General Data Flow Frameworks

Uday Khedker

(www.cse.iitb.ac.in/~uday)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

September 2017

Part 1

About These Slides

Copyright

These slides constitute the lecture notes for CS618 Program Analysis course at IIT Bombay and have been made available as teaching material accompanying the book:

 Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis: Theory and Practice. CRC Press (Taylor and Francis Group). 2009.

(Indian edition published by Ane Books in 2013)

Apart from the above book, some slides are based on the material from the following book

 M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc. 1977.

These slides are being made available under GNU FDL v1.2 or later purely for academic or research use.

- Modelling General Flows
- Constant Propagation
- Strongly Live Variables Analysis
- Pointer Analyses

Heap Reference Analysis

(after mid-sem)

(after mid-sem)

(after mid-sem)

IIT Bomba

Part 2

Precise Modelling of General Flows

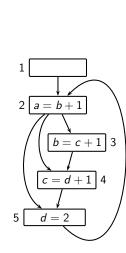
$\begin{array}{c|c} 1 & & \\ 2 & = b+1 \\ \hline & b = c+1 \\ \hline & c = d+1 \\ \hline & d = 2 \end{array}$

CS 618

IIT Bombay

3/178

Complexity of Constant Propagation?

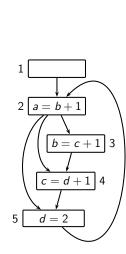


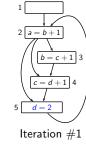


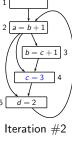
"

Sep 2017

Complexity of Constant Propagation?

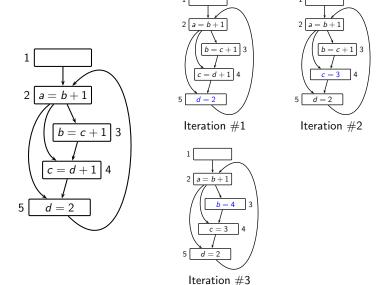






IIT Bombay

Complexity of Constant Propagation:



3/178

CS 618

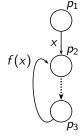
Complexity of Constant Propagation?



3/178

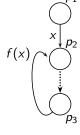
CS 618

Loop Closures of Flow Functions



Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$

Loop Closures of Flow Functions

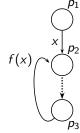


Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$
•••	

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

Loop Closures of Flow Functions



Paths Terminating at p_2	Data Flow Value
p_1, p_2	X
p_1, p_2, p_3, p_2	f(x)
$p_1, p_2, p_3, p_2, p_3, p_2$	$f(f(x)) = f^2(x)$
$p_1, p_2, p_3, p_2, p_3, p_2, p_3, p_2$	$f(f(f(x))) = f^3(x)$
•••	

• For static analysis we need to summarize the value at p_2 by a value which is safe after any iteration.

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap f^4(x) \sqcap \dots$$

• f^* is called the loop closure of f.

5/178

Loop closure boundedness

• Boundedness of *f* requires the existence of some *k* such that

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap \ldots \sqcap f^{k-1}(x)$$

- This follows from the descending chain condition
- For efficiency, we need a constant *k* that is independent of the size of the lattice

6/178

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f (Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

Sep 2017 IIT Bombay

Loop Closures in Bit Vector Frameworks

6/178

• Flow functions in bit vector frameworks have constant Gen and Kill

$$f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$$

$$f^2(x) = f (Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^*(x) = x \sqcap f(x)$$

• Loop Closures of Bit Vector Frameworks are 2-bounded.

Loop Closures in Bit Vector Frameworks

6/178

• Flow functions in bit vector frameworks have constant Gen and Kill

 $f^*(x) = x \sqcap f(x) \sqcap f^2(x) \sqcap f^3(x) \sqcap \dots$

$$f^{2}(x) = f(Gen \cup (x - Kill))$$

$$= Gen \cup ((Gen \cup (x - Kill)) - Kill)$$

$$= Gen \cup ((Gen - Kill) \cup (x - Kill))$$

$$= Gen \cup (Gen - Kill) \cup (x - Kill)$$

$$= Gen \cup (x - Kill) = f(x)$$

$$f^{*}(x) = x \sqcap f(x)$$

- Loop Closures of Bit Vector Frameworks are 2-bounded.
- Intuition: Since Gen and Kill are constant, same things are generated or killed in every application of f.

Multiple applications of f are not required unless the input value changes.

Larger Values of Loop Closure Bounds

- Fast Frameworks \equiv 2-bounded frameworks (eg. bit vector frameworks) Both these conditions must be satisfied
 - Separability
 Data flow values of different entities are independent
 - Constant or Identity Flow Functions
 Flow functions for an entity are either constant or identity
- Non-fast frameworks

At least one of the above conditions is violated

 $f: L \to L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

General Frameworks: Precise Modelling of General Flows

Separability

8/178

CS 618

8/178

Separable

Non-Separable

Example: All bit vector frameworks Example: Constant Propagation

General Frameworks: Precise Modelling of General Flows

Separability

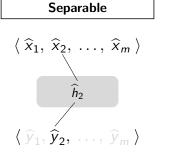
$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i

Separable $\langle \ \widehat{x}_1, \ \widehat{x}_2, \ \dots, \ \widehat{x}_m \ \rangle$ $\qquad \qquad \downarrow$ $\qquad \qquad f$ $\qquad \qquad \downarrow$ $\langle \ \widehat{y}_1, \ \widehat{y}_2, \ \dots, \ \widehat{y}_m \ \rangle$

Non-Separable

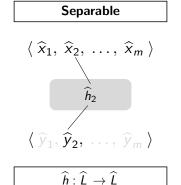
Dility

$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i



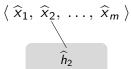
Non-Separable

 $f:L \to L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i



Non-Separable

Example: All bit vector frameworks Example: Constant Propagation



Separable

$$\widehat{h}_2$$

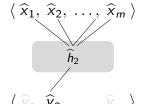
$$\widehat{\mathbf{y}}_{2}, \ldots, \widehat{\mathbf{y}}_{m}$$

$$\widehat{h}:\widehat{L}\to\widehat{L}$$

Example: All bit vector frameworks

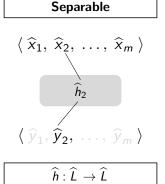
$f:L \to L$ is $\langle \widehat{h}_1, \widehat{h}_2, \dots, \widehat{h}_m \rangle$ where \widehat{h}_i computes the value of \widehat{x}_i

Non-Separable



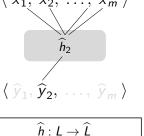
Example: Constant Propagation

$$f:L o L$$
 is $\langle \widehat{h}_1,\widehat{h}_2,\ldots,\widehat{h}_m
angle$ where \widehat{h}_i computes the value of \widehat{x}_i



Example: All bit vector frameworks

Non-Separable



Example: Constant Propagation

Separability of Bit Vector Frameworks

- \widehat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- $\widehat{\sqcap}$ is either boolean AND or boolean OR
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a *bit function* and could be one of the following:

Raise	Lower	Propagate	Negate
÷ → → →	Î Î	$ \begin{array}{c} \hat{T} & \hat{T} \\ \hat{\bot} & \hat{\bot} \end{array} $	Î Î

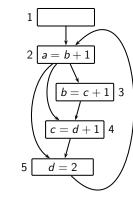
Separability of Bit Vector Frameworks

- \hat{L} is $\{0,1\}$, L is $\{0,1\}^m$
- $\widehat{\sqcap}$ is either boolean AND or boolean OR
- $\widehat{\top}$ and $\widehat{\bot}$ are 0 or 1 depending on $\widehat{\sqcap}$.
- \hat{h} is a *bit function* and could be one of the following:

Raise	Lower	Propagate	Negate	
Î Î	Î Î	Î Î	Î	
Non-monotonicity				

Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$



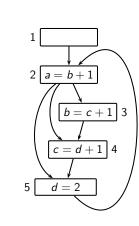
IIT Bombay

Larger Values of Loop Closure Bounds

Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:



CS 618

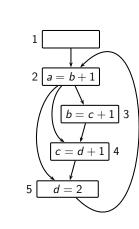
Larger Values of Loop Closure Bounds

Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, 2 \rangle$$



$$f(\langle \top, \top, \top, \top \rangle) = \langle \top, \top, \top, 2 \rangle$$

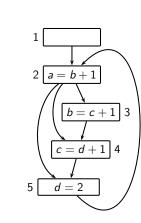
Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, 2 \rangle$$

$$f^{2}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, 3, 2 \rangle$$



IIT Bombay

CS 618

Larger values of Loop Closure Bounds

Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{\tau}, \widehat{\tau}, \widehat{\tau}, \widehat{\tau} \rangle) = \langle \widehat{\tau}, \widehat{\tau}, \widehat{\tau}, 2 \rangle$$

$$f(\langle \widehat{\tau}, \widehat{\tau}, \widehat{\tau}, \widehat{\tau} \rangle) = \langle \widehat{\tau}, \widehat{\tau}, \widehat{\tau}, 2 \rangle$$

$$f^{2}(\langle \widehat{\tau}, \widehat{\tau}, \widehat{\tau}, \widehat{\tau} \rangle) = \langle \widehat{\tau}, \widehat{\tau}, 3, 2 \rangle$$

$$f^{3}(\langle \widehat{\tau}, \widehat{\tau}, \widehat{\tau}, \widehat{\tau} \rangle) = \langle \widehat{\tau}, 4, 3, 2 \rangle$$

IIT Bombay

d=2

2 | a = b + 1 |

d = 2

b = c + 1 | 3

c = d + 1 4

Larger Values of Loop Closure Bounds

Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$f(\langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle) = \langle \widehat{T}, \widehat{T}, \widehat{T}, 2 \rangle$$

$$f^2$$

$$f^2(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, 3, 2 \rangle$$

$$f^{3}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, 4, 3, 2 \rangle$$

$$f^{3}(\langle \top, \top, \top, \top \rangle) = \langle \top, 4, 3, 2 \rangle$$

$$f^{4}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle 5, 4, 3, 2 \rangle$$

10/178

Sep 2017

CS 618

Larger Values of Loop Closure Bounds

Composite flow function for the loop is

$$f(\langle v_a, v_b, v_c, v_d \rangle) = \langle v_b + 1, v_c + 1, v_d + 1, 2 \rangle$$

f is not 2-bounded because:

$$\begin{array}{c|c}
1 & & \\
2 & a = b + 1
\end{array}$$

$$\begin{array}{c|c}
b = c + 1 & 3
\end{array}$$

$$\begin{array}{c|c}
c = d + 1 & 4
\end{array}$$

$$\begin{array}{c|c}
d = 2
\end{array}$$

 $f^{3}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, 4, 3, 2 \rangle$

 $f(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, 2 \rangle$

 $f^2(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle \widehat{\top}, \widehat{\top}, 3, 2 \rangle$

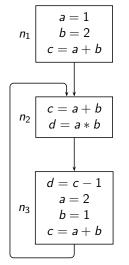
$$f^{4}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle 5, 4, 3, 2 \rangle$$

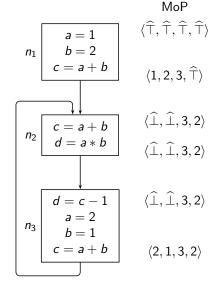
$$f^{5}(\langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle) = \langle 5, 4, 3, 2 \rangle$$

Part 3

Constant Propagation

Zampie er Constant i repugation





 $\langle \hat{\mathsf{T}}, \hat{\mathsf{T}}, \hat{\mathsf{T}}, \hat{\mathsf{T}} \rangle \qquad \langle \hat{\mathsf{T}}, \hat{\mathsf{T}}, \hat{\mathsf{T}}, \hat{\mathsf{T}} \rangle$

MoP

$$n_1 \begin{vmatrix} a = 1 \\ b = 2 \\ c = a + b \end{vmatrix}$$

 $\langle 1, 2, 3, \widehat{\top} \rangle$ $\langle 1, 2, 3, \widehat{\top} \rangle$

$$\langle \perp, \perp$$

General Frameworks: Constant Propagation

Example of Constant Propagation

MFP

$$\langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$$

$$\begin{array}{c|c}
d = c - 1 \\
a = 2 \\
b = 1 \\
c = a + b
\end{array}$$

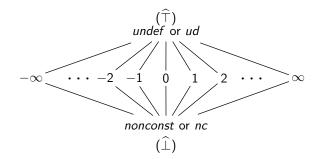
$$\langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$$

$$\langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle \qquad \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

 $\langle 2, 1, 3, 2 \rangle$ $\langle 2, 1, 3, \widehat{\perp} \rangle$

Sep 2017 **IIT Bombay**

Component Lattice for Integer Constant Propagation



Π	$\langle v, ud \rangle$	$\langle v, nc \rangle$	$\langle v, c_1 angle$
$\langle v, ud \rangle$	$\langle v, ud \rangle$	$\langle v, nc \rangle$	$\langle v, c_1 angle$
$\langle v, nc \rangle$	$\langle v, nc \rangle$	$\langle v, nc \rangle$	$\langle v, nc \rangle$
$\langle v, c_2 \rangle$	$\langle v, c_2 \rangle$	$\langle v, nc \rangle$	If $c_1=c_2$ then $\langle v,c_1 \rangle$ else $\langle v,nc \rangle$

