Theoretical Abstractions in Data Flow Analysis

Uday Khedker

(www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

August 2017

Part 1

About These Slides

CS 618 DFA Theory: About These Slides 1/126

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

 Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the following books

- M. S. Hecht. *Flow Analysis of Computer Programs*. Elsevier North-Holland Inc. 1977.
- F. Nielson, H. R. Nielson, and C. Hankin. *Principles of Program Analysis*. Springer-Verlag. 1998.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use

CS 618 DFA Theory: Outline 2/126

Outline

- The need for a more general setting
- The set of data flow values
- The set of flow functions
- Solutions of data flow analyses
- Algorithms for performing data flow analysis
- Complexity of data flow analysis

Aug 2017 IIT Bombay

Part 2

The Need for a More General Setting

CS 618 DFA Theory: The Need for a More General Setting 3/126

What We Have Seen So Far ...

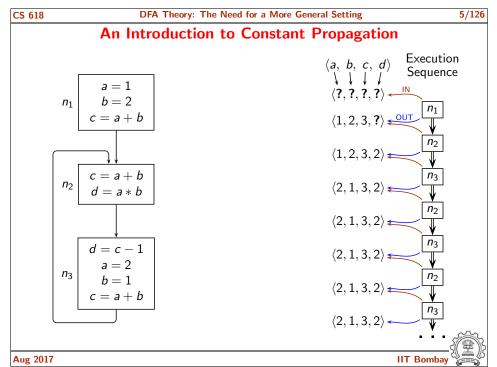
Analysis	Entity	Attribute at <i>p</i>	Paths	
Live variables	Variables	Use	Starting at p	Some
Available expressions	Expressions	Availability	Reaching p	All
Partially available expressions	Expressions	Availability	Reaching <i>p</i>	Some
Anticipable expressions	Expressions	Use	Starting at p	All
Reaching definitions	Definitions	Availability	Reaching p	Some
Partial redundancy elimination	Expressions	Profitable hoistability	Involving p	All

CS 618 DFA Theory: The Need for a More General Setting

The Need for a More General Setting

- We seem to have covered many variations
- Yet there are analyses that do not fit the same mould of bit vector frameworks
- We use an analysis called *Constant Propagation* to observe the differences

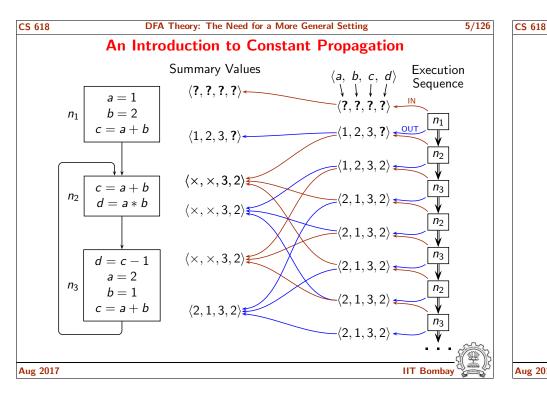
A variable v is a constant with value c at program point p if in every execution instance of p, the value of v is c



IIT Bombay

Aug 2017

4/126



An Introduction to Constant Propagation Summary Values $\langle ?, ?, ?, ? \rangle$ a = 1b=2c = a + b(1, 2, 3, ?) $\langle \times, \times, 3, 2 \rangle$ c = a + b**Desired Solution** d = a * b $\langle \times, \times, 3, 2 \rangle$ $\langle \times, \times, 3, 2 \rangle$ d = c - 1a = 2 n_3 b=1c = a + b(2, 1, 3, 2)Aug 2017

DFA Theory: The Need for a More General Setting

CS 618 DFA Theory: The Need for a More General Setting

Difference #1: Data Flow Values

• Tuples of the form $\langle \eta_1, \eta_2, \dots, \eta_k \rangle$ where η_i is the data flow value for i^{th} variable

Unlike bit vector frameworks, value η_i is not 0 or 1 (i.e. true or false). Instead, it is one of the following:

- ? indicating that not much is known about the constantness of variable vi
- \triangleright x indicating that variable v_i does not have a constant value
- An integer constant c_1 if the value of v_i is known to be c_1 at compile time

Difference #2: Dependence of Data Flow Values Across

Entities

DFA Theory: The Need for a More General Setting

- In bit vector frameworks, data flow values of different entities are independent
 - Liveness of variable b does not depend on that of any other variable
 - ► Availability of expression *a* * *b* does not depend on that of any other expression
- Given a statement a = b * c, can the constantness of a be determined independently of the constantness of b and c?

No

Aug 2017 Aug 2017 **IIT Bombay** IIT Bombay

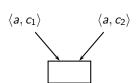
6/126

CS 618

5/126

Difference #3: Confluence Operation

• Confluence operation $\langle a, c_1 \rangle \sqcap \langle a, c_2 \rangle$



П	$\langle a, ? \rangle$	$\langle a, \times \rangle$	$\langle a, c_1 angle$
$\langle a, ? \rangle$	$\langle a, ? \rangle$	$\langle a, \times \rangle$	$\langle a, c_1 angle$
$\langle a, imes angle$	$\langle a, \times \rangle$	$\langle a, \times \rangle$	$\langle a, imes angle$
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle$	$\langle a, imes angle$	$\begin{array}{ll} \text{If } c_1 = c_2 & \langle a, c_1 \rangle \\ \text{Otherwise} & \langle a, \times \rangle \end{array}$

• This is neither \cap nor \cup

What are its properties?

Aug 2017

CS 618

Desired

(1, 2, 3, ?)

10/126

8/126

DFA Theory: The Need for a More General Setting Difference #5: Solution Computed by Iterative Method

Iteration

 $\langle 1, 2, 3, ? \rangle$

#1#2 $\langle ?, ?, ?, ? \rangle$ a = 1b=2

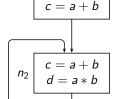
Iteration

 $\langle 1, 2, 3, ? \rangle$

#3 solution $\langle \mathbf{?}, \mathbf{?}, \mathbf{?}, \mathbf{?} \rangle$ $\langle \mathbf{?}, \mathbf{?}, \mathbf{?}, \mathbf{?} \rangle$ $\langle ?, ?, ?, ? \rangle$

Iteration

(1, 2, 3, ?)



d = c - 1a = 2*n*₃ b=1

c = a + b

 $\langle 1, 2, 3, 2 \rangle$ $\langle \times, \times, \times, \times \rangle$ $\langle \times, \times, \times, \times \rangle$ $\langle \times, \times, 3, 2 \rangle$

(2, 1, 3, 2)

 $\langle 2, 1, 3, \times \rangle$

 $\langle 2, 1, 3, \times \rangle$

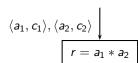
(2, 1, 3, 2)

IIT Bombay

DFA Theory: The Need for a More General Setting CS 618

Difference #4: Flow Functions for Constant Propagation

• Flow function for $r = a_1 * a_2$



mult	$\langle a_1, ? \rangle$	$\langle {\sf a}_1, imes angle$	$\langle a_1, c_1 angle$
$\langle a_2, ? \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, ? \rangle$
$\langle a_2, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$	$\langle r, \times \rangle$
$\langle a_2, c_2 \rangle$	$\langle r, ? \rangle$	$\langle r, \times \rangle$	$\langle r, (c_1 * c_2) \rangle$

This cannot be expressed in the form

$$f_n(X) = \operatorname{Gen}_n \cup (X - \operatorname{Kill}_n)$$

where Gen_n and $Kill_n$ are constant effects of block n

Aug 2017

11/126

9/126

CS 618 DFA Theory: The Need for a More General Setting **Issues in Data Flow Analysis**

- Representation
- Approximation: Partial Order, Lattices

- Existence, Computability
- Soundness, Precision

Pcceptable Operations Practic Algorithms

- Merge: Commutativity, Associativity, Idempotence
- Flow Functions: Monotonicity, Distributivity, Boundedness, Separability

- Complexity, efficiency
- Convergence
- Initialization

Part 3

Data Flow Values: An Overview

Part 4

A Digression on Lattices

CS 618 DFA Theory: Data Flow Values: An Overview 12/126

Data Flow Values: An Outline of Our Discussion

- The need to define the notion of abstraction
- Lattices, variants of lattices
- Relevance of lattices for data flow analysis
 - ▶ Partial order relation as approximation of data flow values
 - ▶ Meet operations as confluence of data flow values
- Constructing lattices
- Example of lattices

Aug 2017 IIT Bombay

III Bombay

CS 618

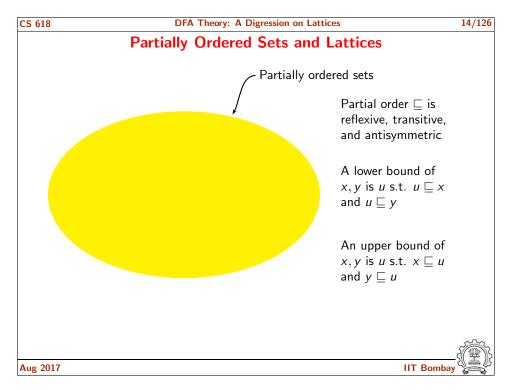
DFA Theory: A Digression on Lattices

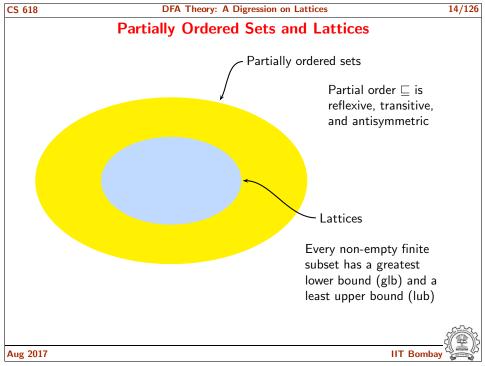
13/126

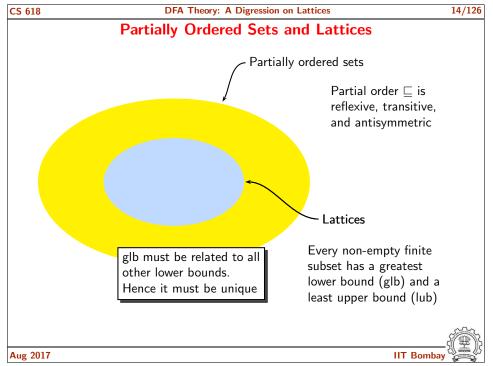
Partially Ordered Sets

Sets in which elements can be compared and ordered

- *Total order*. Every element in comparable with every element (including itself)
- *Discrete order*. Every element is comparable only with itself but not with any other element
- Partial order. An element is comparable with some but not necessarily all elements







DFA Theory: A Digression on Lattices

Partially Ordered Sets

Set $\{1,2,3,4,6,9,12\}$ with \sqsubseteq relation as "divides" (i.e. $a \sqsubseteq b$ iff a divides b)

12

4

6

9

2

3

Subset $\{4,9,6\}$ and $\{12,9\}$ do not have an upper bound in the set

CS 618 DFA Theory: A Digression on Lattices

16/126

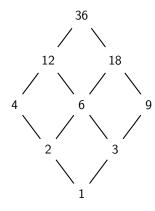
CS 618

DFA Theory: A Digression on Lattices

17/126

Lattice

Set $\{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ with \sqsubseteq relation as "divides"



Aug 2017

IIT Bombay

CS 618 DFA Theory: A Digression on Lattices

18/126 CS 618

DFA Theory: A Digression on Lattices

19/12

$\mathbb{Z} \cup \{\infty, -\infty\}$ is a Complete Lattice

- Infinite subsets of $\mathbb{Z} \cup \{\infty, -\infty\}$ have a glb and lub
- What about the empty set?
 - ▶ glb(\emptyset) is \top Every element of $\mathbb{Z} \cup \{\infty, -\infty\}$ is vacuously a lower bound of an element in \emptyset

OR

Every element in \emptyset is stronger than every element in $\mathbb{Z} \cup \{\infty, -\infty\}$ (because there is no element in \emptyset)

The greatest among these lower bounds is \top

▶ lub(∅) is ⊥

Complete Lattice

• Lattice: A partially ordered set such that every non-empty finite subset has a glb and a lub

Example: Lattice \mathbb{Z} of integers under "less-than-equal-to" (\leq) relation

- ► All finite subsets have a glb and a lub
- ▶ Infinite subsets do not have a glb or a lub
- Complete Lattice: A lattice in which even ∅ and infinite subsets have a glb and a lub

Example: Lattice $\mathbb Z$ of integers under \leq relation with ∞ and $-\infty$

- ▶ ∞ is the top element denoted \top : $\forall i \in \mathbb{Z}, i \leq \top$
- ▶ $-\infty$ is the bottom element denoted \bot : $\forall i \in \mathbb{Z}, \bot \leq i$

Aug 2017

Operations on Lattices

Meet (□) and Join (□)

- ▶ $x \sqcap y$ computes the glb of x and y $z = x \sqcap y \Rightarrow z \sqsubseteq x \land z \sqsubseteq y$
- ▶ $x \sqcup y$ computes the lub of x and y $z = x \sqcup y \Rightarrow z \supseteq x \land z \supseteq y$
- ▶

 ¬ and

 □ are commutative, associative, and idempotent
- Top (\top) and Bottom (\bot) elements

