, 6)
1 : (−1, 1,−2)
2 : (−1, 1,−2)
3 : (−1, 2,−2)
4 : (−1, 2,−2)
2 : (−1, 2,−2)
3 : (−1, 3,−2)
4 : (−1, 3,−2)
2 : (−1, 3,−2)
. . .

• Number of traces is
potentially infinite

• Not all traces may
terminate

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 5/18

Execution Traces for Concrete Semantics

• A state: (Program Point,Variables 7→ Values)

• A trace: a valid sequence of states starting with a given initial state

1: c = a*2

2: if (b > c)

goto 5

3: b = b + 1

4: goto 2

5: if (b ≥ 9)

goto 7

6: b = b+a

7: return b

Trace 1
a b c

0 : (1, 2, 3)
1 : (1, 2, 2)
2 : (1, 2, 2)
3 : (1, 3, 2)
4 : (1, 3, 2)
2 : (1, 3, 2)
5 : (1, 3, 2)
5 : (1, 4, 2)
7 : (1, 4, 2)

Trace 2
a b c

0 : (5, 10, 7)
1 : (5, 10, 10)
2 : (5, 10, 10)
3 : (5, 11, 10)
4 : (5, 11, 10)
2 : (5, 11, 10)
5 : (5, 11, 10)
7 : (5, 11, 10)

Trace 3
a b c

0 : (−1, 1, 6)
1 : (−1, 1,−2)
2 : (−1, 1,−2)
3 : (−1, 2,−2)
4 : (−1, 2,−2)
2 : (−1, 2,−2)
3 : (−1, 3,−2)
4 : (−1, 3,−2)
2 : (−1, 3,−2)
. . .

• Number of traces is
potentially infinite

• Not all traces may
terminate

• We consider only
terminating traces

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 6/18

Static Analysis Computes Abstractions of Traces

Execution
Time

Traces An Abstraction of Traces

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 6/18

Static Analysis Computes Abstractions of Traces

Execution
Time

Traces An Abstraction of Traces

For compile time modelling of
possible runtime behaviours of a
program

• compute a set of states
that cover all traces

• associate the sets with
appropriate program points

States may be defined in terms
of properties derived from values
of variables

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 7/18

Soundness of Abstractions

Sound

• An over-approximation
of traces is sound

• Missing any state in
any trace causes
unsoundness

Unsound

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 8/18

Precision of Sound Abstractions

Imprecise More Precise Even More Precise

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 8/18

Precision of Sound Abstractions

Imprecise More Precise Even More Precise

• Precision is relative, soundness is absolute

• Qualifiers “more precise” and “less precise”
are meaningful

• Qualifiers “more sound” and “less sound”
are not meaningful

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 9/18

Motifs Used for Building the Theme

• Intuition-formalism dichotomy

Intuition

Formalism

• Intuitions representing abstract view of
the run time behaviour

• Systematic formulation amenable to
automation and reasoning

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 9/18

Motifs Used for Building the Theme

• Intuition-formalism dichotomy

• Specification-implementation dichotomy

Intuition

Formalism Specification

Algorithm

• Separate reasoning from the
implementation

• Systematize construction of analyzers

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 9/18

Motifs Used for Building the Theme

• Intuition-formalism dichotomy

• Specification-implementation dichotomy

• Successive generalizations

Intuition

Formalization

Algorithms• Formalizing underlying concepts
rigorously

• Formulating analysis in terms of data
flow equations (confluence,
initialization, boundary info, flow
functions etc.)

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 9/18

Motifs Used for Building the Theme

• Intuition-formalism dichotomy

• Specification-implementation dichotomy

• Successive generalizations

Intuition

Formalization

Algorithms
• Generalize by relaxing conditions

(Previous abstractions should become
special cases)

• Generalize the intuitions,
specifications, or algorithm

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 9/18

Motifs Used for Building the Theme

• Intuition-formalism dichotomy

• Specification-implementation dichotomy

• Successive generalizations

• Filtering and distilling ideas

Intuition

Formalization

Algorithms

• Ask the right questions

• Separate relevant from irrelevant

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 9/18

Motifs Used for Building the Theme

• Intuition-formalism dichotomy

• Specification-implementation dichotomy

• Successive generalizations

• Filtering and distilling ideas

• Working from first principles

Intuition

Formalization

Algorithms

• First principles: A small set of
orthogonal concepts

• Add as few concepts as possible to the
set of first principles

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 10/18

Seeking Generalizations

Formalization/Formulation

Intuitions about
program behaviour

Al
go
rit
hm

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 11/18

yModule 1: Bit Vector Frameworksy

Data flow information at a program point u
− represents information valid for all execution instances of u
− depends on some or all paths,
− starting at, or ending at, or passing through u
− may be generated, killed, or propagated

Representations
− programs ≡ control flow graphs
− data flow values ≡ sets or bit vectors
− dependence of data flow values ≡ data flow equations

− convergence
− iterative refinement
− initialization
− round robin method

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 12/18

yModule 2: Theoretical Abstractionsy

− sound approximation of data flow information
− merging data flow values
− direction of flow, relationship with graph traversal
− desired vs. computable solution