Sep 2017 **IIT Bombay**

- In_n/Out_n values are mappings $\mathbb{V}ar \to \widehat{L}$: $In_n, Out_n \in \mathbb{V}ar \to \widehat{L}$
- Overall lattice L is a set of mappings \mathbb{V} ar $\rightarrow \widehat{L}$: $L = \mathbb{V}$ ar $\rightarrow \widehat{L}$
- \sqcap and $\widehat{\sqcap}$ get defined by \sqsubseteq and $\widehat{\sqsubseteq}$
 - Partial order is restricted to data flow values of the same variable Data flow values of different variables are incomparable

$$(x, v_1) \sqsubseteq (y, v_2) \Leftrightarrow x = y \land v_1 \widehat{\sqsubseteq} v_2$$

$$OR \qquad x \mapsto v_1 \sqsubseteq y \mapsto v_2 \Leftrightarrow x = y \land v_1 \widehat{\sqsubseteq} v_2$$

▶ For meet operation, we assume that X is a total function Partial functions are made total by using \widehat{T} value

$$X \sqcap Y = \{(x, v_1 \widehat{\sqcap} v_2) \mid (x, v_1) \in X, (x, v_2) \in Y\}$$

$$OR \qquad X \sqcap Y = \{x \mapsto v_1 \widehat{\sqcap} v_2 \mid x \mapsto v_1 \in X, x \mapsto v_2 \in Y\}$$

CS 618

Accessing and manipulating a mapping $X \subseteq A \rightarrow B$

• $X[a \mapsto v]$ changes the image of a in X to v

$$X[a \mapsto v] = (X - \{(a, u) \mid u \in B\}) \cup \{(a, v)\}$$

Sep 2017

CS 618

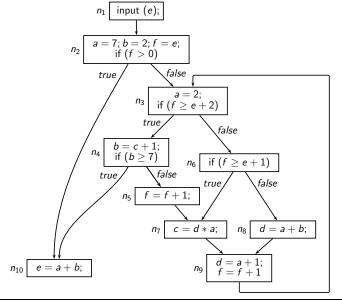
Defining Data Flow Equations for Constant Propagation

$$In_n = \begin{cases} BI = \{\langle y, ud \rangle \mid y \in \mathbb{V} \text{ar}\} & n = Start \\ \prod_{p \in pred(n)} Out_p & \text{otherwise} \end{cases}$$
 $Out_n = f_n(In_n)$

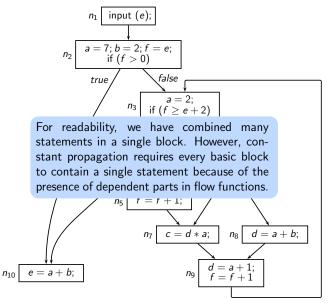
$$f_n(X) = \begin{cases} X[y \mapsto c] & n \text{ is } y = c, y \in \mathbb{V}\text{ar, } c \in \mathbb{C}\text{onst} \\ X[y \mapsto nc] & n \text{ is } input(y), y \in var \\ X[y \mapsto X(z)] & n \text{ is } y = z, y \in \mathbb{V}\text{ar, } z \in \mathbb{V}\text{ar} \\ X[y \mapsto eval(e, X)] & n \text{ is } y = e, y \in \mathbb{V}\text{ar, } e \in \mathbb{E}\text{xpr} \\ X & \text{otherwise} \end{cases}$$

 $eval(e,X) = \begin{cases} nc & a \in Opd(e) \cap \mathbb{V}ar, X(a) = nc \\ ud & a \in Opd(e) \cap \mathbb{V}ar, X(a) = ud \\ -X(a) & e \text{ is } -a \\ X(a) \oplus X(b) & e \text{ is } a \oplus b \end{cases}$

Sep 2017 IIT Bombay



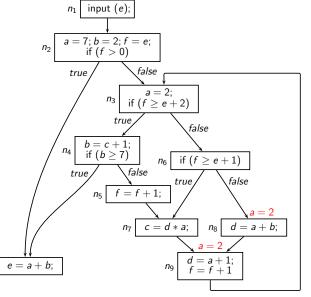
Example Program for Constant Propagation



Result of Constant Propagation

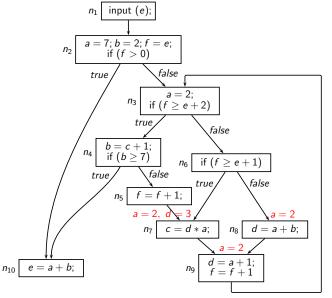
	Iteration $\#1$	Changes in iteration #2	Changes in iteration #3	Changes in iteration #4
In_{n_1}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}$			
Out_{n_1}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{1}, \hat{\tau}$			
In_{n_2}	$\hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\tau}, \hat{\perp}, \hat{\tau}$			
Out_{n_2}	$7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$			
In _{n3}	$7,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, 2, 6, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out _{n3}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
In _{n4}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_4}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2,\widehat{\top},\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
In _{n5}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
Out _{ns}	$2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp}$	$2,\widehat{\top},\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,7,6,3,\widehat{\perp},\widehat{\perp}$	
In _{n6}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2,\widehat{\perp},6,3,\widehat{\perp},\widehat{\perp}$
Out_{n_6}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
In _{n7}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
Out _{n7}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
In _{n8}	$2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$
Out_{n_8}	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,6,4,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}$
In _{n9}	$2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}$	$2,2,6,\widehat{\perp},\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp}$	
Out_{n_9}	$2,2,\widehat{\top},3,\widehat{\perp},\widehat{\perp}$	$2,2,6,3,\widehat{\perp},\widehat{\perp}$	$2, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
$In_{n_{10}}$	$\widehat{\perp}, 2, \widehat{\uparrow}, \widehat{\uparrow}, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp}$	$\widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp}$	
$Out_{n_{10}}$	$\hat{\perp}, 2, \hat{\top}, \hat{\top}, \hat{\perp}, \hat{\perp}$	$\hat{\perp}, 2, \hat{\top}, 3, \hat{\perp}, \hat{\perp}$	$\hat{\perp}, \hat{\perp}, 6, 3, \hat{\perp}, \hat{\perp}$	

Result of Constant Propagation

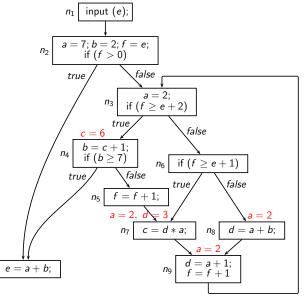


 n_{10}

Result of Constant Propagation

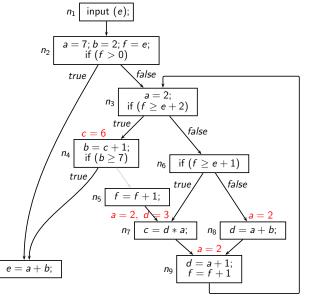


Result of Constant Propagation



 n_{10}

Result of Constant Propagation



 n_{10}

Wonotomerty of Constant Propagation

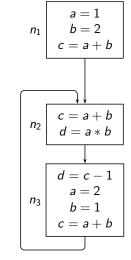
Proof obligation: $X_1 \sqsubseteq X_2 \Rightarrow f_n(X_1) \sqsubseteq f_n(X_2)$ where,

$$f_n(X) = \begin{cases} X \left[y \mapsto c \right] & n \text{ is } y = c, y \in \mathbb{V} \text{ar, } c \in \mathbb{C} \text{onst} \\ X \left[y \mapsto nc \right] & n \text{ is } input(y), y \in var \\ X \left[y \mapsto X(z) \right] & n \text{ is } y = z, y \in \mathbb{V} \text{ar, } z \in \mathbb{V} \text{ar} \\ X \left[y \mapsto eval(e, X) \right] & n \text{ is } y = e, y \in \mathbb{V} \text{ar, } e \in \mathbb{E} \text{xpr} \\ X & \text{otherwise} \end{cases} \tag{C1}$$

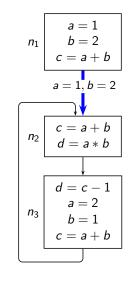
- The proof obligation trivially follows for cases C1, C2, C3, and C5
- For case C4, it requires showing
 X₁ ⊆ X₂ ⇒ eval(e, X₁) ⊆ eval(e, X₂)
 which follows from the definition of eval(e, X)

19/178

Non-Distributivity of Constant Propagation



IIT Bombay



• $x = \langle 1, 2, 3, ? \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

IIT Bombay

Non-Distributivity of Constant Propagation

$$a = 1$$

$$b = 2$$

$$c = a + b$$

$$a = 1, b = 2$$

$$n_2 \quad c = a + b$$

$$d = a * b$$

$$a = 2, b = 1$$

$$n_3 \quad d = c - 1$$

$$a = 2$$

$$b = 1$$

$$c = a + b$$

•
$$x = \langle 1, 2, 3, ? \rangle$$
 (Along $Out_{n_1} \rightarrow In_{n_2}$)
• $y = \langle 2, 1, 3, 2 \rangle$ (Along $Out_{n_3} \rightarrow In_{n_2}$)

IIT Bombay

$$a = 1$$

$$b = 2$$

$$c = a + b$$

$$a = 1, b = 2$$

$$a = 1, b = 2$$

$$a = 2, b = 1$$

$$a = 2$$

$$b = 1$$

$$c = a + b$$

$$n_1$$
 $b=2$ $c=a+b$ • $y=\langle 2,1,3,2\rangle$ (Along $Out_{n_3}\to In_{n_2}$) • Function application before merging

• $x = \langle 1, 2, 3, ? \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

$$f(x) \sqcap f(y) = f(\langle 1, 2, 3, ? \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$$

$$= \langle 1, 2, 3, 2 \rangle \sqcap \langle 2, 1, 3, 2 \rangle$$

$$= \langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$$

Sep 2017

$$n_1 \begin{bmatrix} a = 1 \\ b = 2 \\ c = a + b \end{bmatrix}$$

$$a = 1, b = 2$$

$$n_2 \begin{bmatrix} c = a + b \\ d = a * b \end{bmatrix}$$

$$a = 2, b = 1$$

$$a = 2$$

$$n_1$$
 $\begin{vmatrix} a=1\\b=2\\c=a+b \end{vmatrix}$ • $y=\langle 2,1,3,2\rangle$ (Along $Out_{n_3}\to In_{n_2}$)
• Function application before merging

• $x = \langle 1, 2, 3, ? \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

$$= \ \langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle$$
 • Function application after merging

$$= f(\langle \widehat{\bot}, \widehat{\bot}, 3, 2 \rangle) = \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

 $f(x \sqcap y) = f(\langle 1, 2, 3, ? \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$

 $f(x) \sqcap f(y) = f(\langle 1, 2, 3, ? \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$

 $=\langle 1,2,3,2\rangle \sqcap \langle 2,1,3,2\rangle$

Sep 2017

 $=\langle 1,2,3,2\rangle \sqcap \langle 2,1,3,2\rangle$

 $=\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle$

CS 618

$$a = 1$$

$$b = 2$$

$$c = a + b$$

$$a = 1, b = 2$$

$$a = 1, b = 2$$

$$a = 2, b = 1$$

$$d = c - 1$$

$$n_1 \left| egin{array}{c} a=1 \\ b=2 \\ c=a+b \end{array} \right| \quad ullet y=\langle 2,1,3,2
angle \; ext{(Along $Out_{n_3} \to In_{n_2})$} \\ \quad ullet \; ext{Function application before merging} \end{array}$$

• $x = \langle 1, 2, 3, ? \rangle$ (Along $Out_{n_1} \rightarrow In_{n_2}$)

Function application before merging
$$f(x) \sqcap f(y) = f(\langle 1, 2, 3, ? \rangle) \sqcap f(\langle 2, 1, 3, 2 \rangle)$$

Function application after merging
$$f(x \sqcap y) = f(\langle 1, 2, 3, ? \rangle \sqcap \langle 2, 1, 3, 2 \rangle)$$

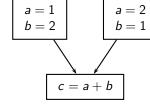
$$= f(\langle \widehat{\perp}, \widehat{\perp}, 3, 2 \rangle)$$

= $\langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$

• $f(x \sqcap y) \sqsubset f(x) \sqcap f(y)$

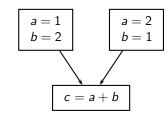
21/178

Why is Constant Propagation Non-Distributive?



Why is Constant Propagation Non-Distributive?

Possible combinations due to merging



$$a=1$$
 $b=2$ $b=1$

$$= 1$$

Why is Constant Propagation Non-Distributive?

a = 1

c = a + b

Possible combinations due to merging

a = 2 b = 1

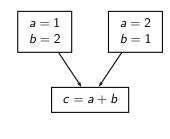


Correct combination.

b = 2

a = 1

Possible combinations due to merging



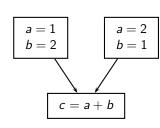
$$c = a + b = 3$$

Correct combination.