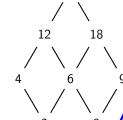
$$\forall x \in L, \ x \sqcap \top = x$$

$$\forall x \in L, x \sqcup T = T$$

 $\forall x \in L, x \sqcap \bot = \bot$

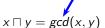
$$\forall x \in L, x \sqcup \bot = x$$

Lowest common multiple



Greatest common divisor

36



$$x \sqcup y = lcm(x, y)$$

IIT D

DFA Theory: A Digression on Lattices CS 618 20/126

Partial Order and Operations

- For a lattice □ induces □ and □ and vice-versa
- The choices of <u>□</u>, □, and <u>□</u> cannot be arbitrary They have to be
 - consistent with each other, and
 - definable in terms of each other
- For some variants of lattices, □ or □ may not exist Yet the requirement of its consistency with \sqsubseteq cannot be violated

Aug 2017

22/126

CS 618 DFA Theory: A Digression on Lattices

23/126

Some Variants of Lattices

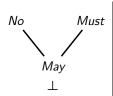
A poset *L* is

- A lattice iff each non-empty finite subset of L has a glb and lub
- A complete lattice iff each subset of L has a glb and lub
- A meet semilattice iff each non-empty finite subset of L has a glb
- A bounded lattice iff L is a lattice and has \top and \bot elements

CS 618 DFA Theory: A Digression on Lattices

Lattice for May-Must Analysis

There is no ⊤ among the natural values



Interpreting data flow values

- No. Information does not hold along any path
- Must. Information must hold along all paths
- May. Information may hold along some path

An artificial ⊤ can be added

Aug 2017

DFA Theory: A Digression on Lattices 21/126 CS 618

Finite Lattices are Complete

• Any given set of elements has a glb and a lub

Available Expressions Partially Available Analysis Expressions Analysis (\top) $\{e_1, e_2, e_3\}$ $\{\dot{e_2}\}$ $\{e_1, e_3\}$ $\{e_2, e_3\}$ $\{e_1\}$ $\{e_3\}$ $\{e_1, e_2\}$ $\{e_1\}$ $\{e_2\}$ $\{e_3\}$ $\{e_1, e_2\}$ $\{e_1, e_3\}$

Aug 2017

• A join semilattice iff each non-empty finite subset of L has a lub

DFA Theory: A Digression on Lattices 24/126 CS 618

A Bounded Lattice Need Not be Complete (1)

- Let A be all finite subsets of \mathbb{Z} Then. A is an infinite set
- The poset $L = (A \cup \{\mathbb{Z}\}, \subseteq)$ is a bounded lattice with $T = \mathbb{Z}$ and $L = \emptyset$ The join \sqcup of this lattice is \cup
- To see why, consider a set S containing those subsets of L that do not contain the number 1

There are two possibilities:

- S contains only a finite number of sets that not contain 1 (say S_f) $\Rightarrow S_f$ is a finite set
- S contains all finite sets that do not contain 1 (sav S_{∞}) $\Rightarrow S_{\infty}$ is a infinite set

Aug 2017

DFA Theory: A Digression on Lattices

CS 618

Aug 2017

CS 618

DFA Theory: A Digression on Lattices

25/126

A Bounded Lattice Need Not be Complete (2)

- S_f contains only a finite number of sets each of which does not contain 1
 - It may be tempting to assume that \mathbb{Z} is the lub of S_{∞} because it is an upper bound of S_{∞} and no other upper bound of S_{∞} in the lattice is weaker \mathbb{Z}
 - However, the join operation \cup of L does not compute \mathbb{Z} as the lub of S_{∞} (because it must exclude 1)
 - The join operation ∪ is inconsistent with the partial order \supseteq of L. Hence we say that join does not exist for S_{∞}

CS 618

Aug 2017

25/126

A Bounded Lattice Need Not be Complete (2)

- S_f contains only a finite number of sets each of which does not contain 1
 - ▶ The union of all its member sets is a finite set excluding 1
 - ▶ Thus S_f has a lub in L
- S_{∞} contains *all* finite sets that do not contain 1
 - ▶ Since the number of such sets is infinite, their union is an infinite set
 - $ightharpoonup \mathbb{Z} \{1\}$ is not contained in L (the only infinite set in L is \mathbb{Z})
 - S_{∞} does not have a lub in L

Hence *L* is not complete

DFA Theory: A Digression on Lattices

24/126

A Bounded Lattice Need Not be Complete (1)

 Let A be all finite subsets of Z Then. A is an infinite set

- The poset $L = (A \cup \{\mathbb{Z}\}, \subseteq)$ is a bounded lattice with $T = \mathbb{Z}$ and $L = \emptyset$ The join \sqcup of this lattice is \cup
- To see why, consider a set S containing those subsets of L that do not contain the number 1

There are two possibilities:

- S contains only a finite number of sets that not contain 1 (say S_f) $\Rightarrow S_f$ is a finite set
- ▶ S contains all finite sets that do not contain 1 (say S_{∞}) $\Rightarrow S_{\infty}$ is a infinite set

A Bounded Lattice Need Not be Complete (2)

- A bounded lattice L has a glb and lub of L in L
- A complete lattice L should have glb and lub of all subsets of L
- A lattice L should have glb and lub of all finite non-empty subsets of L

Aug 2017

DFA Theory: A Digression on Lattices

Complete Lattice and Ascending and Descending Chains

- If L satisfies acc and dcc, then
 - L has finite height, and
 - ▶ *L* is complete
- A complete lattice need not have finite height (i.e. strict chains may not be finite)

Example:

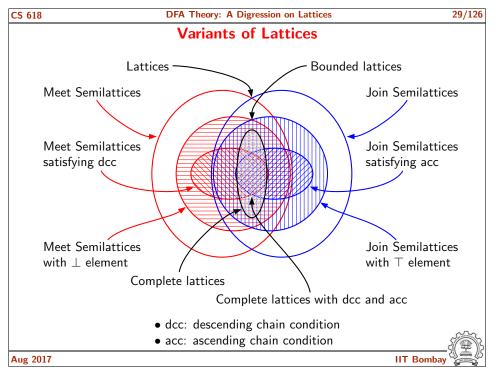
Lattice of integers under < relation with ∞ as \top and $-\infty$ as \bot

DFA Theory: A Digression on Lattices 27/126 CS 618

Ascending and Descending Chains

- Strictly ascending chain $x \sqsubset y \sqsubset \cdots \sqsubset z$
- Strictly descending chain $x \supset y \supset \cdots \supset z$
- DCC: Descending Chain Condition All strictly descending chains are finite
- ACC: Ascending Chain Condition All strictly ascending chains are finite