− lattices, partial order, meet, descending chain condition (DCC)
− monotonicity, distributivity and non-separability of flow functions
− MFP and MoP assignments
− information flow paths, depth and width of a CFG

− conservative initialization
− complexity
− work list based method

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 12/18

yModule 2: Theoretical Abstractionsy

− sound approximation of data flow information
− merging data flow values
− direction of flow, relationship with graph traversal
− desired vs. computable solution

− lattices, partial order, meet, descending chain condition (DCC)
− monotonicity, distributivity and non-separability of flow functions
− MFP and MoP assignments
− information flow paths, depth and width of a CFG

− conservative initialization
− complexity
− work list based method

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

• Theme: Generalization in formulations

• Learning outcome: Add the following
requirements to the set of first principles

Monotonic flow functions and meet
semi-lattice satisfying DCC

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 13/18

yModule 3: General Frameworksy

− dependence of data flow values across entities
− generation and killing depending upon the incoming information
− flow insensitivity, may and must nature in flow sensitivity
− use of program point in data flow information

− Representations for data flow values: Sets, tuples, strings, graphs
− modelling non-separability in flow functions using dependent parts
− flow function operations
− (e.g. path removal, factorization, extension, relation application)

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 13/18

yModule 3: General Frameworksy

− dependence of data flow values across entities
− generation and killing depending upon the incoming information
− flow insensitivity, may and must nature in flow sensitivity
− use of program point in data flow information

− Representations for data flow values: Sets, tuples, strings, graphs
− modelling non-separability in flow functions using dependent parts
− flow function operations
− (e.g. path removal, factorization, extension, relation application)

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

• Generalizations in formulation

• Observations:

Structure of heap accesses consist of repeating
patterns that resemble the program structure

Program analysis should be driven by liveness
to restrict the information to usable information

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 14/18

Module 4: Interprocedural Data Flow Analysis

− interprocedural validity of paths and context sensitivity
− constructing summary flow functions Vs. propagating data flow values
− orthogonality of context and data flow information
− partitioning contexts based on data flow values

− lattices of flow functions, reducing function compositions and meets
− data flow equations for constructing summary flow functions
− value contexts, their exit values, and transitions

− work list based method
− ordering of nodes in post or reverse post order

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 14/18

Module 4: Interprocedural Data Flow Analysis

− interprocedural validity of paths and context sensitivity
− constructing summary flow functions Vs. propagating data flow values
− orthogonality of context and data flow information
− partitioning contexts based on data flow values

− lattices of flow functions, reducing function compositions and meets
− data flow equations for constructing summary flow functions
− value contexts, their exit values, and transitions

− work list based method
− ordering of nodes in post or reverse post order

In
tu
it
io
n
s

F
o
rm

a
liz
a
ti
o
n

A
lg
o
ri
th
m

• Generalizations in formulation and algorithm

• Observation:

Separating relevant information from irrelevant
information can have a significant impact

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 15/18

Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 15/18

Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks

Theoretical abstractions

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 15/18

Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks

Theoretical abstractions

d
d
flo

w
fra
me

work
sGener

aldframeworksdadatdatadflow

fl
o
w

G
eneral frameworks

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 15/18

Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks

Theoretical abstractions

d
d
flo

w
fra
me

work
sGener

aldframeworksdadatdatadflow

fl
o
w

G
eneral frameworks

Intraprocedural Level

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 15/18

Sequence of Generalizations in the Course Modules

Bit Vector
Frameworks

Theoretical abstractions

d
d
flo

w
fra
me

work
sGener

aldframeworksdadatdatadflow

fl
o
w

G
eneral frameworks

Intraprocedural Level Interprocedural Level

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 16/18

Takeaways of the Course

• Data Flow Analysis:

Minimal conditions for devising a data flow framework

◮ Intraprocedural formulation:

− Meet semilattice satisfying the descending chain condition, and
− Monotonic flow functions

◮ Extension to interprocedural level: Additional restrictions

− Value based approach: Finiteness of lattice
− Functional approach: Distributive primitive entity functions

• General:

◮ Generalization, refinements, distilling the essense
◮ Asking the right questions
◮ Separating relevant information from the irrelevant information

Nov 2017 IIT Bombay



CS 618 Wrap Up: The Big Picture 17/18

Still Bigger Picture . . .

Scope of the course: Generic static analyses for imperative languages

Did not cover

• Influences of other languages features

◮ Concurrency, Object orientation, Coroutines, Exception handling
◮ Declarative paradigms: functional or logic languages

• Influences of other goals

◮ Verification and validation, testing (e.g. analyses for finding bugs
does not require exhaustiveness or soundness)

◮ Path sensitive analyses
◮ Shape analysis
◮ Optimization specific analyses
◮ Adhoc techniques of achieving efficiency
◮ Analyses for JIT compilation
◮ Parallelization, Vetorization, Dependence analysis

• Other analysis methods

◮ Abstract interpretation, Type inference, Constraint resolution

Nov 2017 IIT Bombay

CS 618 Wrap Up: The Big Picture 18/18

Last But Not the Least

Thank You!

Nov 2017 IIT Bombay