21/178

b=2

a=1



Possible combinations due to merging

b=1

Wrong combination.

a=2

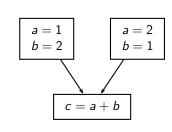
- Mutually exclusive information.
- No execution path along which this information holds.

c = a + b = 2

b=2

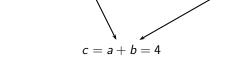
Why is Constant Propagation Non-Distributive?

a = 1



Possible combinations due to merging

a=2



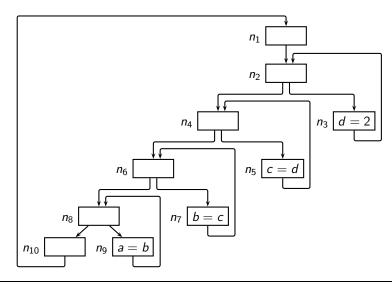
b=1

- Wrong combination.
- Mutually exclusive information.
- No execution path along which this information holds.

b=2

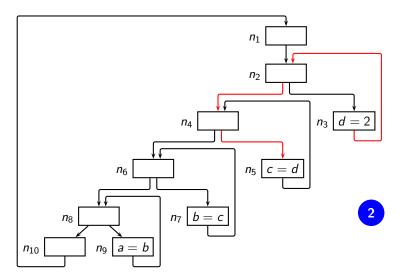
Tutorial Problem on Constant Propagation

How many iterations do we need?

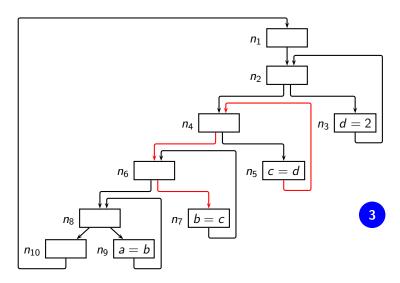


Tutorial Problem on Constant Propagation

How many iterations do we need?

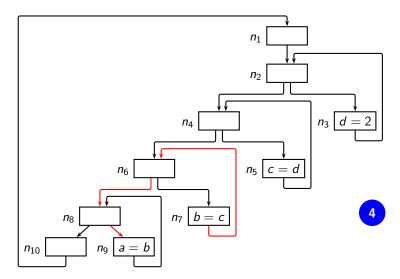


How many iterations do we need?



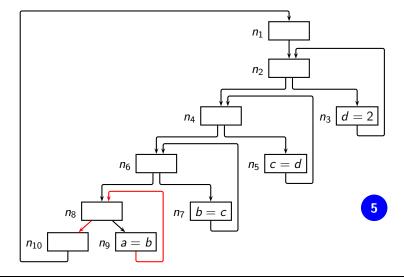
Tutorial Problem on Constant Propagation

How many iterations do we need?



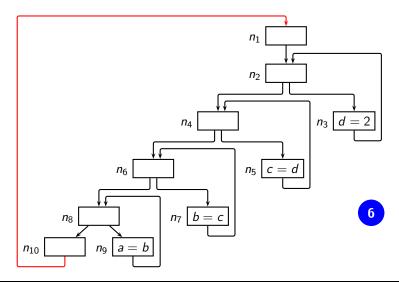
10

How many iterations do we need?



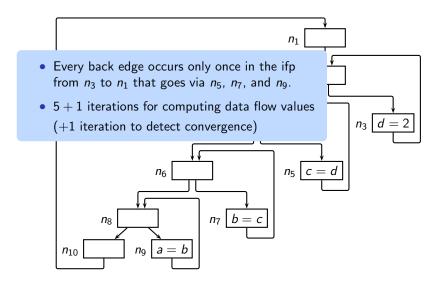
Tutorial Problem on Constant Propagation

How many iterations do we need?



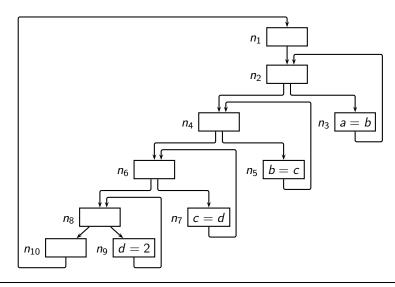
Tutorial Problem on Constant Propagation

How many iterations do we need?



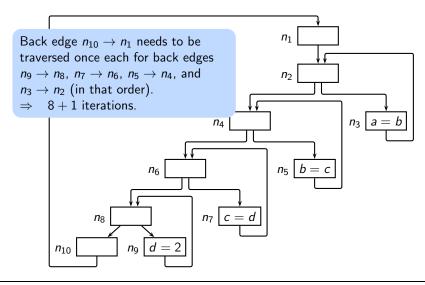
Tutorial Problem on Constant Propagation

And now how many iterations do we need?



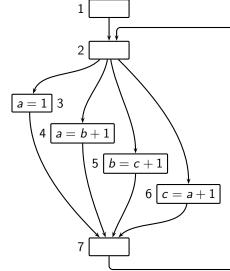
Tutorial Problem on Constant Propagation

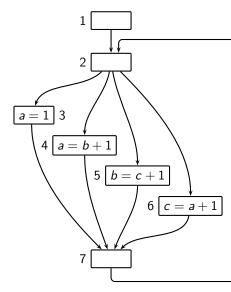
And now how many iterations do we need?



CS 618

Boundedness of Constant Propagation

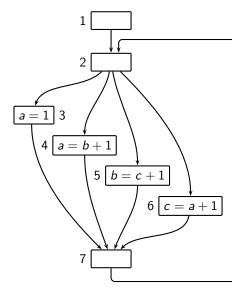




Summary flow function: (data flow value at node 7) $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1)$

IIT Bombay

Boundedness of Constant Propagation



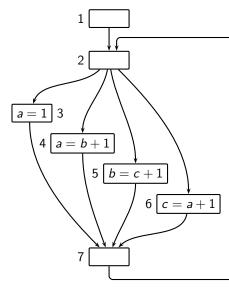
Summary flow function: (data flow value at node 7)

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle$$

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

 $f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$

boundedness of Constant Propagation



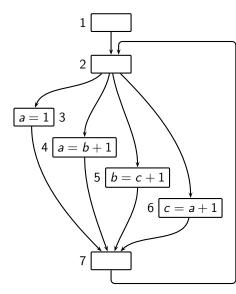
(data flow value at node 7) $f(\langle v_a, v_b, v_c \rangle) \ = \ \langle \ 1 \sqcap (v_b+1),$

Summary flow function:

$$(v_c+1),$$
 (v_a+1)
 \rangle
 $f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$
 $f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$
 $f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$

Sep 2017

Boundedness of Constant Propagation



(data flow value at node 7)

Summary flow function:

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

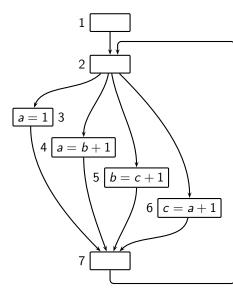
$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^3(\top) = \langle 1, 3, 2 \rangle$$

Sep 2017

Boundedness of Constant Propagation



Summary flow function: (data flow value at node 7) $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_c + 1)$

$$(v_{c}+1),$$

$$(v_{a}+1)$$

$$\rangle$$

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

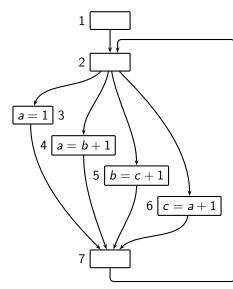
$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

$$f^{4}(\top) = \langle \widehat{\bot}, 3, 2 \rangle$$

Summary flow function:

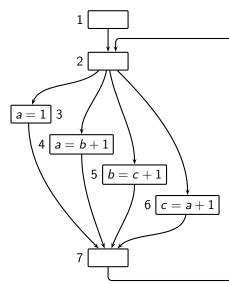


(data flow value at node 7) $f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1),$ $(v_c + 1),$ (v_a+1) $f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$ $f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$ $f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$ $f^3(\top) = \langle 1, 3, 2 \rangle$

 $f^4(\top) = \langle \widehat{\perp}, 3, 2 \rangle$ $f^5(\top) = \langle \widehat{\perp}, 3, \widehat{\perp} \rangle$

Sep 2017

Boundedness of Constant Propagation



```
(data flow value at node 7) f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle
```

Summary flow function:

$$f^{0}(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{1}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{2}(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

$$f^{3}(\top) = \langle 1, 3, 2 \rangle$$

$$f^{4}(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

$$f^{5}(\top) = \langle \widehat{\bot}, 3, \widehat{\bot} \rangle$$

$$f^{6}(\top) = \langle \widehat{\bot}, \widehat{\bot}, \widehat{\bot} \rangle$$

Sep 2017

a = b + 1b = c + 1 $6 \mid c = a + 1$

Summary flow function: (data flow value at node 7)

$$f(\langle v_a, v_b, v_c \rangle) = \langle 1 \sqcap (v_b + 1), \\ (v_c + 1), \\ (v_a + 1) \rangle$$

$$f^0(\top) = \langle \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$$

$$f^1(\top) = \langle 1, \widehat{\top}, \widehat{\top} \rangle$$

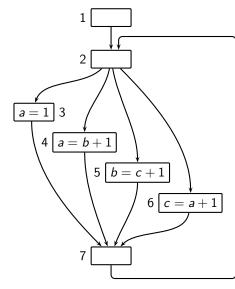
$$f^2(\top) = \langle 1, \widehat{\top}, 2 \rangle$$

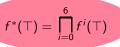
$$f^3(\top) = \langle 1, 3, 2 \rangle$$

 $f^4(\top) = \langle \widehat{\perp}, 3, 2 \rangle$ $f^5(\top) = \langle \widehat{\perp}, 3, \widehat{\perp} \rangle$ $f^6(\top) = \langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$ $f^7(\top) = \langle \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$

IIT Bombay

Doundedness of Constant Propagation





General Frameworks: Constant Propagation

Boundedness of Constant Propagation

The moral of the story:

The data flow value of every variable could change twice

25/178

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application

The moral of the story:

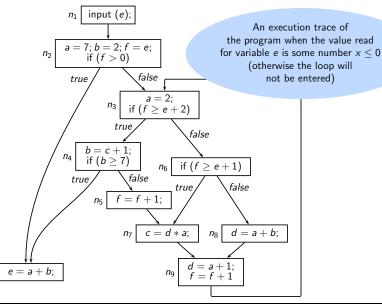
- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times |\mathbb{V}ar|$

CS 618

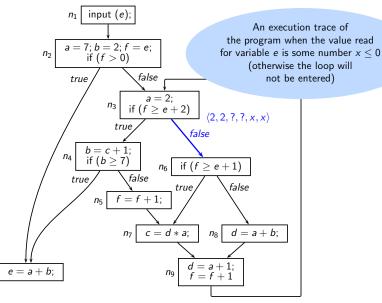
Boundedness of Constant Propagation

The moral of the story:

- The data flow value of every variable could change twice
- In the worst case, only one change may happen in every step of a function application
- Maximum number of steps: $2 \times |Var|$
- Boundedness parameter k is $(2 \times |\mathbb{V}ar|) + 1$