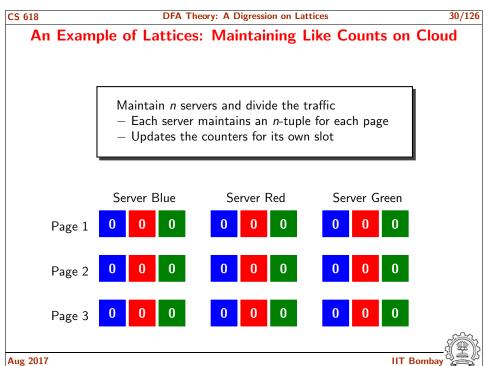
Aug 2017

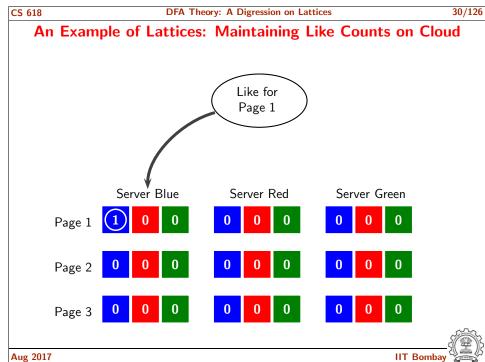


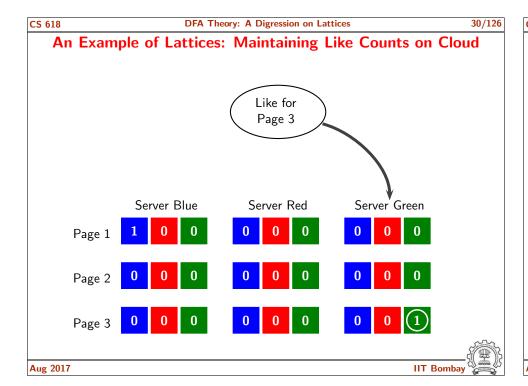
28/126

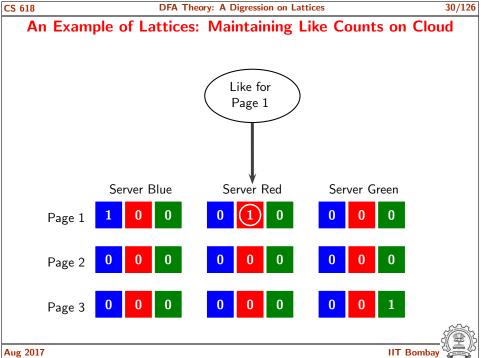
26/126

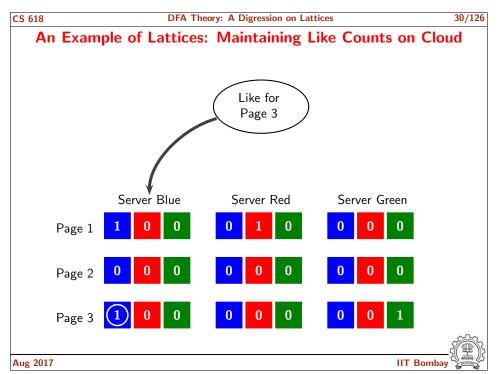
CS 618

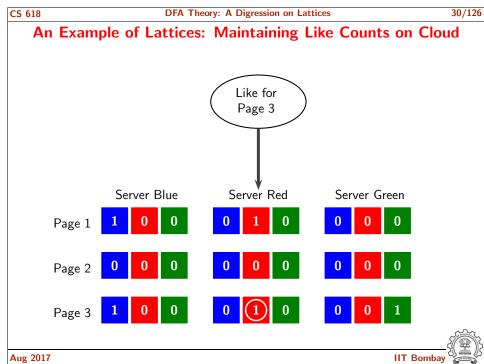


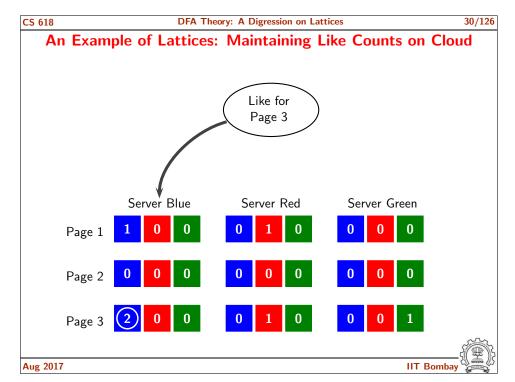


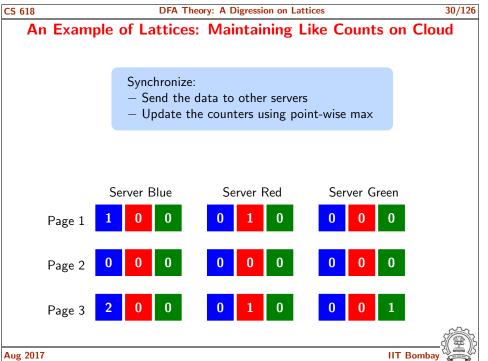


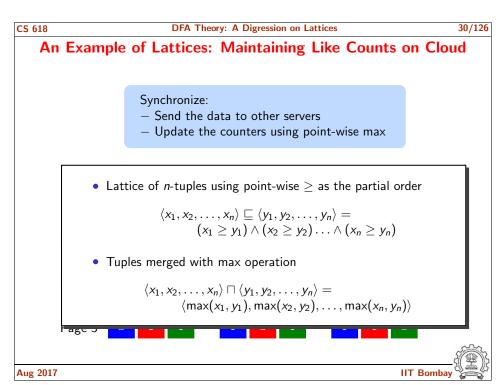


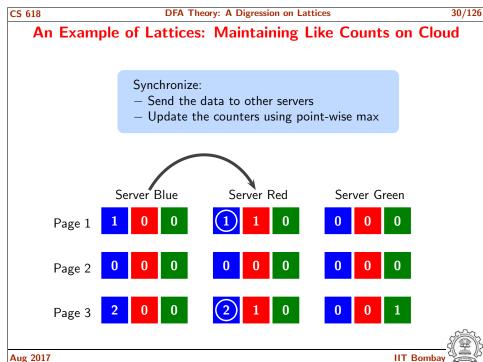


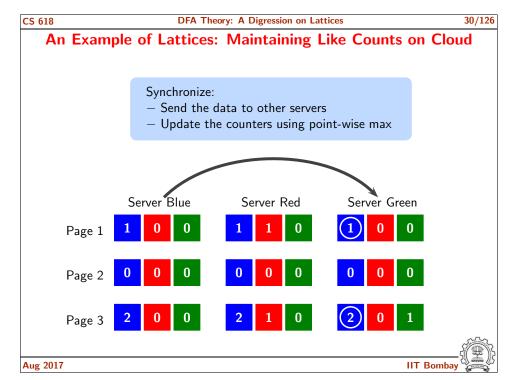


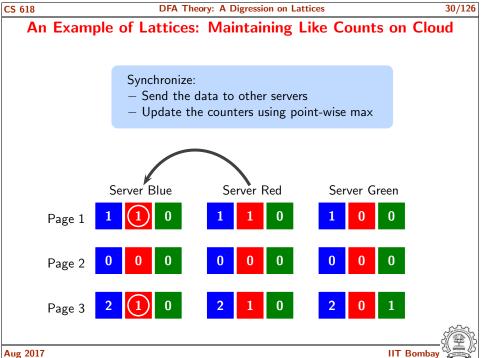


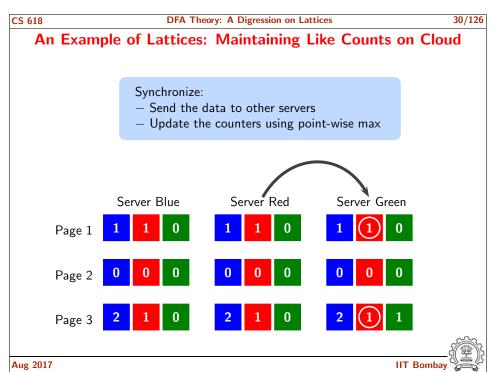


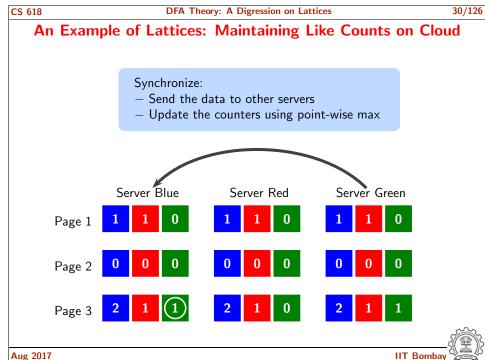


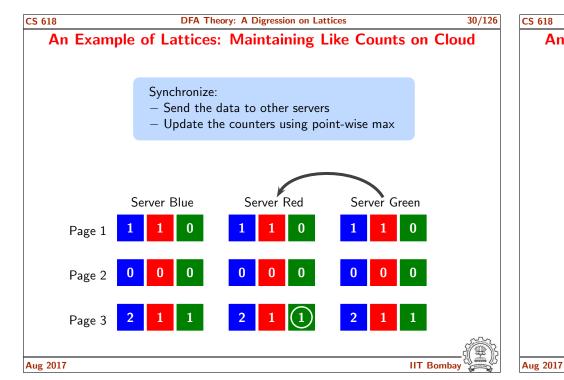


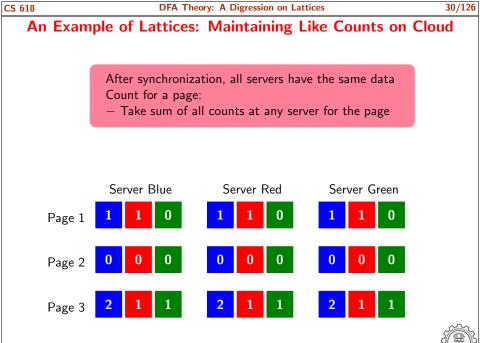












IIT Bombay

Constructing Lattices

- Powerset construction with subset or superset relation
- Products of lattices
 - ► Cartesian product
 - ► Lexicographic product
 - ► Interval product
 - Set of mappings
- Lattices on sequences using prefix or suffix as partial orders

31/126

CS 618

 $\langle L_N, \sqsubseteq_N, \sqcap_N, \sqcup_N \rangle$

Aug 2017

Aug 2017

DFA Theory: A Digression on Lattices

32/126 CS 618

Aug 2017

DFA Theory: A Digression on Lattices

33/126

Example of Cartesian Product: Concept Lattices

DFA Theory: A Digression on Lattices

Cartesian Product of Lattice

 $\langle 1,a \rangle$

 $\langle 2,a\rangle$

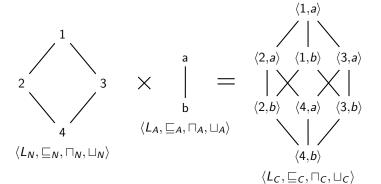
- Context of concepts. A collection of objects and their attributes
- Concepts. Sets of attributes as exhibited by specific objects
 - ▶ A concept *C* is a pair (*O*, *A*) where O is a set of objects exhibiting attributes in the set A
 - ▶ Every object in *O* has every attribute in *A*
- Partial order. $(O_2, A_2) \sqsubset (O_1, A_1) \Leftrightarrow O_2 \subset O_1$
 - Very few objects have all properties
 - ▶ Since A is the set of attributes common to all objects in O,

$$O_2 \subseteq O_1 \Rightarrow A_2 \supseteq A_1$$

As the number of chosen objects decreases, the number of common attributes increases

CS 618

Cartesian Product of Lattice



$$\langle x_1, y_1 \rangle \sqsubseteq_C \langle x_2, y_2 \rangle \quad \Leftrightarrow \quad x_1 \sqsubseteq_N x_2 \wedge y_1 \sqsubseteq_A y_2$$

$$\langle x_1, y_1 \rangle \sqcap_C \langle x_2, y_2 \rangle \quad = \quad \langle x_1 \sqcap_N x_2, y_1 \sqcap_A y_2 \rangle$$

$$\langle x_1, y_1 \rangle \sqcup_C \langle x_2, y_2 \rangle \quad = \quad \langle x_1 \sqcup_N x_2, y_1 \sqcup_A y_2 \rangle$$

Aug 2017

IIT Bombay

32/126

 $\langle 3,b \rangle$

 $\langle 1,b \rangle$

 $\langle 4,b \rangle$

 $\langle 2,b\rangle$

Example of Concept Lattice (1)

From Introduction to Lattices and Order by Davey and Priestley [2002]

			Size	Distance fr	rom Sun	Moon?		
		Small	Medium	Large	Near	Far	Yes	No
		(ss)	(sm)	(sl)	(dn)	(df)	(my)	(mn)
Mercury	Me	X			Х			X
Venus	V	Х			×			X
Earth	Е	Х			×		X	
Mars	Ма	Х			×		X	
Jupiter	J			X		X	×	
Saturn	S			X		Х	X	
Uranus	U		Х			Х	X	
Neptune	N		Х			Х	×	
Pluto	Р	X				X	×	

Aug 2017

CS 618

DFA Theory: A Digression on Lattices

36/126

Variants of Products

In each case $L \subseteq L_1 \times L_2$

• Cartesian Product

$$(x_1, x_2) \sqsubseteq (y_1, y_2)$$
 iff $x_1 \sqsubseteq_1 y_1 \land x_2 \sqsubseteq_2 y_2$

• Interval Product

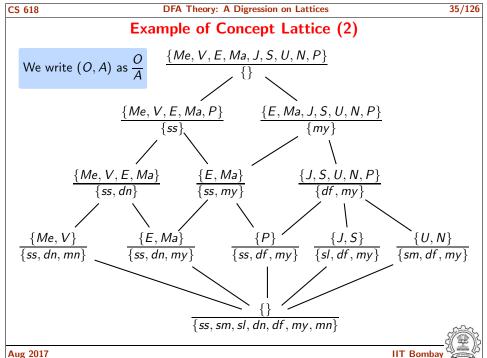
$$(x_1, x_2) \sqsubseteq (y_1, y_2)$$
 iff $x_1 \sqsubseteq_1 y_1 \land y_2 \sqsubseteq_2 x_2$

Lexicographic Product

$$(x_1, x_2) \sqsubseteq (y_1, y_2)$$
 iff $(x_1 \sqsubseteq_1 y_1) \lor (x_1 = y_1 \land x_2 \sqsubseteq_2 y_2)$

• Set of mappings $L_1 \rightarrow L_2$

$$(x_1, x_2) \sqsubseteq (y_1, y_2) \text{ iff } x_1 = y_1 \wedge x_2 \sqsubseteq_2 y_2$$



Part 5

Data Flow Values: Details

Aug 2017

IIT Rombay

37/126

The Set of Data Flow Values

Meet semilattices satisfying the descending chain condition

- Requirement: glb must exist for all non-empty finite subsets
- Corollary: ⊥ must exist

What guarantees the presence of \perp ?

- Assume that two maximal descending chains terminate at two incomparable elements x_1 and x_2
- Since this is a meet semilattice, glb of $\{x_1, x_2\}$ must exist (say z)
 - \Rightarrow Neither of the chains is maximal Both of them can be extended to include z
- ightharpoonup Extending this argument to all strictly descending chains, it is easy to see that \bot must exist
- T may not exist. Can be added artificially
 - lub of arbitrary elements may not exist

mbay P

Aug 2017

CS 618

Aug 2017

DFA Theory: Data Flow Values: Details

39/126

The Concept of Approximation

- x approximates y iff
 - x can be used in place of y without causing any problems
- Validity of approximation is context specific
 - x may be approximated by y in one context and by z in another
 - Approximating Money

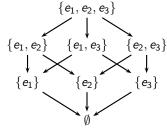
Earnings: Rs. 1050 can be safely approximated by Rs. 1000 Expenses: Rs. 1050 can be safely approximated by Rs. 1100

► Approximating Time

Travel time: 2 hours required can be safely approximated by 3 hours Study time: 3 available days can be safely assumed to be only 2 days

The Set of Data Flow Values For Available Expressions Analysis

- The powerset of the universal set of expressions
- Partial order is the subset relation



Y | |-| | X

Set View of the Lattice

Bit Vector View

Aug 2017

IIT Bomba

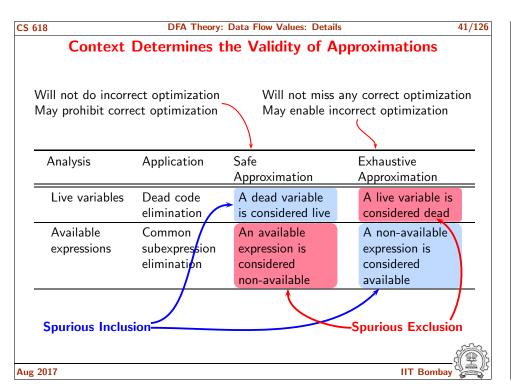
CS 618

DFA Theory: Data Flow Values: Details

40/126

Two Important Objectives in Data Flow Analysis

- The discovered data flow information should be
 - **Exhaustive.** No optimization opportunity should be missed
 - Safe. Optimizations which do not preserve semantics should not be enabled
- Conservative approximations of these objectives are allowed
- The intended use of data flow information (≡ context) determines validity of approximations



CS 618 DFA Theory: Data Flow Values: Details

Most Approximate Values in a Complete Lattice

- *Top.* $\forall x \in L, \ x \sqsubseteq \top$ Exhaustive approximation of all values
 - ► Using T in place of any data flow value will never miss out (or rule out) any possible value
 - ▶ The consequences may be semantically *unsafe*, or *incorrect*
- Bottom. $\forall x \in L, \perp \sqsubseteq x$ Safe approximation of all values

Aug 2017

- ► Using ⊥ in place of any data flow value will never be unsafe, or incorrect
- ► The consequences may be *undefined* or *useless* because this replacement might miss out valid values

Appropriate orientation chosen by design

CS 618 DFA Theory: Data Flow Values: Details 42/126

Partial Order Captures Approximation

• \sqsubseteq captures valid approximations for safety

 $x \sqsubseteq y \Rightarrow x$ is weaker than y

- ► The data flow information represented by x can be safely used in place of the data flow information represented by y
- ▶ It may be imprecise, though
- \supseteq captures valid approximations for exhaustiveness

 $x \supseteq y \Rightarrow x$ is stronger than y

- ► The data flow information represented by x contains every value contained in the data flow information represented by y x \(\pi\) y will not compute a value weaker than y
- ▶ It may be unsafe, though

Aug 2017

43/126

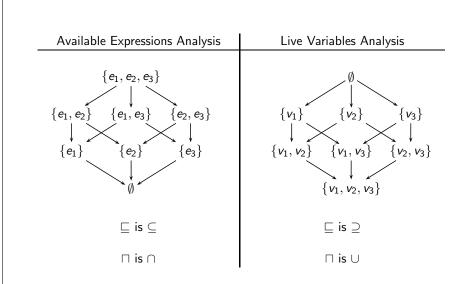
We want most exhaustive information which is also safe

ay ()

44/126

CS 618 DFA Theory: Data Flow Values: Details

Setting Up Lattices





CS 618	DFA Theory: Data Flow Values: Details	45/120

Partial Order Relation

Reflexive $X \sqsubseteq X$ x can be safely used in place of x

Transitive $x \sqsubseteq y, y \sqsubseteq z$ If x can be safely used in place of y and y can be safely used in place of z,

then x can be safely used in place of z

Antisymmetric $x \sqsubseteq y, y \sqsubseteq x$ If x can be safely used in place of y and y can be safely used in place of x,

then x must be same as y

Aug 2017

Aug 2017

47/126

CS 618

Merging Information

DFA Theory: Data Flow Values: Details

• $x \sqcap y$ computes the greatest lower bound of x and y i.e. largest z such that $z \sqsubseteq x$ and $z \sqsubseteq y$

The largest safe approximation of combining data flow information x and y

• Commutative $x \sqcap y = y \sqcap x$ The order in which the data

flow information is merged,

does not matter

 $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$ Associative Allow n-ary merging without

any restriction on the order

No loss of information if x is Idempotent $x \sqcap x = x$

merged with itself

• \top is the identity of \sqcap

► Presence of loops ⇒ self dependence of data flow information

ightharpoonup Using op as the initial value ensure exhaustiveness

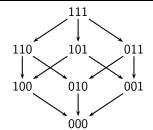
Aug 2017

46/126

CS 618 DFA Theory: Data Flow Values: Details

More on Lattices in Data Flow Analysis

 \widehat{L} = Lattice for a single expression L = Lattice for all expressions



(Expression *e* is available)

1 or {*e*} 0 or 0

(Expressions e is not available)

Cartesian products if sets are used, vectors (or tuples) if bit are used

- $L = \widehat{L} \times \widehat{L} \times \widehat{L}$ and $X = \langle \widehat{x}_1, \widehat{x}_2, \widehat{x}_3 \rangle \in L$ where $\widehat{x}_i \in \widehat{L}$
- $\Box = \widehat{\Box} \times \widehat{\Box} \times \widehat{\Box}$ and $\Box = \widehat{\Box} \times \widehat{\Box} \times \widehat{\Box}$
- $T = \hat{T} \times \hat{T} \times \hat{T}$ and $\bot = \hat{\bot} \times \hat{\bot} \times \hat{\bot}$

CS 618

DFA Theory: Data Flow Values: Details

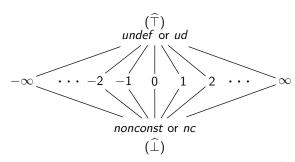
48/126

Component Lattice for Data Flow Information Represented By Bit Vectors

 \sqcap is \cap or Boolean AND

 \sqcap is \cup or Boolean OR

Component Lattice for Integer Constant Propagation



- Overall lattice L is the set of mappings from variables to \hat{L}
- \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$

CS 618

Aug 2017

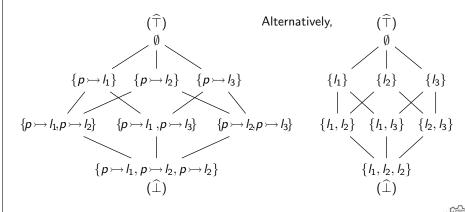
Π	$\langle a, ud \rangle \langle a, nc \rangle$	$\langle a, c_1 angle$
$\langle a, ud \rangle$	$\langle a, ud \rangle \langle a, nc \rangle$	$\langle a, c_1 \rangle$
$\langle a, nc \rangle$	$\langle a, nc \rangle \langle a, nc \rangle$	$\langle a, nc \rangle$
$\langle a, c_2 \rangle$	$\langle a, c_2 \rangle \langle a, nc \rangle$	If $c_1 = c_2$ then $\langle a, c_1 \rangle$ else $\langle a, nc \rangle$

Aug 2017

DFA Theory: Data Flow Values: Details 50/126 CS 618

Component Lattice for May Points-To Analysis

- Relation between pointer variables and locations in the memory
- Assuming three locations l_1 , l_2 , and l_3 , the component lattice for pointer p



DFA Theory: Data Flow Values: Details

Combined Total and Partial Availability Analysis

• Two bits per expression rather than one. Can be implemented using AND

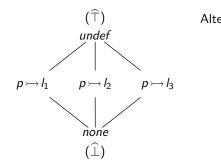
unknown (Bits 11)

(as below) or using OR (reversed lattice)

52/126

DFA Theory: Data Flow Values: Details **Component Lattice for Must Points-To Analysis**

• A pointer can point to at most one location



Alternatively,

 $(\widehat{\top})$ undef

51/126

Aug 2017

CS 618

must-be-available is-not-available (Bits 10) (Bits 01)

may-be-available (Bits 00)

Can also be implemented as a product of 1-0 and 0-1 lattice with AND for the first bit and OR for the second bit

• What approximation of safety does this lattice capture? Uncertain information (= no optimization) is guaranteed to be safe

DFA Theory: Data Flow Values: Details

General Lattice for May-Must Analysis

Interpreting data flow values

- Unknown. Nothing is known as yet
- No. Information does not hold along any path
- Must. Information must hold along all paths
- May. Information may hold along some path

Possible Applications

Defining flow functions

analysis)

Properties of flow functions

- Pointer Analysis: No need of separate of May and Must analyses eg. $(p \rightarrow I, May)$, $(p \rightarrow I, Must)$, $(p \rightarrow I, No)$, or $(p \rightarrow I, Unknown)$
- Type Inferencing for Dynamically Checked Languages

Aug 2017

53/126

DFA Theory: Flow Functions

CS 618

DFA Theory: Flow Functions

Part 6

Flow Functions

55/126

The Set of Flow Functions

- F is the set of functions $f: L \to L$ such that
 - F contains an identity function To model "empty" statements, i.e. statements which do not influence the data flow information
 - F is closed under composition Cumulative effect of statements should generate data flow information from the same set
 - ▶ For every $x \in L$, there must be a finite set of flow functions $\{f_1, f_2, \dots f_m\} \subseteq F$ such that

$$x = \prod_{1 \le i \le m} f_i(BI)$$

• Properties of *f*

Aug 2017

- Monotonicity and Distributivity
- ► Loop Closure Boundedness and Separability

CS 618

Flow Functions: An Outline of Our Discussion

(Some properties discussed in the context of solutions of data flow

54/126

• Partial order is preserved: If x can be safely used in place of y then f(x)

Flow Functions in Bit Vector Data Flow Frameworks

- Bit Vector Frameworks: Available Expressions Analysis, Reaching Definitions Analysis Live variable Analysis, Anticipable Expressions Analysis, Partial Redundancy Elimination etc
 - ▶ All functions can be defined in terms of constant Gen and Kill

$$f(x) = \mathsf{Gen} \cup (x - \mathsf{Kill})$$

- ▶ Lattices are powersets with partial orders as ⊆ or ⊇ relations
- ▶ Information is merged using \cap or \cup
- Flow functions in Strong Liveness Analysis, Pointer Analyses, Constant Propagation, Possibly Uninitialized Variables cannot be expressed using constant Gen and Kill
 - Local context alone is not sufficient to describe the effect of statements fully

Aug 2017

 $\forall x, y \in L, x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$

can be safely used in place of f(y)

Alternative definition

$$\forall x, y \in L, f(x \sqcap y) \sqsubseteq f(x) \sqcap f(y)$$

• Merging at intermediate points in shared segments of paths is safe (However, it may lead to imprecision)

Aug 2017

CS 618

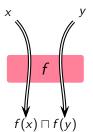
DFA Theory: Flow Functions

58/126

Distributivity of Flow Functions

• Merging distributes over function application

$$\forall x, y \in L, f(x \sqcap y) = f(x) \sqcap f(y)$$



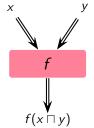
• Merging at intermediate points in shared segments of paths does not lead to imprecision

CS 618 **DFA Theory: Flow Functions** 58/126

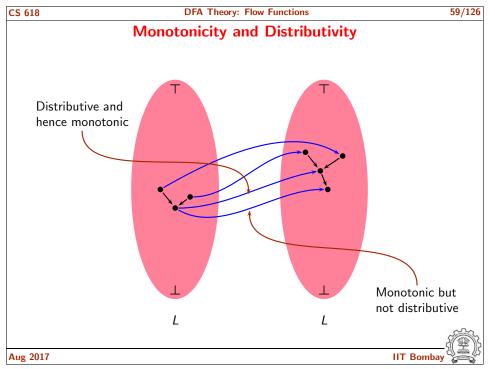
Distributivity of Flow Functions

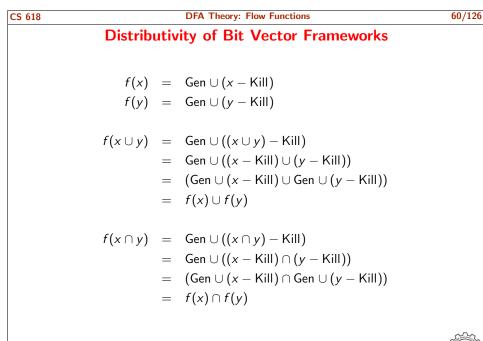
Merging distributes over function application

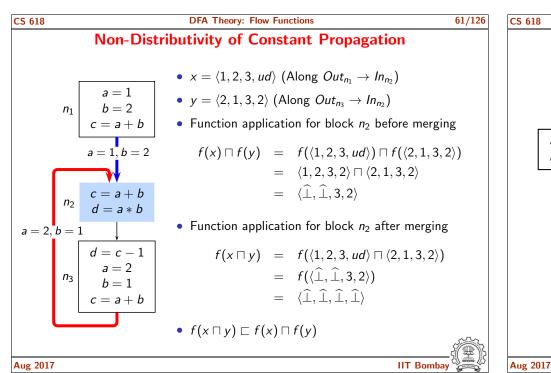
$$\forall x, y \in L, f(x \sqcap y) = f(x) \sqcap f(y)$$

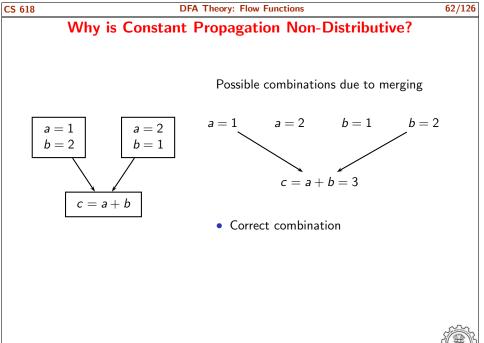


• Merging at intermediate points in shared segments of paths does not lead to imprecision



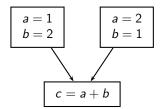






Why is Constant Propagation Non-Distributive?

Possible combinations due to merging



$$a = 1$$
 $a = 2$ $b = 1$ $b = 2$

$$c = a + b = 3$$

Correct combination

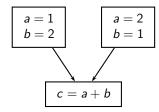
Aug 2017

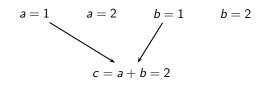
III Bo

CS 618 DFA Theory: Flow Functions 62/126

Why is Constant Propagation Non-Distributive?

Possible combinations due to merging





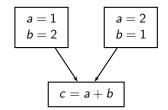
- Wrong combination
- Mutually exclusive information
- No execution path along which this information holds

Aug 2017 IIT Bombay

CS 618 DFA Theory: Flow Functions 62/126

Why is Constant Propagation Non-Distributive?

Possible combinations due to merging



$$a = 1$$
 $a = 2$ $b = 1$ $b = 2$ $c = a + b = 4$

- Wrong combination
- Mutually exclusive information
- No execution path along which this information holds

Part 7

Solutions of Data Flow Analysis

Solutions of Data Flow Analysis: An Outline of Our **Discussion**

- MoP and MFP assignments and their relationship
- Existence of MoP assignment
 - Boundedness of flow functions
- Existence and Computability of MFP assignment
 - ► Flow functions Vs. function computed by data flow equations
- Safety of MFP solution

Aug 2017

Solutions of Data Flow Analysis

- An assignment A associates data flow values with program points $A \sqsubseteq B$ if for all program points p, $A(p) \sqsubseteq B(p)$
- Performing data flow analysis

Given

- ► A set of flow functions, a lattice, and merge operation
- ▶ A program flow graph with a mapping from nodes to flow functions

Find out

► An assignment A which is as exhaustive as possible and is safe

Aug 2017

CS 618

DFA Theory: Solutions of Data Flow Analysis

65/126

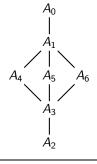
An Example For Available Expressions Analysis

Program

Some Assignments							
$A_0 A_1 A_2 A_3 A_4 A_5 A_6$							
In ₁	11	00	00	00	00	00	00
Out ₁	11	11	00	11	11	11	11
In ₂	11	11	00	00	10	01	01
Out ₂	11	11	00	00	10	01	10

Lattice L of data flow values at a node

Lattice $L \times L \times L \times L$ for data flow values at all nodes

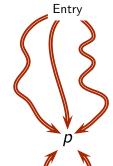


CS 618

DFA Theory: Solutions of Data Flow Analysis

66/126

Meet Over Paths (MoP) Assignment



Exit

Aug 2017

• The largest safe approximation of the information reaching a program point along all information flow paths

$$MoP(p) = \prod_{\rho \in Paths(p)} f_{\rho}(BI)$$

- f_{ρ} represents the compositions of flow functions along ρ
- ▶ BI refers to the relevant information from the calling context
- ► All execution paths are considered potentially executable by ignoring the results of conditionals
- Any $Info(p) \sqsubseteq MoP(p)$ is safe

Maximum Fixed Point (MFP) Assignment

- Difficulties in computing MoP assignment
- Path based specification
- ▶ In the presence of cycles there are infinite paths If all paths need to be traversed ⇒ Undecidability
- ► Even if a program is acyclic, every conditional multiplies the number of paths by two If all paths need to be traversed ⇒ Intractability

- Why not merge information at intermediate points?
 - Merging is safe but may lead to imprecision

Aug 2017

► Computes fixed point solutions of data flow equations

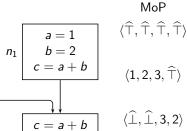
Edge based

specifications

69/126 CS 618 DFA Theory: Solutions of Data Flow Analysis

67/126

Assignments for Constant Propagation Example



MFP

 $\langle 1, 2, 3, \widehat{\top} \rangle$

d = c - 1

d = a * b

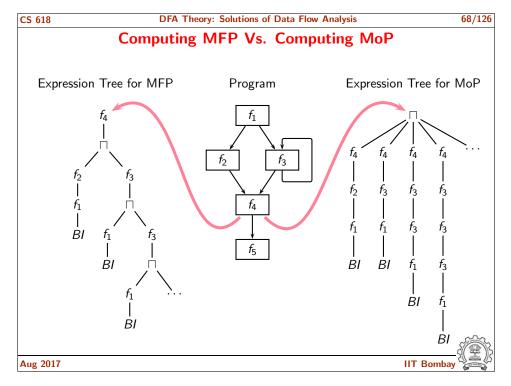
 n_2

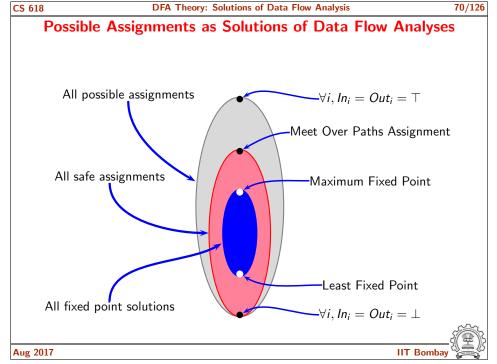
 $\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$

c = a + b

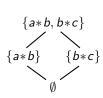
(2, 1, 3, 2)

 $\langle 2, 1, 3, \widehat{\perp} \rangle$





Lattice



Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f_e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

- Is the lattice a meet semilattice?
- What is the meet operation that computes glb?
- Are all strictly descending chains finite?
- Does the function space have an identity function?
- Are all values in the lattice computable from a finite merge of flow functions?
- Is the function space closed under composition?