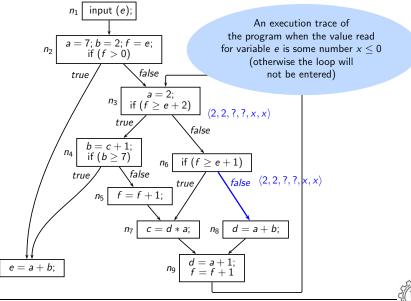


 n_{10}

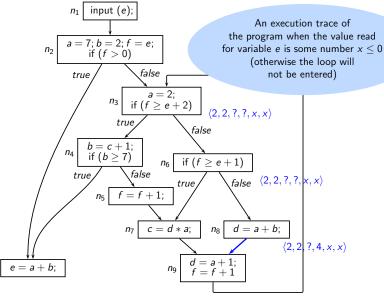


 n_{10}

CS 618



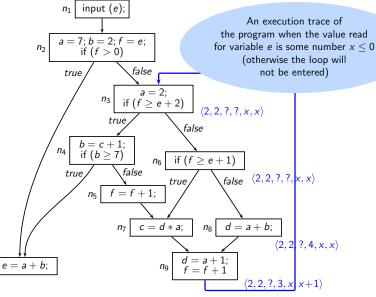
 n_{10}



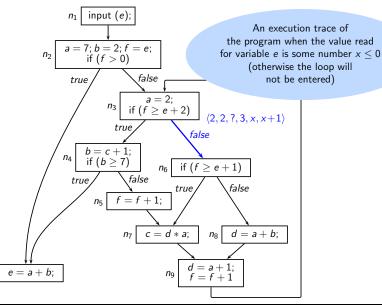
 n_{10}

CS 618

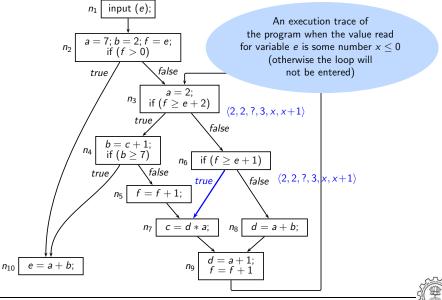
Conditional Constant Propagation

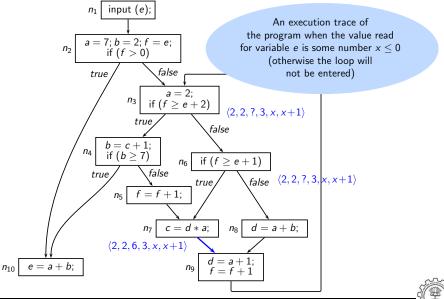


 n_{10}

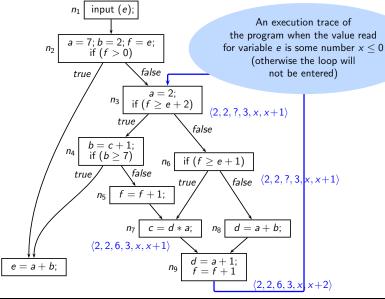


 n_{10}

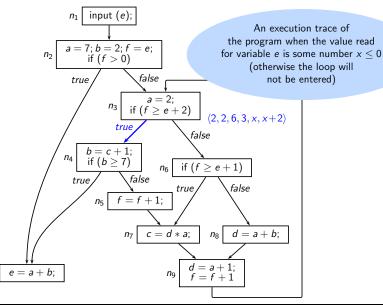




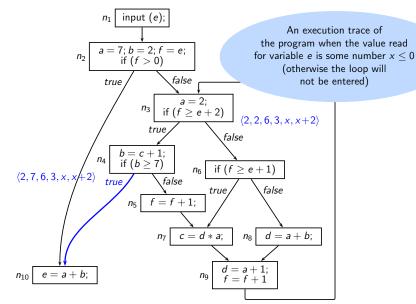
Conditional Constant Propagation



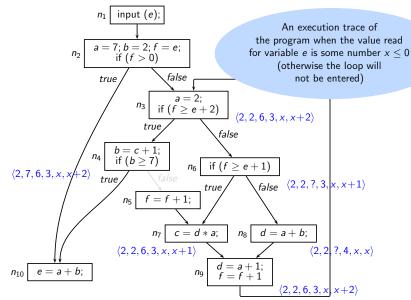
 n_{10}



 n_{10}



Conditional Constant Propagation



Sep 2017

Conditional Constant Propagation



notReachable

CS 618

Lattice for Conditional Constant Propagation

$$imes$$
 $imes$ $imes$ reachable

- Let $\langle s, X \rangle$ denote an augmented data flow value where $s \in \{reachable, notReachable\}$ and $X \in L$.
- If we can maintain the invariant $s = notReachable \Rightarrow X = T$, then the meet can be defined as

$$\langle s_1, X_1 \rangle \cap \langle s_2, X_2 \rangle = \langle s_1 \cap s_2, X_1 \cap X_2 \rangle$$

Data Flow Equations for Conditional Constant Propagation

$$In_n = \begin{cases} \langle reachable, BI \rangle & n \text{ is } Start \\ \prod_{p \in pred(n)} g_{p \to n}(Out_p) & \text{otherwise} \end{cases}$$
 $Out_n = \begin{cases} \langle reachable, f_n(X) \rangle & In_n = \langle reachable, X \rangle \\ \langle notReachable, \top \rangle & \text{otherwise} \end{cases}$

 $g_{m \rightarrow n}(s, X) = \left\{ \begin{array}{ll} \langle s, X \rangle & \textit{label}(m \rightarrow n) \in \textit{evalCond}(m, X) \\ \langle \textit{notReachable}, \top \rangle & \textit{otherwise} \end{array} \right.$

•
$$label(m \rightarrow n)$$
 is T or F if edge $m \rightarrow n$ is a conditional branch

- Otherwise $label(m \rightarrow n)$ is T
- evalCond(m, X) evaluates the condition in block m using the data flow values in X

CS 618

Compile Time Evaluation of Conditions using the Data Flow **Values**

evalCond(m, X)		
$\{T,F\}$	Block m does not have a condition, or some variable in the condition is $\widehat{\bot}$ in X	
{}	No variable in the condition in block m is $\widehat{\perp}$ in X , but some variable is $\widehat{\top}$ in X	
{ <i>T</i> }	The condition in block m evaluates to T with the data flow values in X	
{ <i>F</i> }	The condition in block <i>m</i> evaluates to <i>F</i> with the data flow values in <i>X</i>	

IIT Bombay

Changes in

Conditional Constant Propagation

	Iteration #1	Changes in	Changes in
		iteration #2	iteration #3
In_{n_1}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
Out_{n_1}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
In_{n_2}	$R, \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
Out_{n_2}	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot} \rangle$		
In_{n_3}	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_3}	$R,\langle 2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}\rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_4}	$R,\langle 2,2,\widehat{\top},\widehat{\top},\widehat{\perp},\widehat{\perp}\rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_4}	$R, \langle 2, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, \widehat{\top}, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 7, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_5}	$N, T = \langle \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T}, \widehat{T} \rangle$		
Out_{n_5}	$N, \top = \langle \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top}, \widehat{\top} \rangle$		
In_{n_6}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_6}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_7}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_7}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$	
In _{n8}	$R, \langle 2, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
Out_{n_8}	$R,\langle 2,2,\widehat{\top},4,\widehat{\perp},\widehat{\perp}\rangle$		$R, \langle 2, 2, 6, 4, \widehat{\perp}, \widehat{\perp} \rangle$
In_{n_9}	$R, \langle 2, 2, \widehat{\top}, 4, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, \widehat{\perp}, \widehat{\perp}, \widehat{\perp} \rangle$	
Out_{n_9}	$R, \langle 2, 2, \widehat{\top}, 3, \widehat{\bot}, \widehat{\bot} \rangle$	$R, \langle 2, 2, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$	
$In_{n_{10}}$	$R, \langle 7, 2, \widehat{\top}, \widehat{\top}, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$
$Out_{n_{10}}$	$R,\langle 7,2,\widehat{\top},\widehat{\top},9,\widehat{\bot}\rangle$	$R, \langle \widehat{\perp}, 2, \widehat{\top}, 3, \widehat{\perp}, \widehat{\perp} \rangle$	$R, \langle \widehat{\perp}, \widehat{\perp}, 6, 3, \widehat{\perp}, \widehat{\perp} \rangle$

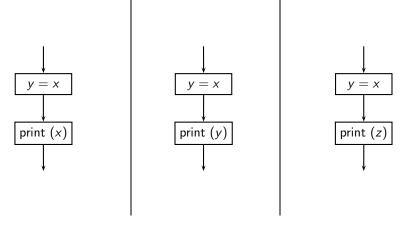
Part 4

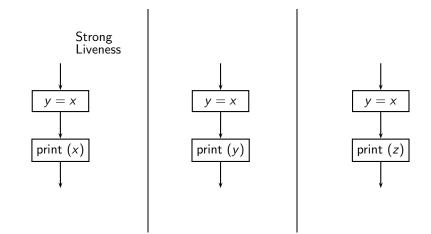
Strongly Live Variables Analysis

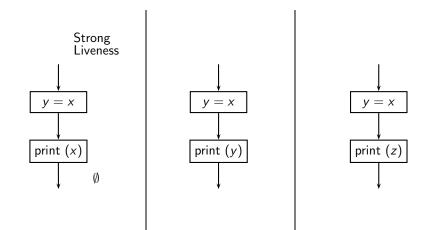
CS 618

Strongly Live Variables Analysis

- A variable is strongly live if
 - ▶ it is used in a statement other than assignment statement, or (same as simple liveness)
 - ▶ it is used in an assignment statement defining a variable that is strongly live (different from simple liveness)
- Killing: An assignment statement, an input statement, or BI (this is same as killing in simple liveness)
- Generation: A direct use or a use for defining values that are strongly live (this is different from generation in simple liveness)

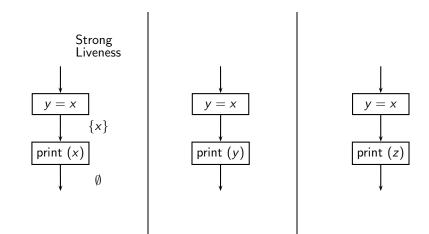


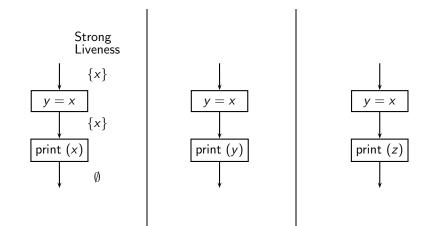




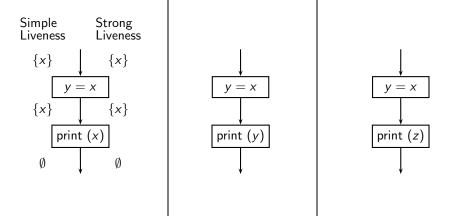
CS 618

Understanding Strong Liveness

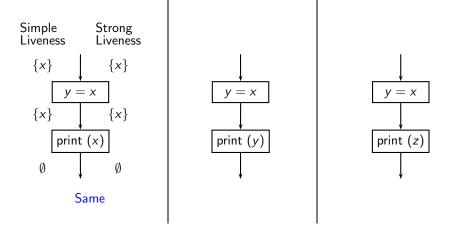


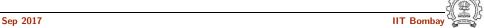


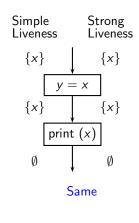
CS 618

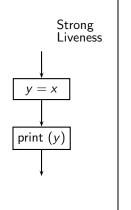


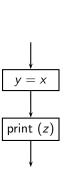
Charletanania Strong Enteness





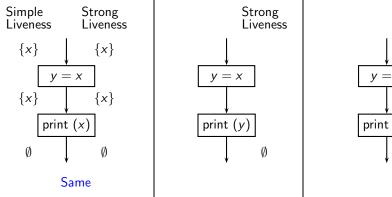


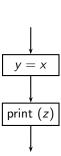


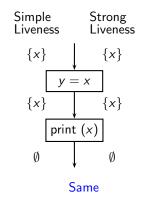


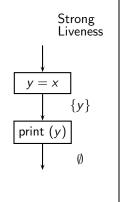
32/178

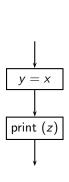
Sep 2017 **IIT Bombay**

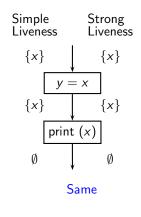


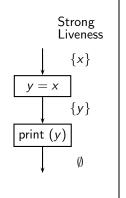


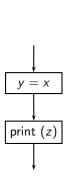




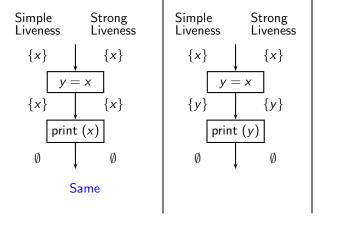


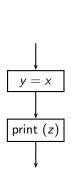


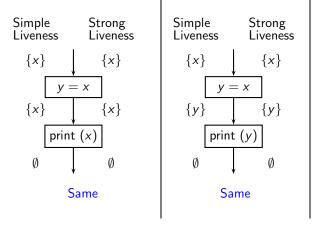


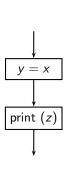


32/178



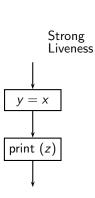






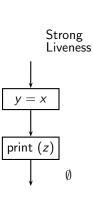
32/178

Simple Simple Strong Strong Liveness Liveness Liveness Liveness {*x*} {*x*} {*x*} {*x*} y = x{*x*} $\{x\}$ {*y*} {*y*} print (x)print (y)Ø Ø Ø Ø Same Same

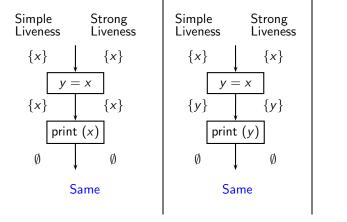


32/178

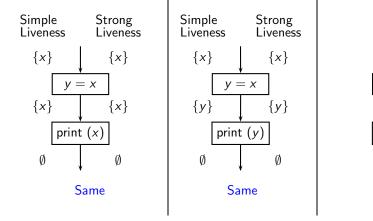
Simple Simple Strong Strong Liveness Liveness Liveness Liveness {*x*} {*x*} {*x*} {*x*} {*x*} $\{x\}$ {*y*} {*y*} print (x)print (y)Ø Ø Ø Ø Same Same