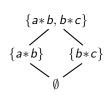
Aug 2017

IIT Bombay

An Instance of Available Expressions Analysis

Lattice

CS 618



Consta	nt Functions	Depen	dent Functions
f	f(x)	f	f(x)
$f_{ op}$	$\{a*b,b*c\}$	f_{id}	X
f_{\perp}	Ø	f_c	$x \cup \{a*b\}$
f _a	$\{a*b\}$	f_d	$x \cup \{b*c\}$
f_b	{ <i>b</i> ∗ <i>c</i> }	f _e	$x - \{a*b\}$
		f_f	$x - \{b*c\}$

DFA Theory: Solutions of Data Flow Analysis

An Instance of Available Expressions Analysis

DFA Theory: Solutions of Data Flow Analysis

An Instance of Available Expressions Analysis

Constant Functions

• Not a fixed point assignment

f(x)

 $\{a*b,b*c\}$

Program

Flow Functions			
Node	Flow Function		
1	$f_{ op}$		
2	f _{id}		

Some Possible Assignments						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						A_6
In_1	00	00	00	00	00	00
Out_1	11	00	11	11	11	11
In ₂	11	00	00	10	01	01
Out_2	11	00	00	10	01	10

Aug 2017

CS 618

72/126

72/126

CS 618	DFA Theory: Solutions of Data Flow Analysis	72/12

An Instance of Available Expressions Analysis

{ a*	b.	b*	c }
			Ν

Lattice

	Consta	ant Functions	Depen	dent Functions
	f	f(x)	f	f(x)
-	£	Saub buch	£	X

Maximum fixed point assignment

• Initialization for round robin iterative

 $x \cup \{a*b\}$ $x \cup \{b*c\}$ $x - \{a*b\}$

 $x - \{b*c\}$

method: 11Safe assignment

Р	r۸	σ	ra	n

Flow Functions				
Node	Flow Function			
1	$f_{ op}$			
2	f_{id}			

J	Some Possible Assignments						
Ì	\nearrow	- <i>A</i> ₁	A_2	A_3	A_4	A_5	A_6
ĺ	In_1	00	00	00	00	00	00
ĺ	Out_1	11	00	11	11	11	11
ĺ	In ₂	11	00	00	10	01	01
ĺ	Out ₂	11	00	00	10	01	10

Program

1 b*cSafe assignment

Flow Functions

Node Function

1 f_{\top} 2 f_{id}

Lattice

 $\{a*b,b*c\}$

 $\{a*b\}$

Sc	Some Possible Assignments						
	$\Lambda_{\rm I}$	$-A_2$	A_3	A_4	A_5	A_6	
In ₁	00	00	00	00	00	00	
Out_1	11	00	11	11	11	11	
In ₂	11	00	00	10	01	01	
Out ₂	11	00	00	10	01	10	

Dependent Functions

 f_{id}

f(x)

X

 $x \cup \{a*b\}$

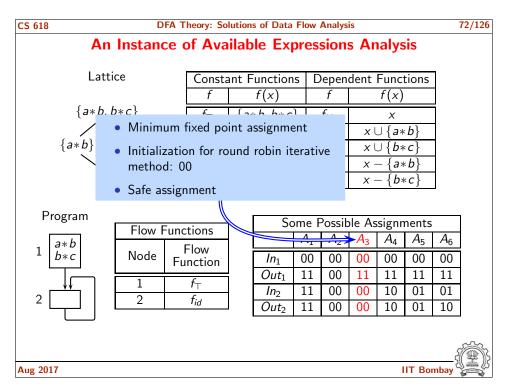
 $x \cup \{b*c\}$

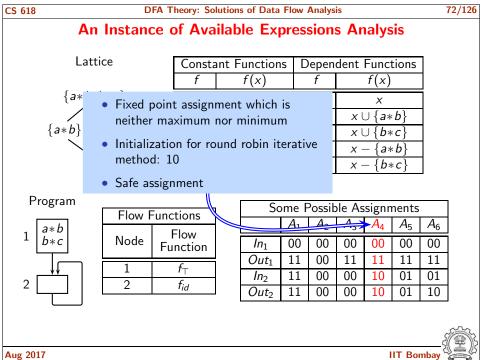
 $x - \{a*b\}$

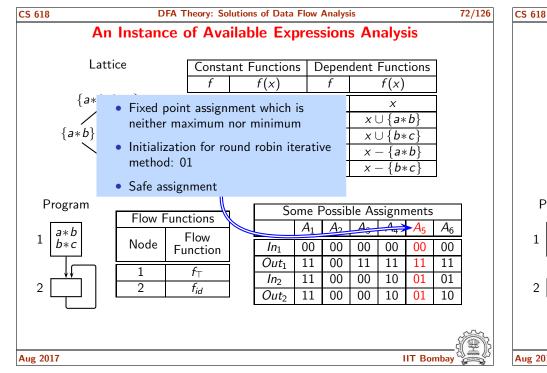
 $x - \{b*c\}$

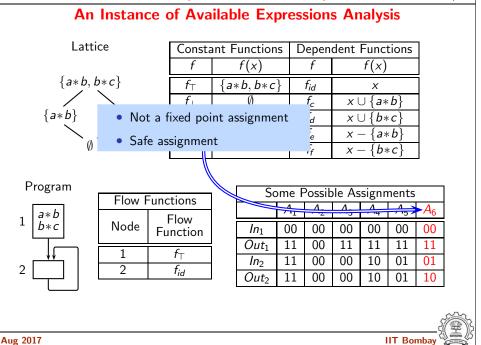
art weed on

IIT Bombay





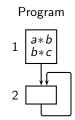




DFA Theory: Solutions of Data Flow Analysis

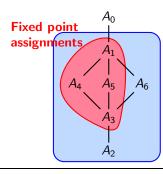
72/126

Lattice of Assignments for Available Expressions Analysis



	Some Assignments							
A_0 A_1 A_2 A_3 A_4 A_5 A_5						A_6		
In_1	11	00	00	00	00	00	00	
Out ₁	11	11	00	11	11	11	11	
In ₂	11	11	00	00	10	01	01	
Out ₂	11	11	00	00	10	01	10	

Lattice $L \times L \times L \times L$ for all assignments (many assignments omitted, e.g. node 1 could have data flow values 10 and 01)



Safe assignments

Aug 2017

Existence of an MoP Assignment (1)

$$MoP(p) = \prod_{
ho \in Paths(p)} f_{
ho}(BI)$$

- If a finite number of paths reach p, then existence of solution trivially follows
 - ► Function space is closed under composition
 - glb exists for all non-empty finite subsets of the lattice (Assuming that the data flow values form a meet semilattice)

CS 618

DFA Theory: Solutions of Data Flow Analysis

75/126

Existence of an MoP Assignment (2)

$$\mathit{MoP}(p) = \prod_{
ho \in \mathit{Paths}(p)} f_{
ho}(\mathit{BI})$$

• If an infinite number of paths reach p then,

$$MoP(p) = \underbrace{f_{\rho_1}(BI)}_{X_1} \sqcap f_{\rho_2}(BI) \sqcap f_{\rho_3}(BI) \sqcap \dots$$

- Every meet results in a weaker value
- The sequence X_1, X_2, X_3, \dots follows a descending chain
- Since all strictly descending chains are finite, MoP exists (Assuming that our meet semilattice satisfies DCC)

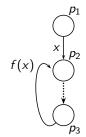
CS 618

DFA Theory: Solutions of Data Flow Analysis

76/126

Computability of MoP

Does existence of MoP imply it is computable?



Paths reaching the entry of p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$

$$MoP(p_2) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

Aug 2017 **IIT Bombay**

MoP Computation is Undecidable

There does not exist any algorithm that can compute MoP assignment for every possible instance of every possible monotone data flow framework

- Reducing MPCP (Modified Post's Correspondence Problem) to constant propagation
- MPCP is known to be undecidable
- If an algorithm exists for detecting all constants
 - ⇒ MPCP would be decidable
- Since MPCP is undecidable
 - ⇒ There does not exist an algorithm for detecting all constants
 - ⇒ Static analysis is undecidable

Aug 2017

CS 618

DFA Theory: Solutions of Data Flow Analysis

78/126

Post's Correspondence Problem (PCP)

• Given strings $u_i, v_i \in \Sigma^+$ for some alphabet Σ , and two k-tuples,

$$U = (u_1, u_2, \dots, u_k)$$

$$V = (v_1, v_2, \dots, v_k)$$

Is there a sequence i_1, i_2, \ldots, i_m of one or more integers such that

$$u_{i_1}u_{i_2}\ldots u_{i_m}=v_{i_1}v_{i_2}\ldots v_{i_m}$$

- Sets U and V are finite and contain the same number of strings
- ullet The strings in U and V are finite and are of varying lengths
- ullet For constructing the new strings using the strings in U and V
 - ▶ The strings at the same the index of must be used
 - ▶ There is no limit on the length of the new string

Indices could repeat without any bound

Post's Correspondence Problem (PCP)

• Given strings $u_i, v_i \in \Sigma^+$ for some alphabet Σ , and two k-tuples,

$$U = (u_1, u_2, \dots, u_k)$$

$$V = (v_1, v_2, \dots, v_k)$$

Is there a sequence i_1, i_2, \ldots, i_m of one or more integers such that

$$u_{i_1}u_{i_2}\ldots u_{i_m}=v_{i_1}v_{i_2}\ldots v_{i_m}$$

• For U = (101, 11, 100) and V = (01, 1, 11001) the solution is 2, 3, 2

$$u_2 u_3 u_2 = 1110011$$

 $v_2 v_3 v_2 = 1110011$

- For U = (1, 10111, 10), V = (111, 10, 0), the solution is 2, 1, 1, 3
- For U = (01, 110), V = (00, 11), there is no solution

Aug 2017

CS 618

Bombay 7

79/126

Modified Post's Correspondence Problem (MPCP)

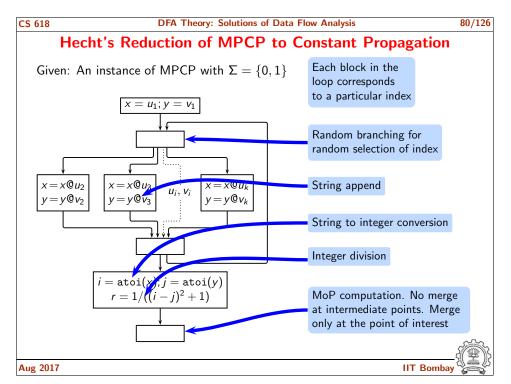
• The first string in the correspondence relation should be the first string from the *k*-tuple

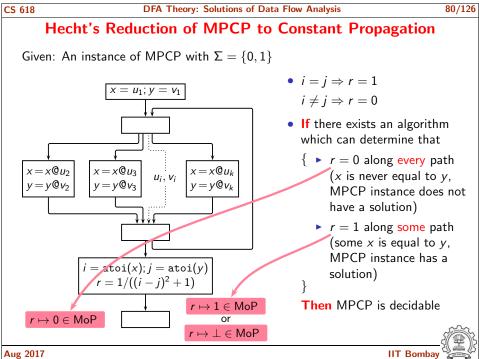
$$u_1 u_{i_1} u_{i_2} \dots u_{i_m} = v_1 v_{i_1} v_{i_2} \dots v_{i_m}$$

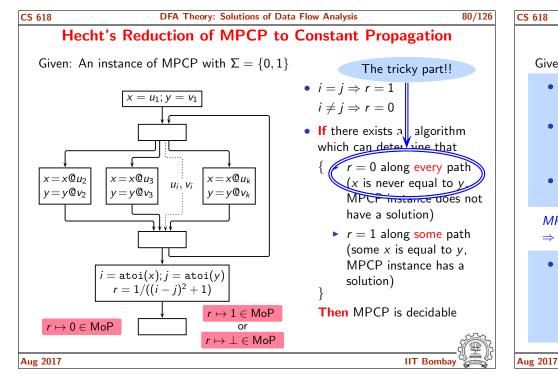
• For U = (11, 1, 0111, 10), V = (1, 111, 10, 0), the solution is 3, 2, 2, 4

$$u_1u_3u_2u_2u_4 = 1101111110$$

$$v_1v_3v_2v_2v_4 = 11011111110$$







Hecht's Reduction of MPCP to Constant Propagation Given: An instance of MPCP with $\Sigma = \{0, 1\}$ The tricky part!! • Asserting that no x is equal to y requires $i = j \Rightarrow r = 1$ us to examine infinitely many (x, y) pairs $i \neq j \Rightarrow r = 0$ • If we keep finding x and y that are If there exists a lagorithm unequal, how long do we wait to decide which can detervine that that there is no x that is equal to y? $\{ r = 0 \text{ along every path } \}$ • In a lucky case we may find an x that is (x) is never equal to yequal to y, but there is no guarantee MPCF instance goes not have a solution) MPCP is not decidable. ightharpoonup r = 1 along some path ⇒ Constant Propagation is not decidable (some x is equal to y, • Descending chains consist of sets of pairs MPCP instance has a (x,y) with \top as \emptyset solution) Since there is no bound on the length of *x* Then MPCP is decidable and y, the number of these sets is infinite \Rightarrow DCC is violated

DFA Theory: Solutions of Data Flow Analysis

80/126

Is MFP Always Computable?

MFP assignment may not be computable

- if the flow functions are non-monotonic, or
- if some strictly descending chain is not finite

Aug 2017

Aug 2017

DFA Theory: Solutions of Data Flow Analysis

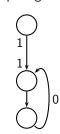
Computability of MFP

• If f is not monotonic, the computation may not converge

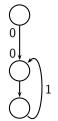
X	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$	
1	0	1	0	1	

$$MoP = x \sqcap f(x) \sqcap f^{2}(x) \sqcap f^{3}(x) \sqcap \ldots = 0$$

Computing MFP iteratively



MFP does not exist and is not computable

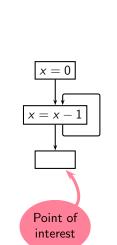


MFP exist and is computable

83/126

82/126

83/126 **DFA Theory: Solutions of Data Flow Analysis** Computability of MFP



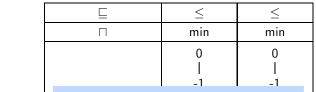
CS 618

Aug 2017

	<u> </u>	\leq
П	min	min
Hasse diagram	0 -1 -2 -3 	0 -1 -2 -3 -∞
MFP exists?	No	Yes
MFP computable?	No	No
MoP exists?	No	Yes

IIT Bombay

DFA Theory: Solutions of Data Flow Analysis CS 618 Computability of MFP



- Flow functions are monotonic
- Strictly descending chains are not finite

	-:	$-\infty$
MFP exists?	No	Yes
MFP computable?	No	No
MoP exists?	No	Yes

Aug 2017

Point of

interest

84/126

CS 618

Existence and Computation of the Maximum Fixed Point

If L is a meet semilattice satisfying DCC, $f: L \rightarrow L$ is monotonic, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k

Claims being made:

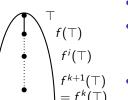
- $\exists k \text{ s.t. } f^{k+1}(\top) = f^k(\top)$
- Since k is finite, $f^k(\top)$ exists and is computable
- $f^k(\top)$ is a fixed point
- $f^k(\top)$ is a the maximum fixed point

The proof depends on:

- The existence of glb for every pair of values in L
- Finiteness of strictly descending chains
- Monotonicity of f

Aug 2017

If L is a meet semilattice satisfying DCC, $f: L \rightarrow L$ is monotonic, then $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^j(\top)$, j < k



- $\top \supseteq f(\top) \supseteq f^2(\top) \supseteq f^3(\top) \supseteq f^4(\top) \supseteq \dots$
- Since strictly descending chains are finite, there must exist $f^k(\top)$ such that $f^{k+1}(\top) = f^k(\top)$ and $f^{j+1}(\top) \neq f^{j}(\top), j < k$
- If p is a fixed point of f then $p \sqsubseteq f^k(\top)$ Proof strategy: Induction on i for $f^i(\top)$
 - ▶ Basis (i = 0): $p \sqsubset f^0(\top) = \top$
 - ▶ Inductive Hypothesis: Assume that $p \sqsubseteq f^i(\top)$
 - ▶ Proof: $f(p) \sqsubseteq f(f^i(\top))$ (*f* is monotonic) \Rightarrow $p \sqsubseteq f(f^i(\top)) (f(p) = p)$ $\Rightarrow p \sqsubset f^{i+1}(\top)$
- Since this holds for every p that is a fixed point, $f^{k+1}(\top)$ must be the Maximum Fixed Point

CS 618

Aug 2017

DFA Theory: Solutions of Data Flow Analysis

85/126 CS 618

Aug 2017

DFA Theory: Solutions of Data Flow Analysis

86/126

Fixed Points Computation: Flow Functions Vs. Equations

Recall that

$$MFP(f) = f^{k+1}(\top) = f^k(\top)$$
 such that $f^{j+1}(\top) \neq f^j(\top)$, $j < k$.

- ▶ What is *f* in the above?
- Flow function of a block? Which block?
- Our method computes the maximum fixed point of data flow equations!
- What is the relation between the maximum fixed point of data flow equations and the MFP defined above?

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\begin{array}{rcl} In_1 & = & BI \\ Out_1 & = & f_1(In_1) \\ In_2 & = & Out_1 \sqcap \dots \\ Out_2 & = & f_2(In_2) \\ & \dots \\ In_N & = & Out_{N-1} \sqcap \dots \\ Out_N & = & f_N(In_N) \end{array}$$

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\begin{array}{rcl} \textit{In}_1 & = & \textit{f}_{\textit{In}_1}(\langle \textit{In}_1, \textit{Out}_1, \ldots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{Out}_1 & = & \textit{f}_{\textit{Out}_1}(\langle \textit{In}_1, \textit{Out}_1, \ldots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{In}_2 & = & \textit{f}_{\textit{In}_2}(\langle \textit{In}_1, \textit{Out}_1, \ldots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{Out}_2 & = & \textit{f}_{\textit{Out}_2}(\langle \textit{In}_1, \textit{Out}_1, \ldots, \textit{In}_N, \textit{Out}_N \rangle) \\ & \cdots \\ \textit{In}_N & = & \textit{f}_{\textit{In}_N}(\langle \textit{In}_1, \textit{Out}_1, \ldots, \textit{In}_N, \textit{Out}_N \rangle) \\ \textit{Out}_N & = & \textit{f}_{\textit{Out}_N}(\langle \textit{In}_1, \textit{Out}_1, \ldots, \textit{In}_N, \textit{Out}_N \rangle) \end{array}$$

where each flow function is of the form $L \times L \times ... \times L \rightarrow L$

IIT Bombay

Aug 2017

CS 618

DFA Theory: Solutions of Data Flow Analysis

86/126

Aug 2017

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\mathcal{X} = \langle f_{ln_1}(\mathcal{X}), f_{Out_1}(\mathcal{X}), \dots \\
 f_{ln_N}(\mathcal{X}), f_{Out_N}(\mathcal{X}),$$

where $\mathcal{X} = \langle \textit{In}_1, \textit{Out}_1, \dots, \textit{In}_N, \textit{Out}_N \rangle$

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle = \langle f_{\mathit{In}_1}(\langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle), \\ f_{\mathit{Out}_1}(\langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle), \\ \ldots \\ f_{\mathit{In}_N}(\langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle), \\ f_{\mathit{Out}_N}(\langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle), \\ \rangle$$

where each flow function is of the form $L \times L \times ... \times L \rightarrow L$

IIT Bomba

CS 618

DFA Theory: Solutions of Data Flow Analysis

86/126

Fixed Points Computation: Flow Functions Vs. Equations

• Data flow equations for a CFG with N nodes can be written as

$$\mathcal{X} = \mathcal{F}(\mathcal{X})$$

where
$$\mathcal{X} = \langle \mathit{In}_1, \mathit{Out}_1, \ldots, \mathit{In}_N, \mathit{Out}_N \rangle$$

 $\mathcal{F}(\mathcal{X}) = \langle \mathit{f}_{\mathit{In}_1}(\mathcal{X}), \mathit{f}_{\mathit{Out}_1}(\mathcal{X}), \ldots, \mathit{f}_{\mathit{In}_N}(\mathcal{X}), \mathit{f}_{\mathit{Out}_N}(\mathcal{X}) \rangle$

We compute the fixed points of function ${\mathcal F}$ defined above

87/126

CS 618

An Instance of Available Expressions Analysis

• Conventional data flow equations

$$ln_1 = 00 \qquad ln_2 = Out_1 \cap Out_2
Out_1 = 11 \qquad Out_2 = ln_2$$

• Data Flow Equation $\mathcal{X} = \mathcal{F}(\mathcal{X})$ is

$$\mathcal{F}(\langle \mathit{In}_1, \mathit{Out}_1, \mathit{In}_2, \mathit{Out}_2 \rangle) = \langle 00, 11, \mathit{Out}_1 \cap \mathit{Out}_2, \mathit{In}_2 \rangle$$

• The maximum fixed point assignment is

$$\mathcal{F}(\langle 11, 11, 11, 11 \rangle) = \langle 00, 11, 11, 11 \rangle$$

• The minimum fixed point assignment is

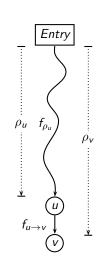
$$\mathcal{F}(\langle 00, 00, 00, 00 \rangle) = \langle 00, 11, 00, 00 \rangle$$

Program

Aug 2017

IIT Bombay

Theoretical Abstractions: A Summary



Aug 2017

- $MoP(v) = \prod_{\rho \in Paths(v)} f_{\rho}(BI)$
- Proof Obligation: $\forall \rho_v \ FP(v) \sqsubseteq f_{\rho_v}(BI)$
- Claim 1: $\forall u \rightarrow v, FP(v) \sqsubseteq f_{u \rightarrow v} (FP(u))$
- Proof Outline: Induction on path length Base case: Path of length 0

$$FP(Entry) = MoP(Entry) = BI$$

Inductive hypothesis: Assume it holds for paths consisting of k edges (say at u)

$$\begin{array}{c} \mathit{FP}(u) \sqsubseteq \mathit{f}_{\rho_u}(\mathit{BI}) & (\mathsf{Inductive\ hypothesis}) \\ \mathit{FP}(v) \sqsubseteq \mathit{f}_{u \to v}\left(\mathit{FP}(u)\right) & (\mathsf{Claim\ 1}) \\ \Rightarrow \mathit{FP}(v) \sqsubseteq \mathit{f}_{u \to v}\left(\mathit{f}_{\rho_u}(\mathit{BI})\right) \\ \Rightarrow \mathit{FP}(v) \sqsubseteq \mathit{f}_{\rho_v}(\mathit{BI}) \end{array}$$

This holds for every FP an hence for MFP also

IIT Bomb.

89/126

CS 618 DFA Theory: Theoretical Abstractions: A Summary

Theoretical Abstractions: A Summary

- - ► Meet: commutative, associative, and idempotent
 - ▶ Partial order: reflexive, transitive, and antisymmetric

Necessary and sufficient conditions for designing a data flow framework

- ▶ Existence of ⊥
- A function space
 - ► Existence of the identity function
 - Closure under composition

• A meet semilattice satisfying dcc

Monotonic functions

Part 9

Performing Data Flow Analysis

CS 618 DFA Theory: Performing Data Flow Analysis 90/126

Performing Data Flow Analysis

- Algorithms for computing MFP solution
- Complexity of data flow analysis
- Factor affecting the complexity of data flow analysis

IIT Bombay

CS 618 DFA Theory: Performing Data Flow Analysis

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (\top)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination: After values stabilise

+ Simplest to understand and implement

Our examples use this method

- May perform unnecessary computations
- Work List. Dynamic list of nodes which need recomputation

Termination: When the list becomes empty

- + Demand driven. Avoid unnecessary computations
- $-\,$ Overheads of maintaining work list

Aug 2017

CS 618

91/126

Aug 2017

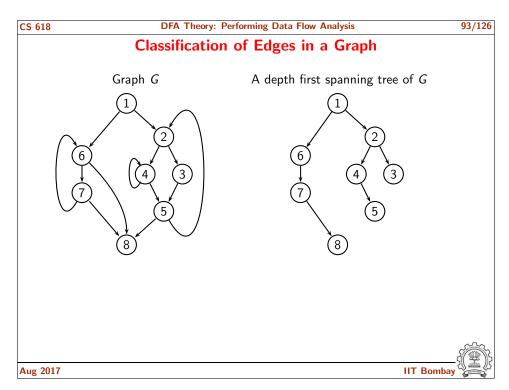
DFA Theory: Performing Data Flow Analysis

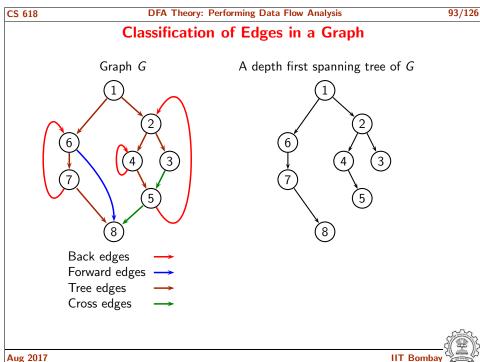
92/13

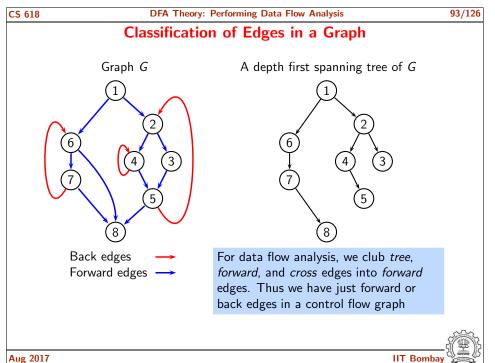
Elimination Methods of Performing Data Flow Analysis