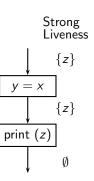


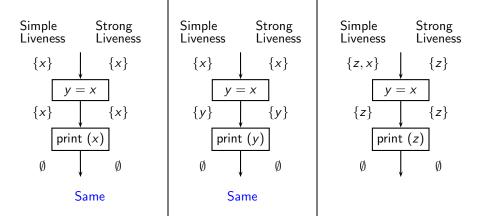
32/178



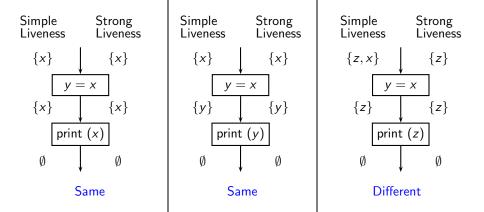
Strong Liveness y = x y = x zprint (z)







IIT Bombay



 A variable is live at a program point if its current value is likely to be used later

CS 618

33/178

Sep 2017 IIT Bombay

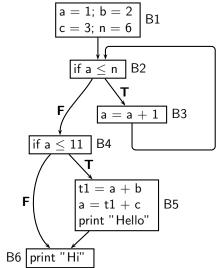
- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live

IIT Bombay

33/178

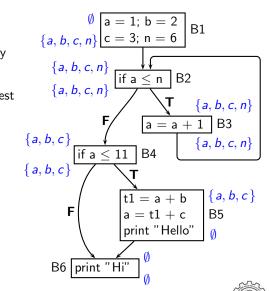
CS 618

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live



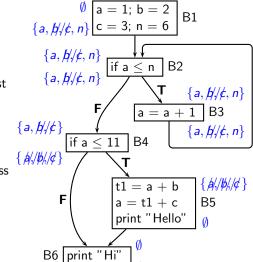
Live Variables Analysis: Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live
- Simple liveness considers every use of a variable as useful



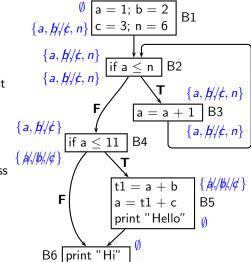
Live Variables Analysis: Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live
- Simple liveness considers every use of a variable as useful
- Strong liveness checks the liveness of the result before declaring the operands to be live



Live Variables Analysis: Simple and Strong Liveness

- A variable is live at a program point if its current value is likely to be used later
- We want to compute the smallest set of variables that are live
- Simple liveness considers every use of a variable as useful
- Strong liveness checks the liveness of the result before declaring the operands to be live
- Strong liveness is more precise than simple liveness



CS 618

General Frameworks: Strongly Live Variables Analysis

Data Flow Equations for Strongly Live Variables Analysis

$$Out_n = \begin{cases} BI & n \text{ is } End \\ \bigcup_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$$

otherwise

where,

 $f_n(X) = \begin{cases} (X - \{y\}) \cup (Opd(e) \cap \mathbb{V}ar) & n \text{ is } y = e, e \in \mathbb{E}xpr, \ y \in X \\ X - \{y\} & n \text{ is } input(y) \\ X \cup \{y\} & n \text{ is } use(y) \end{cases}$

 $In_n = f_n(Out_n)$

$$In_n = f_n(Out_n)$$
 $Out_n = \begin{cases} BI & n \text{ is } End \\ \bigcup_{s \in succ(n)} In_s & \text{ otherwise} \end{cases}$

where,

CS 618

 $f_n(X) = \left\{ \begin{array}{ll} (X - \{y\}) \cup (Opd(e) \cap \mathbb{V}ar) & n \text{ is } y = e, e \in \mathbb{E}xpr, \ y \in X \\ X - \{y\} & n \text{ is } input(y) \\ X \cup \{y\} & n \text{ is } use(y) \\ X & \text{otherwise} \end{array} \right.$ $\left\{ \begin{array}{ll} f \text{ y is not strongly live, the assignment is skipped using the "otherwise" clause} \end{array} \right.$

Sep 2017

• What is \widehat{L} for strongly live variables analysis?

Is strongly live variables analysis a bit vector framework?

Is strongly live variables analysis a separable framework?

• Is strongly live variables analysis distributive? Monotonic?

IT Bombay

35/178

CS 618

 $\hat{L} = \{0, 1\}, 1 \square 0$

• What is \hat{L} for strongly live variables analysis?

- Is strongly live variables analysis a bit vector framework?

Is strongly live variables analysis a separable framework?

Is strongly live variables analysis distributive? Monotonic?

35/178

CS 618

- What is \widehat{L} for strongly live variables analysis?
 - $\widehat{L} = \{0,1\}, 1 \sqsubseteq 0$
- Is strongly live variables analysis a bit vector framework?
 - ► No because data flow equations cannot be defined only in terms of bit vector operations
- Is strongly live variables analysis a separable framework?

Is strongly live variables analysis distributive? Monotonic?

Properties of Strongly Live Variable Analysis

- What is \widehat{L} for strongly live variables analysis?
 - $\hat{L} = \{0, 1\}, 1 \square 0$
- Is strongly live variables analysis a bit vector framework?
 - ▶ No because data flow equations cannot be defined only in terms of bit vector operations
- Is strongly live variables analysis a separable framework?
 - ▶ No, because strong liveness of variables occurring in RHS of an assignment may depend on the variable occurring in LHS
- Is strongly live variables analysis distributive? Monotonic?

Properties of Strongly Live Variable Analysis

- What is \widehat{L} for strongly live variables analysis?
 - $\widehat{L} = \{0,1\}, 1 \sqsubseteq 0$
- Is strongly live variables analysis a bit vector framework?
 - ► No because data flow equations cannot be defined only in terms of bit vector operations
- Is strongly live variables analysis a separable framework?
 - ▶ No, because strong liveness of variables occurring in RHS of an assignment may depend on the variable occurring in LHS
- Is strongly live variables analysis distributive? Monotonic?
 - ▶ Distributive, and hence monotonic

We need to prove that

CS 618

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cup X_2) = f_n(X_1) \cup f_n(X_2)$$

IIT Bombay

CS 618

36/178

We need to prove that

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cup X_2) = f_n(X_1) \cup f_n(X_2)$$

- Intuitively,
 - ▶ The value does not depend on the argument X
 - Incomparable results cannot be produced
 (A fixed set of variable are excluded or included)

IIT Bombay

Distributivity of Strongly Live Variables Analysis (1)

CS 618

$$\forall X_1, X_2 \in L, \ f_n(X_1 \cup X_2) = f_n(X_1) \cup f_n(X_2)$$

- Intuitively.
 - ► The value does not depend on the argument X
 - Incomparable results cannot be produced
 (A fixed set of variable are excluded or included)
- Formally,
 - We prove it for input(y), use(y), y = e, and empty statements independently

IIT Bombay

- For *input(y)* statement:
- For *use*(*y*) statement:

• For empty statement:

IIT Bomba

37/178

CS 618

Distributivity of Strongly Live Variables Analysis (2)

 $= (X_1 - \{y\}) \cup (X_2 - \{y\})$

 $= f_n(X_1) \cup f_n(X_2)$

• For input(y) statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) - \{y\}$

CS 618

- For *use*(*y*) statement:
- For empty statement:

Distributivity of Strongly Live Variables Analysis (2)

• For
$$input(y)$$
 statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) - \{y\}$
= $(X_1 - \{y\}) \cup (X_2 - \{y\})$
= $f_n(X_1) \cup f_n(X_2)$

• For
$$use(y)$$
 statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) \cup \{y\}$
= $(X_1 \cup \{y\}) \cup (X_2 \cup \{y\})$
= $f_n(X_1) \cup f_n(X_2)$

For empty statement:

37/178

CS 618

• For
$$input(y)$$
 statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) - \{y\}$
= $(X_1 - \{y\}) \cup (X_2 - \{y\})$
= $f_n(X_1) \cup f_n(X_2)$

- For use(y) statement: $f_n(X_1 \cup X_2) = (X_1 \cup X_2) \cup \{y\}$ = $(X_1 \cup \{y\}) \cup (X_2 \cup \{y\})$ = $f_n(X_1) \cup f_n(X_2)$
- For empty statement: $f_n(X_1 \cup X_2) = X_1 \cup X_2 = f_n(X_1) \cup f_n(X_2)$

37/178

Sep 2017

CS 618

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

CS 618

• $y \in X_1, y \in X_2$.

•
$$y \in X_1, y \notin X_2$$
.

• $y \notin X_1, y \notin X_2$.

CS 618

• $v \in X_1, v \notin X_2$.

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

General Frameworks: Strongly Live Variables Analysis

•
$$y \in X_1, y \in X_2$$
.

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

$$= (X_1 - \{y\}) \cup (X_2 - \{y\}) \cup Y$$

$$= ((X_1 - \{y\}) \cup Y) \cup ((X_2 - \{y\}) \cup Y)$$

$$= f_n(X_1) \cup f_n(X_2)$$

•
$$y \notin X_1, y \notin X_2$$
.

CS 618

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

General Frameworks: Strongly Live Variables Analysis

•
$$y \in X_1, y \in X_2$$
.
 $f_{-}(X_1 \sqcup X_2)$

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

$$= (X_1 - \{y\}) \cup (X_2 - \{y\}) \cup Y$$

$$= ((X_1 - \{y\}) \cup Y) \cup ((X_2 - \{y\}) \cup Y)$$

$$= f_n(X_1) \cup f_n(X_2)$$

• $v \in X_1, v \notin X_2$.

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

= $((X_1 - \{y\}) \cup Y) \cup (X_2)$
= $f_n(X_1) \cup f_n(X_2)$ $y \notin X_2 \Rightarrow f_n(X_2)$ is identity

• $y \notin X_1, y \notin X_2$.

IIT Bomba

CS 618

For y = e statement: Let $Y = Opd(e) \cap \mathbb{V}$ ar. There are three cases:

General Frameworks: Strongly Live Variables Analysis

$$f_n(X_1 \cup X_2)$$

• $v \in X_1, v \in X_2$.

$$f_n(X_1 \cup X_2) = ((X_1 \cup X_2) - \{y\}) \cup Y$$

= $(X_1 - \{y\}) \cup (X_2 - \{y\}) \cup Y$
= $((X_1 - \{y\}) \cup Y) \cup ((X_2 - \{y\}) \cup Y)$
= $f_n(X_1) \cup f_n(X_2)$

• $v \in X_1, v \notin X_2$.

$$f_{n}(X_{1} \cup X_{2}) = ((X_{1} \cup X_{2}) - \{y\}) \cup Y$$

$$= ((X_{1} - \{y\}) \cup Y) \cup (X_{2}) \qquad (\because y \notin X_{2})$$

$$= f_{n}(X_{1}) \cup f_{n}(X_{2}) \qquad y \notin X_{2} \Rightarrow f_{n}(X_{2}) \text{ is identity}$$

• $y \notin X_1, y \notin X_2$.

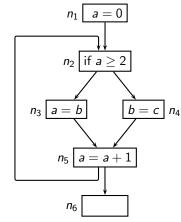
$$A_1, y \notin X_2.$$

$$f_n(X_1 \cup X_2) = X_1 \cup X_2 = f_n(X_1) \cup f_n(X_2)$$

IIT Bomba

39/178

Tutorial Problem for strongly Live Variables Analysis



Result of Strongly Live Variables Analysis

Node	Iteration #1		Iteration #2		Iteration #3		Iteration #4	
Z	Out _n	In _n						
n_6	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
n_5	Ø	Ø	{a}	{a}	$\{a,b\}$	$\{a,b\}$	$\{a,b,c\}$	$\{a,b,c\}$
n_4	Ø	Ø	{a}	{a}	$\{a,b\}$	$\{a,c\}$	$\{a,b,c\}$	$\{a,c\}$
n_3	Ø	Ø	{a}	{ <i>b</i> }	$\{a,b\}$	$\{b\}$	$\{a,b,c\}$	{ <i>b</i> , <i>c</i> }
n_2	Ø	{a}	$\{a,b\}$	$\{a,b\}$	$\{a,b,c\}$	$\{a,b,c\}$	$\{a,b,c\}$	$\{a,b,c\}$
n ₁	{a}	Ø	$\{a,b\}$	{ <i>h</i> }	$\{a,b,c\}$	{h c}	$\{a,b,c\}$	{ h c}

IIT Bombay

41/178

Instead of viewing liveness information as

▶ a map \mathbb{V} ar $\rightarrow \{0,1\}$ with the lattice $\{0,1\}$,

General Frameworks: Strongly Live Variables Analysis

view it as

- ▶ a map \mathbb{V} ar $\rightarrow \widehat{L}$ where \widehat{L} is the May-Must Lattice
- Write the data flow equations
- Prove that the flow functions are distributive

Part 5

Pointer Analyses

An Outline of Pointer Analysis Coverage

- The larger perspective
- Comparing Points-to and Alias information
- Flow Insensitive Points-to Analysis
- Flow Sensitive Points-to Analysis
- Pointer Analyses: An Engineer's Landscape
- Liveness Based Points-to Analysis
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

IIT Bombay

Manager L at atatamant E

Code Optimization In Presence of Pointers

Program	Memory graph at statement 5
1. $q = p$; 2. while $()$ { 3. $q = q \rightarrow next$; 4. } 5. $p \rightarrow data = r1$; 6. print $(q \rightarrow data)$; 7. $p \rightarrow data = r2$;	p p next v next v

• Is p→data live at the exit of line 5? Can we delete line 5?

Mamary graph at statement 5

Code Optimization In Presence of Pointers

_	Program	Memory graph at statement 5
	 q = p; do { q = q→next; while () p→data = r1; print (q→data); p→data = r2; 	$\begin{array}{c} p \\ \hline \end{array}$

• Is p→data live at the exit of line 5? Can we delete line 5?

Mamary graph at statement F

Code Optimization In Presence of Pointers

Program	Memory graph at statement 5
1. $q = p$; 2. $do \{$ 3. $q = q \rightarrow next$; 4. while $()$ 5. $p \rightarrow data = r1$; 6. $print (q \rightarrow data)$; 7. $p \rightarrow data = r2$;	p next v next v

- Is p \rightarrow data live at the exit of line 5? Can we delete line 5?
- We cannot delete line 5 if p and q can be possibly aliased (while loop or do-while loop with a circular list)

IIT Bombay

Memory graph at statement 5

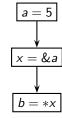
Program

Code Optimization In Presence of Pointers

1. $q = p$; 2. $do \{$ 3. $q = q \rightarrow next$ 4. while () 5. $p \rightarrow data = r1$; 6. $print (q \rightarrow data)$; 7. $p \rightarrow data = r2$;	p p next v next
---	---

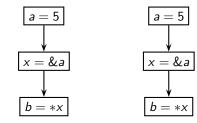
- Is p \rightarrow data live at the exit of line 5? Can we delete line 5?
- We cannot delete line 5 if p and q can be possibly aliased (while loop or do-while loop with a circular list)
- We can delete line 5 if p and q are definitely not aliased (do-while loop without a circular list)

Sep 2017 IIT Bombay



Original Program

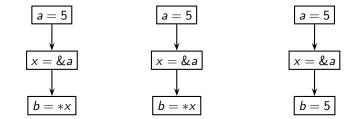
44/178



Original Program Constant Propagation without aliasing

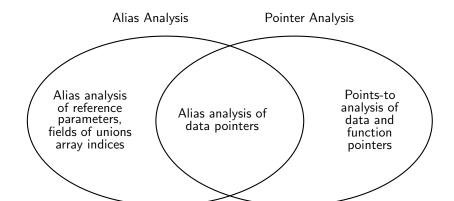
IIT Bombay

44/178



Original Program Constant Propagation Constant Propagation without aliasing with aliasing

The World of Pointer Analysis



Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
 - Enables precise data analysis
 - ► Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
 - Which Pointer Analysis should I Use?
 Michael Hind and Anthony Pioli. ISTAA 2000
 - Pointer Analysis: Haven't we solved this problem yet ?
 Michael Hind PASTE 2001

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
 - Enables precise data analysis
 - ▶ Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
 - Which Pointer Analysis should I Use?
 Michael Hind and Anthony Pioli. ISTAA 2000
 - Pointer Analysis: Haven't we solved this problem yet ?
 Michael Hind PASTE 2001

Pointer Analysis Musings

- Pointer analysis collects information about indirect accesses in programs
 - Enables precise data analysis
 - Enable precise interprocedural control flow analysis
- Needs to scale to large programs
- Pointer Analysis Musings
 - Which Pointer Analysis should I Use? Michael Hind and Anthony Pioli. ISTAA 2000
 - Pointer Analysis: Haven't we solved this problem yet? Michael Hind PASTE 2001
 - 2017 . . ()

The Mathematics of Pointer Analysis

In the most general situation

- Alias analysis is undecidable. Landi-Ryder [POPL 1991], Landi [LOPLAS 1992], Ramalingam [TOPLAS 1994]
- Flow insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

47/178

The Mathematics of Pointer Analysis

In the most general situation

- Alias analysis is undecidable.
 Landi-Ryder [POPL 1991], Landi [LOPLAS 1992],
 Ramalingam [TOPLAS 1994]
- Flow insensitive alias analysis is NP-hard Horwitz [TOPLAS 1997]
- Points-to analysis is undecidable Chakravarty [POPL 2003]

Adjust your expectations suitably to avoid disappointments!

So what should we expect?

CS 618

IIT Bombay

48/178

Sep 2017 II

So what should we expect? To quote Hind [PASTE 2001]

48/178

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

"Fortunately many approximations exist"

48/178

The Engineering of Pointer Analysis

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"
- "Unfortunately too many approximations exist!"

48/178

48/178

So what should we expect? To quote Hind [PASTE 2001]

- "Fortunately many approximations exist"
- "Unfortunately too many approximations exist!"

Engineering of pointer analysis is much more dominant than its science

- Engineering view.
 Build quick approximations
 The tyranny of (exclusive) OR!
- Precision OR Efficiency?
- Science view.
 Build clean abstractions
- Can we harness the Genius of AND? Precision AND Efficiency?

IIT Bombay

49/178

Pointer Analysis: Engineering or Science:

- Engineering view.
 Build quick approximations
 - The tyranny of (exclusive) OR! Precision OR Efficiency?
- Science view.
 Build clean abstractions
 Can we harness the Genius of AND?
- Precision AND Efficiency?
- A distinction between approximation and abstraction is subjective Our working definition

IIT Bombay

- Engineering view.
 Build quick approximations
 - The tyranny of (exclusive) OR! Precision OR Efficiency?
- Science view.
 Build clean abstractions
- Can we harness the Genius of AND? Precision AND Efficiency?
- A distinction between approximation and abstraction is subjective
 Our working definition
 - ▶ Abstractions focus on precision and conciseness of modelling
 - Approximations focus on efficiency and scalability

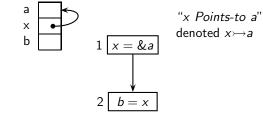
IIT Bombay

An Outline of Pointer Analysis Coverage

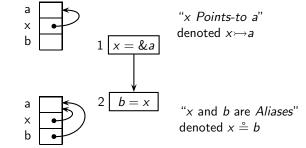
- The larger perspective
- Comparing Points-to and Alias information
 Next Topic
- Flow Insensitive Points-to Analysis
- Flow Sensitive Points-to Analysis
- Pointer Analyses: An Engineer's Landscape
- Liveness Based Points-to Analysis
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

IIT Bombay

51/178



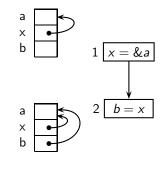
51/178



"x Points-to a"

denoted $x \stackrel{\circ}{=} b$

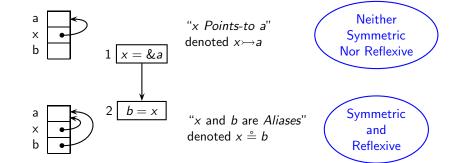
denoted $x \rightarrow a$

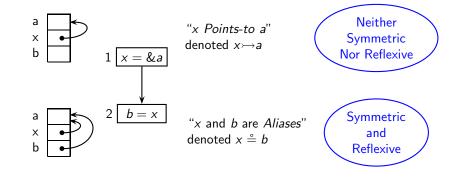


"x and b are Aliases"

Symmetric and Reflexive

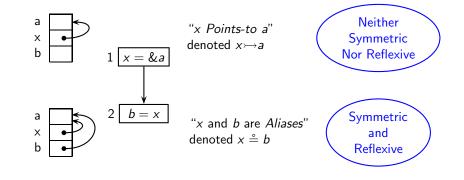
IIT Bombay





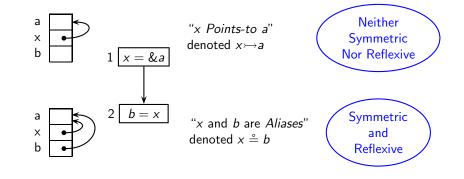
What about transitivity?

Alias Information Vs. Points-to Information



- What about transitivity?
 - ▶ Points-to: No.

Alias Information Vs. Points-to Information



- What about transitivity?
 - ▶ Points-to: No.
 - Alias: Depends.

51/178

Statement	Memory	Points-to	Aliases
x = &y	Before (assume) x y	Existing	Existing
x – &y	After x y	New $x \rightarrow y$	New Direct $x \stackrel{\circ}{=} \& y$
	Before (assume) x y o z	Existing $y \rightarrow z$	Existing $y \stackrel{\circ}{=} \& z$
x = y	(ussume)	, , , , , , , , , , , , , , , , , , ,	New Direct $x \stackrel{\circ}{=} y$
	After $x \bullet y \bullet z$	New $x \mapsto z$	New Indirect $x \stackrel{\circ}{=} \& z$

Statement	Memory	Points-to	Aliases
x = &y	Before (assume) x y	Existing	Existing
$x = \alpha y$	After x y	New $x \mapsto y$	New Direct $x \stackrel{\circ}{=} \& y$
	Before (assume) X Y • Z	Existing $y \rightarrow z$	Existing $y \stackrel{\circ}{=} \& z$
x = y		N1 .	New Direct $x \stackrel{\circ}{=} y$
	After X y y Z	New $x \rightarrow z$	New Indirect $x \stackrel{\circ}{=} \& z$

• Indirect aliases. Substitute a name by its aliases for transitivity

IIT Bombay

52/178

Statement	Memory	Points-to	Aliases
x = &y	Before (assume) x y	Existing	Existing
$\lambda = \omega y$	After x y	New $x \rightarrow y$	New Direct $x \stackrel{\circ}{=} \& y$
	Before (assume) x y y z	Existing $y \rightarrow z$	Existing $y \stackrel{\circ}{=} \& z$
x = y	(ussume)	N	New Direct $x \stackrel{\circ}{=} y$
	After X Y Y Z	New $x \mapsto z$	New Indirect $x \stackrel{\circ}{=} \& z$

- Indirect aliases. Substitute a name by its aliases for transitivity
- Derived aliases. Apply indirection operator to aliases (ignored here) $x \stackrel{\circ}{=} y \Rightarrow *x \stackrel{\circ}{=} *y$

52/178

Statement	Memory	Points-to	Aliases
*x = y			
x = *y			

53/178

Statement	Memory	Points-to	Aliase	:S
	Before $x \bullet y \bullet z u$	$x \rightarrow \mu$	Existing	x ≗ & u y ≗ & z
*x = y	(assume)	Existing $\begin{vmatrix} x \mapsto u \\ y \mapsto z \end{vmatrix}$		
x = *y				

Statement	Memory	Points-to	Aliases
*x = y	Before (assume) X Y Y Z U After X Y Z U	Existing $\begin{array}{c} x \rightarrowtail u \\ y \rightarrowtail z \\ \hline \text{New} & u \rightarrowtail z \end{array}$	Existing $x \stackrel{\circ}{=} \& u$ $y \stackrel{\circ}{=} \& z$ New Direct $*x \stackrel{\circ}{=} y$
x = *y			

Statement	Memory	Points-to	Aliases
	Before X y Z U	Lycy	Existing
*x = y	(assume)	Existing $\begin{vmatrix} x \rightarrow u \\ y \rightarrow z \end{vmatrix}$	New Direct $*x \stackrel{\circ}{=} y$
*X — Y	After x y y z u y	$ \begin{array}{c c} \hline \text{New} & u \rightarrow z \end{array} $	New Indirect $\begin{array}{c} u \stackrel{\circ}{=} \& z \\ y \stackrel{\circ}{=} u \\ *x \stackrel{\circ}{=} \& z \end{array}$
x = *y			

Ŀ	Statement	Memory	Points-t	0	Aliase	S
		Before $x \bullet y \bullet z u$	1,	x⊶u	Existing	$x \stackrel{\circ}{=} \& u$ $y \stackrel{\circ}{=} \& z$
	*x = y	(assume) (assume)	Existing	v → z	New Direct	$*x \stackrel{\circ}{=} y$
	$\pi x = y$			<u>u</u> → z		u ≗ & z
		After $x \notin y \in z$ $u \in A$	ivew 1	u, ,Z	New Indirect	-
						$*x \stackrel{\circ}{=} \&z$
		Defene			E	$y \stackrel{\circ}{=} \& z$
		Before (assume) x $y \bullet z \bullet u$	Existing	y→z	Existing	z ≗ & u *y ≗ & u
	x = *y	, , , , , , , , , , , , , , , , , , ,		$z \rightarrow u$		*y — & u
H				Į		
1						

Statement	Memory	Points-to	Aliase	5
	Before X y y Z U	Existing x>>= u	Existing	$x \stackrel{\circ}{=} \& u$ $y \stackrel{\circ}{=} \& z$
*x = y	(assume)	Existing $\begin{vmatrix} x \rightarrow u \\ y \rightarrow z \end{vmatrix}$	New Direct	$*x \stackrel{\circ}{=} y$
*X — Y	After X Y Z U	$u \rightarrow z$	New Indirect	$u \stackrel{\circ}{=} \& z$ $y \stackrel{\circ}{=} u$ $*x \stackrel{\circ}{=} \& z$
x = *y	Before (assume) $x y \cdot z \cdot u$	Existing $\begin{array}{c} y \rightarrow z \\ z \rightarrow u \end{array}$	Existing New Direct	$y \stackrel{\circ}{=} \& z$ $z \stackrel{\circ}{=} \& u$ $*y \stackrel{\circ}{=} \& u$ $x \stackrel{\circ}{=} *y$
	After x y z u	New x → u		