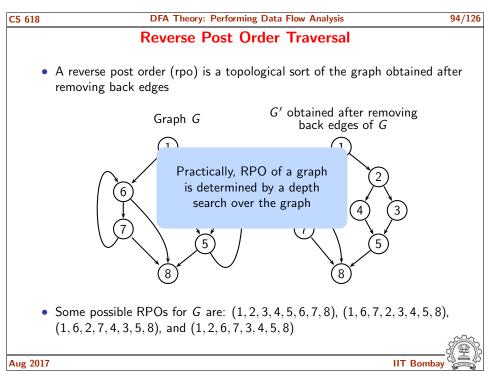
Delayed computations of dependent data flow values of dependent nodes Find suitable single-entry regions

- Interval Based Analysis. Uses graph partitioning
- T_1 , T_2 Based Analysis. Uses graph parsing









Round Robin Iterative Algorithm

```
In_0 = BI
      for all j \neq 0 do
          In_i = \top
      change = true
      while change do
      { change = false
          for j = 1 to N - 1 do
 8
          \{ temp = \prod_{p \in pred(j)} f_p(In_p) 
 9
             if temp \neq In_i then
10
              \{ In_i = temp \}
11
                  change = true
12
13
14
```

- Computation of *Out*; has been left implicit
 - Works fine for unidirectional frameworks
- ullet T is the identity of \Box (line 3)
- Reverse postorder (rpo) traversal for efficiency (line 7)
- rpo traversal AND no loops
- ⇒ no need of initialization

Aug 2017

CS 618

Aug 2017

IIT Bombay

97/126

Aug 2017

2 3

7

8

9

10

11

12

13

95/126

Complexity of Round Robin Iterative Algorithm

- Unidirectional bit vector frameworks
 - ► Construct a spanning tree *T* of *G* to identify postorder traversal
 - ▶ Traverse *G* in reverse postorder for forward problems and Traverse G in postorder for backward problems
 - ▶ Depth d(G, T): Maximum number of back edges in any acyclic path

Task	Number of iterations
First computation of <i>In</i> and <i>Out</i>	1
Convergence	d(G,T)
(until <i>change</i> remains true)	u(0,1)
Verifying convergence	1
(change becomes false)	1

- What about bidirectional bit vector frameworks?
- What about other frameworks?

97/126

96/126

CS 618 **DFA Theory: Performing Data Flow Analysis** Example C Program with d(G,T)

DFA Theory: Performing Data Flow Analysis Example C Program with d(G,T) = 2

```
c = a + b
                                                       n_1
                                         i = 0
    void fun(int m, int n)
 1
 2
 3
        int i,j,a,b,c;
                                         if (i < m)
 4
        c=a+b;
 5
        i=0;
 6
        while(i<m)
                                                  i = 0
                                                         n_3
 7
 8
              j=0;
 9
              while(j<n)
                                                if (j < n)
10
11
                 a=i+j;
12
                 j=j+1;
                                         n_7
                                                      i = i + 1
13
14
              i=i+1;
15
16
```

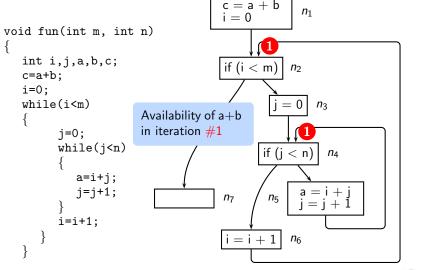
i=i+1; 14 15 16

c=a+b;

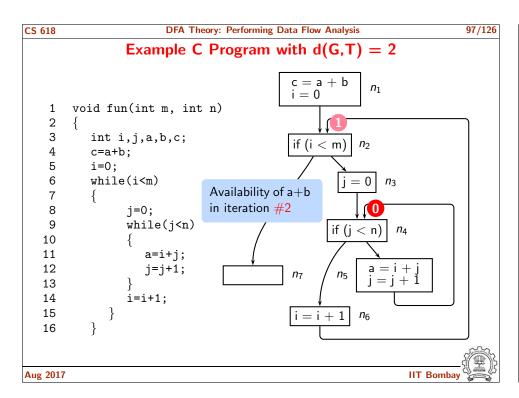
while(i<m)

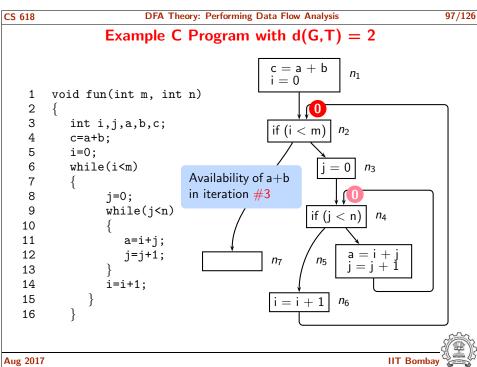
i=0:

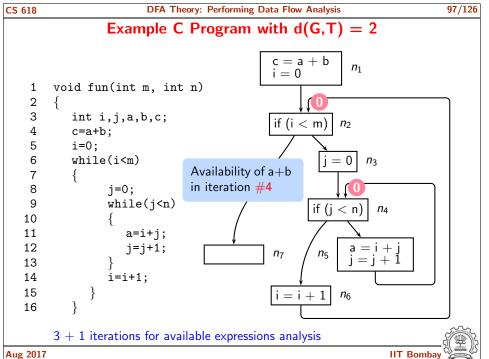
i=0;

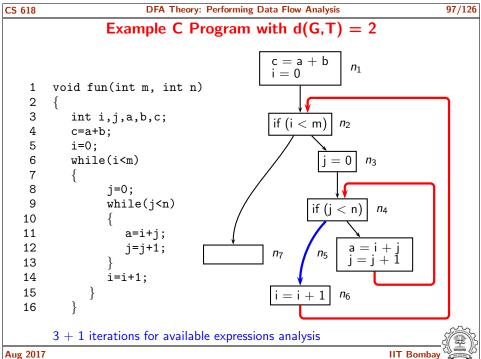


Aug 2017



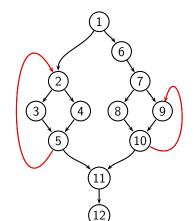






Complexity of Bidirectional Bit Vector Frameworks

Example: Consider the following CFG for PRE



- Node numbers are in reverse post order
- Back edges in the graph are $n_5 o n_2$ and $n_{10} o n_9$
- d(G,T)=1
- Actual iterations : 5

Aug 2017

CS 618

DEATH D.C. I. D. EL A. I. I.

100/126

Aug 2017

CS 618 DFA Theory: Performing Data Flow Analysis 100/126

An Example of Information Flow in Our PRE Analysis

DFA Theory: Performing Data Flow Analysis

Complexity of Bidirectional Bit Vector Frameworks

Initia-

0.1

0.1

1,1

1,1

1,1

1.1

1,1

1,1

1,1

1,1

1.1

1.1

1,1

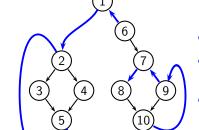
11

10

8

6

5



b*c

• PavIn₆ becomes 0 in the first iteration

Pairs of Out, In Values

0.0

0.1

0,0

0.0

0.0

0.0

1,0 0,0

0,1|0,0

0.1

1.0

0.1

0.0

0.1

1,0

0,0

0.0

0,0

0.0

0.0

0.0

IIT Bomb

Changes in Iterations

lization $\frac{1}{\#1}$ $\frac{\#2}{\#3}$ $\frac{\#4}{\#4}$

0,0

0.1

1,0

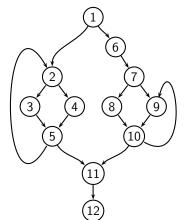
0.0

0,1 0,1 0,1 0,1

- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

CS 618 DFA Theory: Performing Data Flow Analysis

An Example of Information Flow in Our PRE Analysis



- PavIn₆ becomes 0 in the first iteration
- This cause many all other values to become 0
- Here we see a particular sequence of changes
- Incorporating the effect of this sequence of changes requires 5 iterations
- Number of iterations is not related to depth (which is 1 for this graph)

- P

Aug 2017

Aug 2017 IIT Bombay

99/126

Final values &

transformation

Delete

Insert

Insert

Information Flow and Information Flow Paths

- Default value at each program point: ⊤
- Information flow path

Sequence of adjacent program points along which data flow values change

- A change in the data flow at a program point could be
 - ▶ Generation of information Change from \top to a non- \top due to local effect (i.e. $f(\top) \neq \top$)
 - ▶ Propagation of information Change from x to y such that $y \sqsubseteq x$ due to global effect
- Information flow path (ifp) need not be a graph theoretic path

Aug 2017

CS 618

DFA Theory: Performing Data Flow Analysis

103/126

General Data Flow Equations

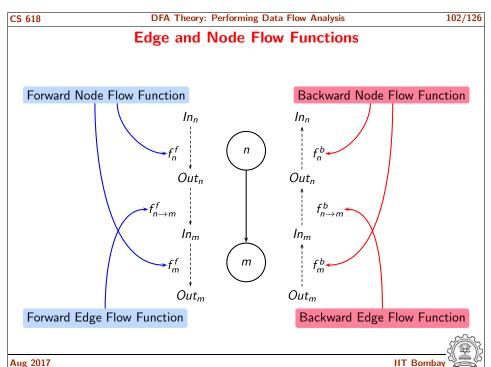
$$In_n = \left\{ egin{array}{ll} BI_{Start} & \sqcap f_n^b(Out_n) & n = Start \\ \left(\prod\limits_{m \in pred(n)} f_{m
ightarrow n}^f(Out_m)
ight) \sqcap f_n^b(Out_n) & ext{otherwise} \end{array}
ight.$$
 $Out_n = \left\{ egin{array}{ll} BI_{End} & \sqcap f_n^f(In_n) & n = End \\ \left(\prod\limits_{m \in succ(n)} f_{m
ightarrow n}^b(In_m)
ight) \sqcap f_n^f(In_n) & ext{otherwise} \end{array}
ight.$

• Edge flow functions are typically identity

$$\forall x \in L, \ f(x) = x$$

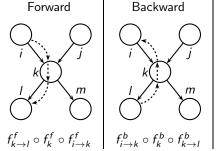
• If particular flows are absent, the corresponding flow functions are

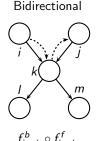
$$\forall x \in L, \ f(x) = \top$$

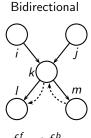


CS 618 DFA Theory: Performing Data Flow Analysis 104/126

Modelling Information Flows Using Edge and Node Flow Functions

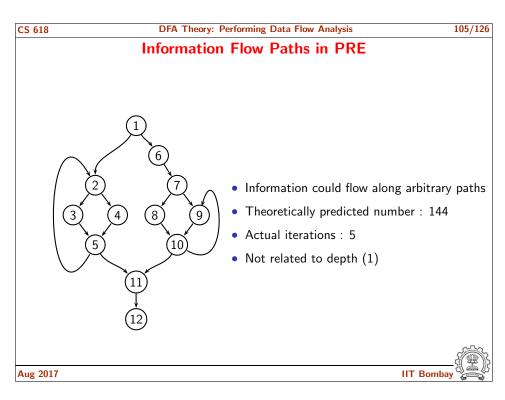


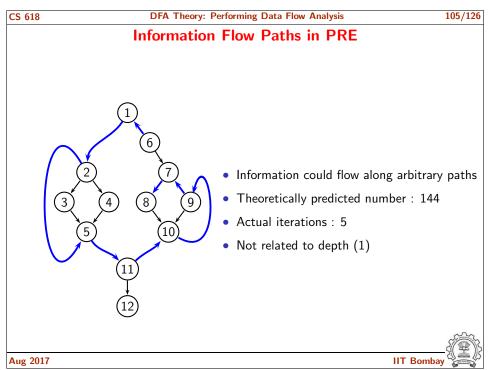




 $f_{k\to l}^f \circ f_{k\to m}^b$

Aug 2017 IIT Bombay





CS 618 DFA Theory: Performing Data Flow Analysis

106/126

CS 618

DFA Theory: Performing Data Flow Analysis

107/126

Lacuna with Older Estimates of PRE Complexity

- Lacuna with PRE : Complexity
 - ightharpoonup r is typically $\mathcal{O}(n)$
 - ▶ Assuming that at most one data flow value changes in one traversal
 - Worst case number of traversals = $\mathcal{O}(n^2)$
- Practical graphs may have upto 50 nodes
 - ▶ Predicted number of traversals : 2,500
 - ▶ Practical number of traversals : ≤ 5
- No explanation for about 14 years despite dozens of efforts
- Not much experimentation with performing advanced optimizations involving bidirectional dependency

Complexity of Worklist Algorithms for Bit Vector
Frameworks

Assume n nodes and r entities

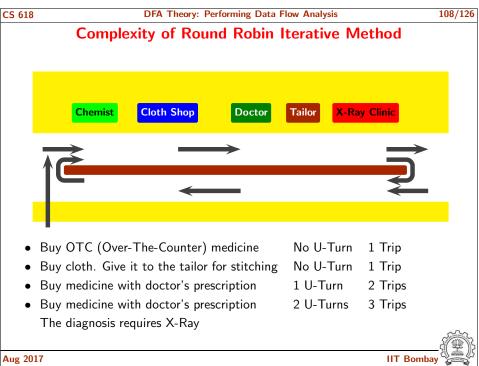
- Total number of data flow values = $2 \cdot n \cdot r$
- A data flow value can change at most once
- Complexity is $\mathcal{O}(n \cdot r)$
- Must be same for both unidirectional and bidirectional frameworks (Number of data flow values does not change!)

ay (i)