Statement	Memory	Points-to	Aliase	S
	Before $x \bullet y \bullet z u$	x → u	Existing	x ≗ & u y ≗ & z
*x = y	(assume) (Assume)	Existing $\begin{vmatrix} x \rightarrow u \\ y \rightarrow z \end{vmatrix}$	New Direct	$*x \stackrel{\circ}{=} y$
** - y	As Tully la lu	New $u \rightarrow z$		u ≗ &z
	After $x \notin y \notin z = u \oint$	TVCV U. 12	New Indirect	$y \stackrel{\circ}{=} u$
				$*x \stackrel{\circ}{=} \&z$
	D.C.		E	$y \stackrel{\circ}{=} \& z$
	Before (assume) x $y \bullet z \bullet u$	Existing $y \rightarrow z$	Existing	z ≗ & u *y ≗ & u
x = *y		z → u	New Direct	$x \stackrel{\circ}{=} xy$
	After $X \bullet Y \bullet Z \bullet U$	New $x \mapsto u$		x ≗ & u
			New Indirect	$x \stackrel{\circ}{=} z$

Statement	Memory	Points-to	Aliases
	Before X y Z U	Existing x > u	Existing $x \stackrel{\circ}{=} \& u$ $y \stackrel{\circ}{=} \& z$
*x = y	(assume)	Existing $\begin{vmatrix} x \rightarrow u \\ y \rightarrow z \end{vmatrix}$	New Direct $*x \stackrel{\circ}{=} y$
**X — Y	After X Y Z U	$u \rightarrow z$	New Indirect $\begin{array}{c} u \stackrel{\circ}{=} \& z \\ y \stackrel{\circ}{=} u \\ *x \stackrel{\circ}{=} \& z \end{array}$
V — 411	Before (assume) x y o z o u	Existing $y \rightarrow z$	Existing
x = *y		$z \mapsto u$ New $x \mapsto u$	New Direct $x \stackrel{\circ}{=} *y$
	After $x \leftarrow y \leftarrow z \leftarrow u$	New <i>x</i> → <i>u</i>	New Indirect $\begin{vmatrix} x \stackrel{\circ}{=} \& u \\ x \stackrel{\circ}{=} z \end{vmatrix}$

The resulting memories look similar but are different. In the first case we have $u \rightarrow z$ whereas in the second case the arrow direction is opposite (i.e. $z \rightarrow u$).

Points-to information records edges in the memory graph

Alias information records paths in the memory graph

54/178

- Points-to information records edges in the memory graph
 - ▶ aliases of the kind $x \stackrel{\circ}{=} \& y$ x holds the address of y

- Alias information records paths in the memory graph
 - paths incident on the same node
 x and y hold the same address (and the address is left implicit)

IIT Bombay

54/178

54/178

- Points-to information records edges in the memory graph
 - ► aliases of the kind $x \stackrel{\circ}{=} \& y$ x holds the address of y

CS 618

▶ other aliases can be discovered by composing edges

- Alias information records paths in the memory graph
 - paths incident on the same node x and y hold the same address (and the address is left implicit)

54/178

- Points-to information records edges in the memory graph
 - ► aliases of the kind $x \stackrel{\circ}{=} \& y$ x holds the address of y
 - other aliases can be discovered by composing edges
 - since addresses are explicated, it can represent only those memory locations that can be named at compile time

- Alias information records paths in the memory graph
 - paths incident on the same node x and y hold the same address (and the address is left implicit)
 - since addresses are implicit, it can represent unnamed memory locations too

- Points-to information records edges in the memory graph
 - ▶ aliases of the kind $x \stackrel{\circ}{=} \& y$ x holds the address of y

CS 618

- other aliases can be discovered by composing edges
- since addresses are explicated, it can represent only those memory locations that can be named at compile time

- Alias information records paths in the memory graph
 - paths incident on the same node x and y hold the same address (and the address is left implicit)
 - since addresses are implicit, it can represent unnamed memory locations too
 - if we have $x \stackrel{\circ}{=} y$ then $*x \stackrel{\circ}{=} *y$ is redundant and is not recorded

Sep 2017 IIT Bombay

54/178

- Points-to information records edges in the memory graph
 - ▶ aliases of the kind $x \stackrel{\circ}{=} \& y$ x holds the address of y
 - other aliases can be discovered by composing edges
 - since addresses are explicated, it can represent only those memory locations that can be named at compile time

More compact but less general

- Alias information records paths in the memory graph
 - paths incident on the same node x and y hold the same address (and the address is left implicit)
 - since addresses are implicit, it can represent unnamed memory locations too
 - if we have $x \stackrel{\circ}{=} y$ then $*x \stackrel{\circ}{=} *y$ is redundant and is not recorded

More general and more complex

An Outline of Pointer Analysis Coverage

- The larger perspective
- Comparing Points-to and Alias information
- Flow Insensitive Points-to Analysis Next Topic
- Flow Sensitive Points-to Analysis
- Pointer Analyses: An Engineer's Landscape
- Liveness Based Points-to Analysis
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

Flow Sensitive Vs. Flow Insensitive Pointer Analysis

- Flow insensitive pointer analysis
 - ► Inclusion based: Andersen's approach
 - Equality based: Steensgaard's approach
- Flow sensitive pointer analysis
 - ► May points-to analysis
 - Must points-to analysis

56/178

57/178

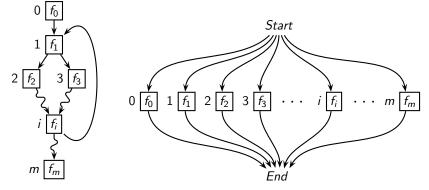
Flow Insensitivity in Data Flow Analysis

- Assumption: Statements can be executed in any order.
- Instead of computing point-specific data flow information, summary data flow information is computed.
- The summary information is required to be a safe approximation of point-specific information for each point.
- $Kill_n(X)$ component is ignored.
 - If statement n kills data flow information, there is an alternate path that excludes n.

The control flow graph is a complete graph (except for the Start and End nodes)

Flow Insensitivity in Data Flow Analysis

Assuming that there are no dependent parts in Gen_n and $Kill_n$ is ignored

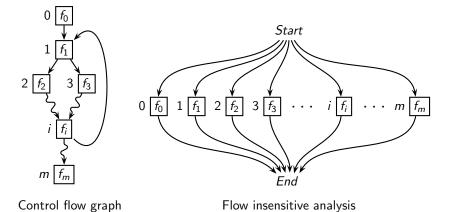


Control flow graph Flow insensitive analysis

58/178

Flow Insensitivity in Data Flow Analysis

Assuming that there are no dependent parts in Gen_n and $Kill_n$ is ignored



Function composition is replaced by function confluence

Examples of Flow Insensitive Analyses

59/178

Examples of Flow Insensitive Analyses

Type checking/inferencing (What about interpreted languages?)

59/178

Examples of Flow Insensitive Analyses

Type checking/inferencing (What about interpreted languages?)

CS 618

Address taken analysis
 Which variables have their addresses taken?

IIT Bombay

59/178

Sep 2017 IIT Bo

Examples of Flow Insensitive Analyses

 Type checking/inferencing (What about interpreted languages?)

CS 618

- Address taken analysis
 Which variables have their addresses taken?
- Side effects analysis

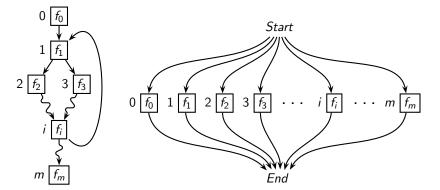
 Does a procedure modify a global variable? Reference Parameter?

IIT Bombay

59/178

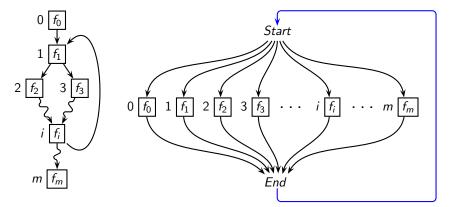
Flow Insensitivity in Data Flow Analysis

Assuming $Gen_n(X)$ has dependent parts and $Kill_n(X)$ is ignored

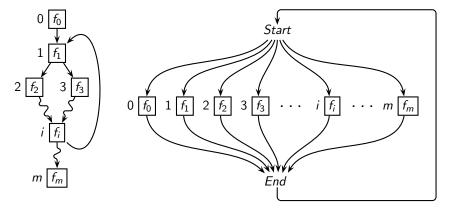


Flow Insensitivity in Data Flow Analysis

Assuming $Gen_n(X)$ has dependent parts and $Kill_n(X)$ is ignored



Assuming $Gen_n(X)$ has dependent parts and $Kill_n(X)$ is ignored

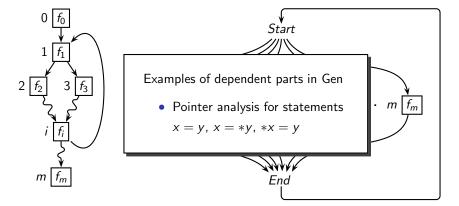


Allows arbitrary compositions of flow functions in any order ⇒ Flow insensitivity

IIT Bombay

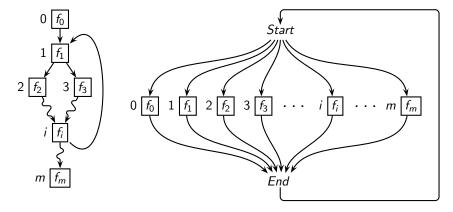
Flow Insensitivity in Data Flow Analysis

Assuming $Gen_n(X)$ has dependent parts and $Kill_n(X)$ is ignored



Flow Insensitivity in Data Flow Analysis

Assuming $Gen_n(X)$ has dependent parts and $Kill_n(X)$ is ignored



In practice, dependent constraints are collected in a global repository in one pass and then are solved independently

, maryore

- P_x denotes the set of pointees of pointer variable x
- Unify(x, y) unifies locations x and y
 - x and y are treated as equivalent locations
 - the pointees of the unified locations are also unified transitively
- UnifyPTS(x, y) unifies the pointees of x and y
 - x and y themselves are not unified

61/178

	Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
	x = &y	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify (y, z) for some $z \in P_x$
	x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
	x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
Ī	*v - v	$P \supset P_+ \ \forall z \in P_+$	$\forall z \in P$. $UnifvPTS(v, z)$

Sep 2017 IIT Bombay

62/178

Andersen's and Steensgaard's Points-to Analysis

62/178

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x\supseteq\{y\}$	$P_{x} \supseteq \{y\}$ $Unify(y,z) \text{ for some } z \in P_{x}$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view

Steensgaard's view

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_{x} \supseteq \{y\}$ Unify(y, z) for some $z \in P_{x}$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view

- x points to y
- × points to
- Include *y* in the points-to set of *x* Steensgaard's view

Sep 2017 IIT Bombay

62/178

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$ \begin{pmatrix} P_x \supseteq \{y\} \\ Unify(y,z) \text{ for some } z \in P_x \end{pmatrix} $
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y,z)$

Andersen's view

- x points to y
- Include y in the points-to set of x

Steensgaard's view

- Equivalence between: All pointees of x
- Unify y and pointees of x

Sep 2017 IIT Bombay

CS 618

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify (y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view
Steensgaard's view

Sep 2017

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x \supseteq \{y\}$	$P_x \supseteq \{y\}$ Unify(y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view

CS 618

- x points to pointees of y
- ullet Include the pointees of y in the points-to set of x

Steensgaard's view

Sep 2017 IIT Bombay

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ $Unify(y,z) \text{ for some } z \in P_x$
x = y	$P_x \supseteq P_y$	$\left(\begin{array}{c} \textit{UnifyPTS}(x,y) \end{array}\right)$
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y,z)$

Andersen's view

- x points to pointees of y
- Include the pointees of y in the points-to set of x

Steensgaard's view

- Equivalence between: Pointees of x and pointees of y
- Unify points-to sets of x and y

Sep 2017 IIT Bombay

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x\supseteq\{y\}$	$P_{x} \supseteq \{y\}$ $Unify(y,z) \text{ for some } z \in P_{x}$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y,z)$

Andersen's view

Steensgaard's view

IIT Bombay

62/178

CS 618

Andersen's and Steensgaard's Points-to Analysis

Sta	atement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
х	= & <i>y</i>	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ $Unify(y,z)$ for some $z \in P_x$
X	= y	$P_x \supseteq P_y$	UnifyPTS(x,y)
X	= * <i>y</i>	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*>	x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y,z)$

Andersen's view

CS 618

- x points to pointees of pointees of y
- Include the pointees of pointees of y in the points-to set of x

Steensgaard's view

Sep 2017 IIT Bombay

Stateme	nt Andersen's Points	-to Sets Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_x\supseteq\{y\}$ $Unify(y,z) ext{ for some } z\in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P$	$\forall z \in P_y, \ \textit{UnifyPTS}(x,z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view

- x points to pointees of pointees of y
- Include the pointees of pointees of y in the points-to set of x