Aug 2017 IIT Bombay

Aug 2017

IIT Bombay



CS 618

DFA Theory: Performing Data Flow Analysis

Complexity of Bidirectional Bit Vector Frameworks

Every "incompatible" edge traversal

One additional graph traversal

Wax. Incompatible edge traversals

Width of the graph = 4

Maximum number of traversals = 1 + Max. incompatible edge traversals = 5

Aug 2017

Aug 2017

CS 618 DFA Theory: Performing Data Flow Analysis

Information Flow Paths and Width of a Graph

• A traversal $u \rightarrow v$ in an ifp is

CS 618

- Compatible if u is visited before v in the chosen graph traversal
- ightharpoonup Incompatible if u is visited after v in the chosen graph traversal
- Every incompatible edge traversal requires one additional iteration
- Width of a program flow graph with respect to a data flow framework
 Maximum number of incompatible traversals in any ifp, no part of which is bypassed
- Width + 1 iterations are sufficient to converge on MFP solution (1 additional iteration may be required for verifying convergence)

Aug 2017 IIT Bombay

109/126

Width Subsumes Depth

- Depth is applicable only to unidirectional data flow frameworks
- Width is applicable to both unidirectional and bidirectional frameworks
- ullet For a given graph for a unidirectional bit vector framework, Width \leq Depth Width provides a tighter bound

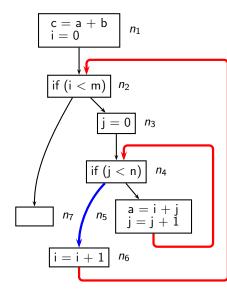
CS 618

Comparison Between Width and Depth

- Depth is purely a graph theoretic property whereas width depends on control flow graph as well as the data framework
- Comparison between width and depth is meaningful only
 - ► For unidirectional frameworks
 - When the direction of traversal for computing width is the natural direction of traversal
- Since width excludes bypassed path segments, width can be smaller than depth

Aug 2017 IIT Bom

Width and Depth



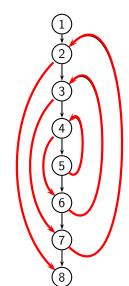
Assuming reverse postorder traversal for available expressions analysis

- Depth = 2
- Information generation point
 n₅ kills expression "a + b"
- Information propagation path $n_5 o n_4 o n_6 o n_2$ No Gen or Kill for "a + b" along this path
- Width = 2
- What about "j + 1"?
- Not available on entry to the loop

DFA Theory: Performing Data Flow Analysis

114/126

Width and Depth



Structures resulting from repeat-until loops with premature exits

- Depth = 3
- However, any unidirectional bit vector analysis is guaranteed to converge in 2 + 1 iterations
- ifp $5 \rightarrow 4 \rightarrow 6$ is bypassed by the edge $5 \rightarrow 6$
- ifp $6 \rightarrow 3 \rightarrow 7$ is bypassed by the edge $6 \rightarrow 7$
- ifp $7 \rightarrow 2 \rightarrow 8$ is bypassed by the edge $7 \rightarrow 8$
- For forward unidirectional frameworks, width is 1
- Splitting the bypassing edges and inserting nodes along those edges increases the width

CS 618

Aug 2017

DFA Theory: Performing Data Flow Analysis

115/126

Work List Based Iterative Algorithm

Directly traverses information flow paths

```
1 ln_0 = Bl

2 for all j \neq 0 do

3 { ln_j = \top

4 Add j to LIST

5 }

6 while LIST is not empty do

7 { Let j be the first node in LIST. Remove it from LIST

8 temp = \prod_{p \in pred(j)} f_p(ln_p)

9 if temp \neq ln_j then

10 { ln_j = temp

11 Add all successors of j to LIST

12 }

13 }
```

ay

Aug 2017

IIT Bombay

CS 618

Tutorial Problem

Perform work list based iterative analysis for earlier examples. Assume that the work list follows FIFO (First in First Out) policy

Show the trace of the analysis in the following format:

Step N	Node	Remaining work list	<i>Out</i> DFV	Change?	Node Added	Resulting work list
--------	------	---------------------	-------------------	---------	---------------	---------------------

Aug 2017

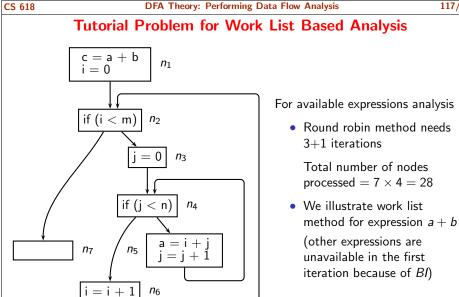
CS 618

118/126

Aug 2017

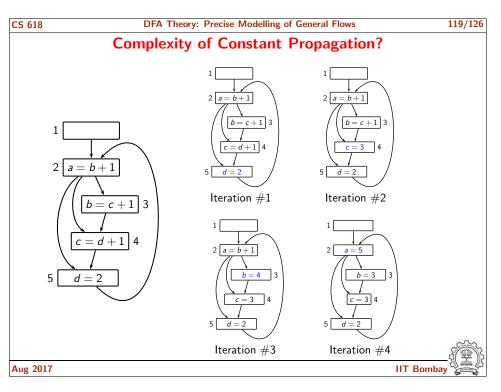
DFA Theory: Performing Data Flow Analysis Tutorial Problem for Work List Based Analysis

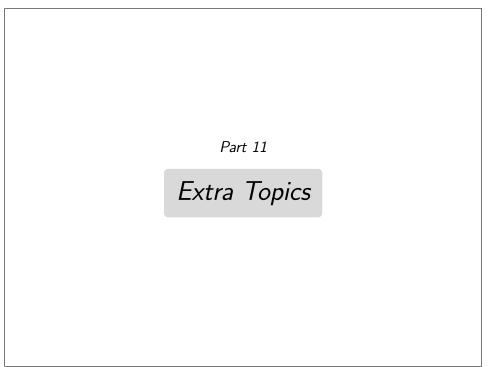
Step	Node	Remaining work list	<i>Out</i> DFV	Change?	Node Added	Resulting work list
1	n_1	$n_2, n_3, n_4, n_5, n_6, n_7$	1	No		$n_2, n_3, n_4, n_5, n_6, n_7$
2	n_2	n_3, n_4, n_5, n_6, n_7	1	No		n_3, n_4, n_5, n_6, n_7
3	<i>n</i> ₃	n_4, n_5, n_6, n_7	1	No		n_4, n_5, n_6, n_7
4	n ₄	n_5, n_6, n_7	1	No		n_5, n_6, n_7
5	n_5	n_6, n_7	0	Yes	<i>n</i> ₄	n_6, n_7, n_4
6	<i>n</i> ₆	n_7, n_4	1	No		n_7, n_4
7	n ₇	n_4	1	No		n_4
8	n_4		0	Yes	n_5, n_6	n_5, n_6
9	n_5	n_6	0	No		n_6
10	n ₆		0	Yes	n_2	n_2
11	n_2		0	Yes	n_3, n_7	n_3, n_7
12	n ₃	n ₇	0	Yes	n ₄	n_7, n_4
13	n ₇	n_4	0	Yes		<i>n</i> ₄
14	n ₄		0	No		$Empty \Rightarrow End$



Part 10

Precise Modelling of General Flows





DFA Theory: Extra Topics

Fixed Points of a Function

CS 618 DFA Theory: Extra Topics 120/126

Tarski's Fixed Point Theorem

Given monotonic $f: L \rightarrow L$ where L is a complete lattice

Define

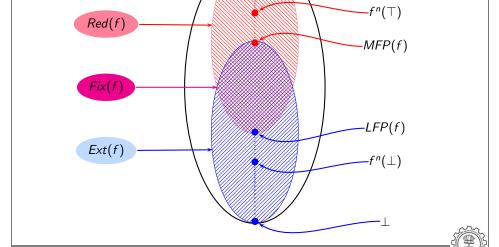
p is a fixed point of f: $Fix(f) = \{p \mid f(p) = p\}$ f is reductive at p: $Red(f) = \{p \mid f(p) \sqsubseteq p\}$ f is extensive at p: $Ext(f) = \{p \mid f(p) \supseteq p\}$

Then

$$LFP(f) = \bigcap Red(f) \in Fix(f)$$

 $MFP(f) = \bigcup Ext(f) \in Fix(f)$

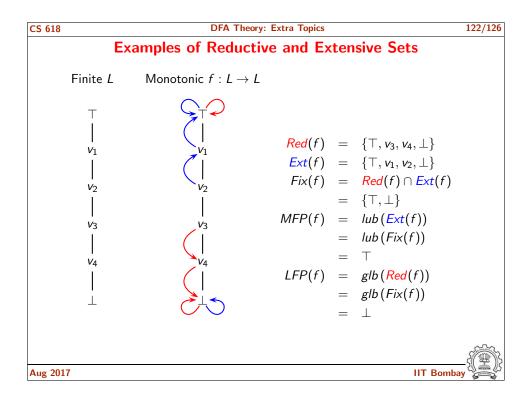
Guarantees only existence, not computability of fixed points



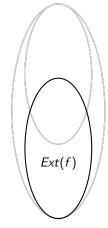
Aug 2017

CS 618

121/126



- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X



f(hi)

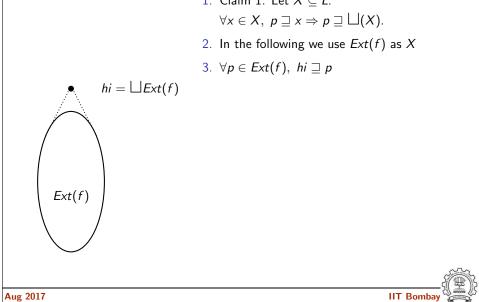
Ext(f)

 $hi = \bigsqcup Ext(f)$

Aug 2017

CS 618 123/126 DFA Theory: Extra Topics Existence of MFP: Proof of Tarski's Fixed Point Theorem

1. Claim 1: Let $X \subseteq L$.



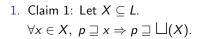
CS 618 **DFA Theory: Extra Topics**

Existence of MFP: Proof of Tarski's Fixed Point Theorem

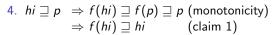
- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supseteq x \Rightarrow p \supseteq \bigsqcup(X).$
- 2. In the following we use Ext(f) as X
- 3. $\forall p \in Ext(f), hi \supseteq p$
- 4. $hi \supseteq p \Rightarrow f(hi) \supseteq f(p) \supseteq p$ (monotonicity) $\Rightarrow f(hi) \supseteq hi$ (claim 1)

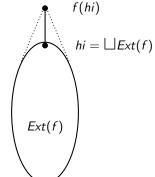
CS 618 **DFA Theory: Extra Topics** 123/126

Existence of MFP: Proof of Tarski's Fixed Point Theorem



- 2. In the following we use Ext(f) as X
- 3. $\forall p \in Ext(f), hi \supset p$





5. f is extensive at hi also: $hi \in Ext(f)$

Aug 2017

hi = f(hi)

- 1. Claim 1: Let $X \subseteq L$. $\forall x \in X, \ p \supset x \Rightarrow p \supset \bigsqcup(X).$
- 2. In the following we use Ext(f) as X
- 3. $\forall p \in Ext(f), hi \supseteq p$
- 4. $hi \supseteq p \Rightarrow f(hi) \supseteq f(p) \supseteq p$ (monotonicity) $\Rightarrow f(hi) \supset hi$ (claim 1)
- 5. f is extensive at hi also: $hi \in Ext(f)$
- 6. $f(hi) \supseteq hi \Rightarrow f^2(hi) \supseteq f(hi)$ $\Rightarrow f(hi) \in Ext(f)$ \Rightarrow hi \supset f(hi) (from 3) $\Rightarrow hi = f(hi) \Rightarrow hi \in Fix(f)$
- 7. $Fix(f) \subseteq Ext(f)$ (by definition) \Rightarrow hi $\supseteq p$, $\forall p \in Fix(f)$

Aug 2017

Ext(f)

CS 618

123/126

CS 618 DFA Theory: Extra Topics

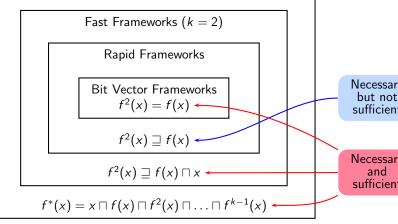
124/126

Existence and Computation of the Maximum Fixed Point

- For monotonic $f: L \rightarrow L$
 - ▶ Existence: $MFP(f) = \bigsqcup Ext(f) \in Fix(f)$ Requires L to be complete
 - ▶ Computation: $MFP(f) = f^{k+1}(\top) = f^k(\top)$ such that $f^{j+1}(\top) \neq f^{j}(\top), j < k$. Requires all strictly descending chains to be finite
- Finite strictly descending and ascending chains
 - ⇒ Completeness of lattice
- ⇒ Even if MFP exists, it may not be reachable unless all strictly descending chains are finite

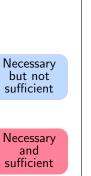
CS 618 DFA Theory: Extra Topics 125/126 Framework Properties Influencing Complexity Depends on the loop closure properties of the framework

k-Bounded Frameworks



Aug 2017

Aug 2017



Complexity of Round Robin Iterative Algorithm

• Unidirectional rapid frameworks

Task	Number of iterations		
Task	Irreducible <i>G</i>	Reducible <i>G</i>	
Initialisation	1	1	
Convergence	d(G,T) + 1	d(G,T)	
(until <i>change</i> remains true)	u(G, T) + 1	u(G,T)	
Verifying convergence	1	1	
(change becomes false)			