Steensgaard's view

- Equivalence between: Pointees of x and pointees of pointees of y
- Unify points-to sets of x and pointees of y

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify(y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view

CS 618

Steensgaard's view

Sep 2017 IIT Bombay

Andersen's and Steensgaard's Points-to Analysis

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_x\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify(y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Andersen's view

- Pointees of x points to pointees of y
- ullet Include the pointees of y in the points-to set of the pointees of x

Steensgaard's view

62/178

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify (y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x, y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\left(\forall z \in P_x, \ \textit{UnifyPTS}(y,z) \ \right)$

Andersen's view

- Pointees of x points to pointees of y
- Include the pointees of y in the points-to set of the pointees of x

Steensgaard's view

- Equivalence between: Pointees of pointees of x and pointees of y
- Unify points-to sets of pointees of x and y

Sep 2017 IIT Bombay

Statement	Andersen's Points-to Sets	Steensgaard's Points-to Sets
x = &y	$P_{x}\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify (y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*v = v	$P \supset P \forall z \in P$	$\forall z \in P IInifvPTS(v, z)$

Sep 2017 IIT Bombay

Statement	Andersen's Points-to Sets Steensgaard's Points-to Sets	
x = &y	$P_x\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify(y, z) for some $z \in P_x$
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$

Inclusion

IIT Bombay

Statement	Andersen's Points-to Sets	Sets Steensgaard's Points-to Sets	
x = &y	$P_x\supseteq\{y\}$	$P_x \supseteq \{y\}$ Unify(y, z) for some $z \in P_x$	
x = y	$P_x \supseteq P_y$	UnifyPTS(x,y)	
x = *y	$P_x \supseteq P_z, \ \forall z \in P_y$	$\forall z \in P_y, \ \textit{UnifyPTS}(x, z)$	
*x = y	$P_z \supseteq P_y, \ \forall z \in P_x$	$\forall z \in P_x, \ \textit{UnifyPTS}(y, z)$	

Inclusion

Equality

General Frameworks: Pointer Analyses

Zxampie

Program 1 = &b 2 = a a = &d 4 = &e

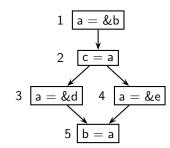
IIT Bombay

63/178

CS 618

Inclusion Based (aka Andersen's) Points-to Analysis: Example 1

Program

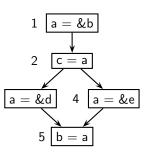


Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c \supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_b \supseteq P_a$

IIT Bombay

Inclusion Based (aka Andersen's) Points-to Analysis: Example 1

Program

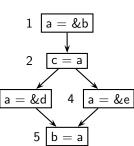


Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c \supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_{\mu} \supset P_{\alpha}$

Points-to Graph

Inclusion Based (aka Andersen's) Points-to Analysis: Example 1

Program

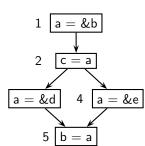


Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c \supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_b \supseteq P_a$

Points-to Graph

Inclusion Based (aka Andersen's) Points-to Analysis: Example 1

Program

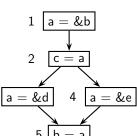


Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c \supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_b \supseteq P_a$

Points-to Graph

Example 1

Program



Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c\supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_i \supset P$

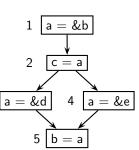
Points-to Graph

63/178

• Since P_a has changed, P_c needs to be processed again

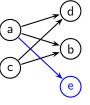
Inclusion Based (aka Andersen's) Points-to Analysis: Example 1

Program

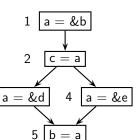


Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c \supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_b \supseteq P_a$

Points-to Graph



Inclusion Based (aka Andersen's) Points-to Analysis: Example 1



Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c\supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_b \supseteq P_a$

Points-to Graph

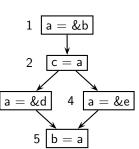
63/178

- Observe that P_c is processed for the third time
- Order of processing the sets influences efficiency significantly
 - A plethora of heuristics have been proposed

IIT Bombay

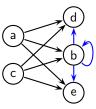
Inclusion Based (aka Andersen's) Points-to Analysis: Example 1

Program



Node	Constraint
1	$P_a\supseteq\{b\}$
2	$P_c \supseteq P_a$
3	$P_a\supseteq\{d\}$
4	$P_a\supseteq\{e\}$
5	$P_b \supseteq P_a$

Points-to Graph



Example 1

General Frameworks: Pointer Analyses

2

a = &d

a = &b

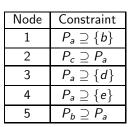
c = a

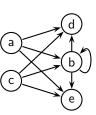
4

a = &e

CS 618

3





Points-to Graph

63/178

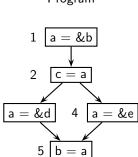
Actua	lly:

- c does not point to any location in block 1
- a does not point b in block 5
 (the method ignores the kill due to 3 and 4)
- b does not point to itself at any time

Sep 2017 IIT Bombay

General Frameworks: Pointer Analyses

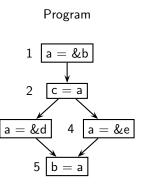
Example 1 Program



IIT Bombay

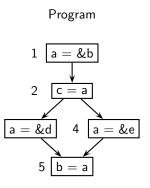
64/178

CS 618



Node	Constraint
1	$P_a\supseteq\{b\}$ $Unify(x,d), x\in P_a$
2	UnifyPTS(c, a)
3	$P_a\supseteq\{d\}$ $Unify(x,d), x\in P_a$
4	$P_a\supseteq\{e\}$ $Unify(x,e), x\in P_a$
5	UnifyPTS(b, a)

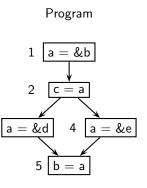
Sep 2017 **IIT Bombay**



Node	Constraint
1	$P_a \supseteq \{b\}$ $Unify(x,d), x \in P_a$
2	UnifyPTS(c, a)
3	$P_a\supseteq\{d\}$ $Unify(x,d), x\in P_a$
4	$P_a \supseteq \{e\}$ $Unify(x, e), x \in P_a$
5	UnifvPTS(b, a)

Points-to Graph

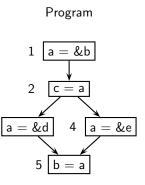
Equality Based (aka Steensgaard's) Points-to Analysis: Example 1



Node	Constraint
1	$P_a\supseteq\{b\}$ $Unify(x,d), x\in P_a$
2	UnifyPTS(c, a)
3	$P_a \supseteq \{d\}$ $Unify(x,d), x \in P_a$
4	$P_a\supseteq\{e\}$ $Unify(x,e), x\in P_a$
5	UnifyPTS(b, a)

Points-to Graph

IIT Bombay

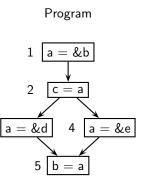


Node	Constraint
1	$P_a\supseteq\{b\}$ $Unify(x,d), x\in P_a$
2	UnifyPTS(c, a)
3	$P_a \supseteq \{d\}$ $Unify(x,d), x \in P_a$
4	$P_a\supseteq\{e\}$ $Unify(x,e), x\in P_a$
5	UnifyPTS(b, a)

Points-to Graph

64/178

Sep 2017 **IIT Bombay**

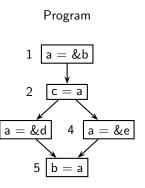


Node	Constraint
1	$P_a\supseteq\{b\}$
-	$Unify(x, d), x \in P_a$
2	UnifyPTS(c, a)
3	$P_a\supseteq\{d\}$
3	$Unify(x, d), x \in P_a$
1	$P_a\supseteq\{e\}$
4	$Unify(x,e), x \in P_a$
5	UnifyPTS(b, a)

Points-to Graph

64/178

IIT Bombay

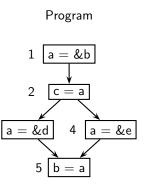


Node	Constraint
1	$P_a\supseteq\{b\}$ $Unify(x,d), x\in P_a$
2	UnifyPTS(c, a)
3	$P_a \supseteq \{d\}$ $Unify(x,d), x \in P_a$
4	$P_a \supseteq \{e\}$ $Unify(x, e), x \in P_a$
5	UnifvPTS(b, a)

Points-to Graph

64/178

Sep 2017 **IIT Bombay**

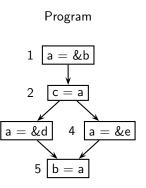


Node	Constraint
1	$P_a \supseteq \{b\}$ $Unify(x,d), x \in P_a$
2	UnifyPTS(c, a)
3	$P_a \supseteq \{d\}$ $Unify(x,d), x \in P_a$
4	$P_a \supseteq \{e\}$ $Unify(x, e), x \in P_a$
5	UnifyPTS(b, a)

Points-to Graph

64/178

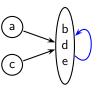
Sep 2017 **IIT Bombay**



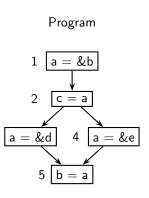
Node	Constraint
1	$P_a\supseteq\{b\}$
1	$Unify(x,d), x \in P_a$
2	UnifyPTS(c, a)
3	$P_a\supseteq\{d\}$
3	$Unify(x,d), x \in P_a$
1	$P_a\supseteq\{e\}$
4	$Unify(x,e), x \in P_a$
5	UnifvPTS(b, a)

Points-to Graph

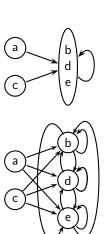
64/178

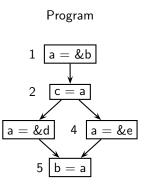


IIT Bombay



Node	Constraint
1	$P_a \supseteq \{b\}$ $Unify(x,d), x \in P_a$
2	UnifyPTS(c, a)
3	$P_a \supseteq \{d\}$ $Unify(x,d), x \in P_a$
4	$P_a \supseteq \{e\}$ $Unify(x, e), x \in P_a$
5	UnifyPTS(b, a)

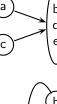


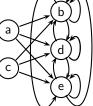


Node	Constraint
1	$P_a \supseteq \{b\}$ $Unify(x, d), x \in P_a$
2	UnifyPTS(c, a)
3	$P_a \supseteq \{d\}$ $Unify(x,d), x \in P_a$
4	$P_a \supseteq \{e\}$ $Unify(x, e), x \in P_a$
5	UnifyPTS(b, a)

- The full blown up points-to graph has far more edges than in the graph created by Andersen's method
- Far more efficient but far less precise

Points-to Graph





General Frameworks: Pointer Analyses

Comparing Equality and Inclusion Based Analyses (2)

- Andersen's algorithm is cubic in number of pointers
- Steensgaard's algorithm is nearly linear in number of pointers

Γ Bombay

65/178

CS 618

General Frameworks: Pointer Analyses

Comparing Equality and Inclusion Based Analyses (2)

Andersen's algorithm is cubic in number of pointers

CS 618

- Steensgaard's algorithm is nearly linear in number of pointers
 - ▶ How can it be more efficient by an orders of magnitude?

IIT Bombay

65/178

Program <i>P</i>	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c		

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - ► Merge multiple successors and maintain a single successor of any node

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	a	a

- Andersen's inclusion based wisdom:
 - Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	a c	a c

Andersen's inclusion based wisdom:

CS 618

- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Efficiency of Equality Based Approach

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	a c	(a) (b) (c)

Andersen's inclusion based wisdom:

CS 618

- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - ► Merge multiple successors and maintain a single successor of any node

ProgramAndersen's approachSteensgaard's approacha = &b
a = &c
b = &d
b = &ca = &c
b = &c

Andersen's inclusion based wisdom:

CS 618

- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	$a \xrightarrow{b} d$	$a \rightarrow b \rightarrow d$

Andersen's inclusion based wisdom:

CS 618

- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Sep 2017 IIT Bombay

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	a b d	$ \begin{array}{c} a \\ c \\ d \end{array} $

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node

Sep 2017 IIT Bombay

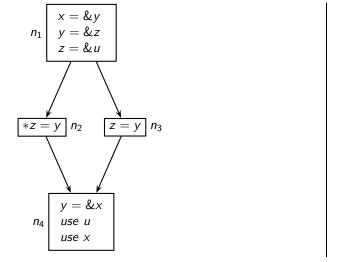
Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	$a \xrightarrow{b} d$	$ \begin{array}{c} a \\ c \\ d \end{array} $

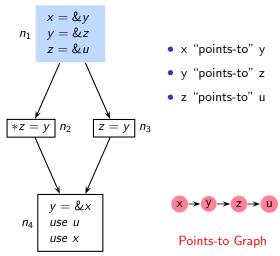
- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node
 - ► Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs

Program	Andersen's approach	Steensgaard's approach
a = &b a = &c b = &d b = &c	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} a \\ c \\ d \end{array} $

- Andersen's inclusion based wisdom:
- Add edges and let the number of successors increase
- Steensgaard's equality based wisdom:
 - Merge multiple successors and maintain a single successor of any node
 - ► Since a larger number of pointers treated are alike and fewer distinctions are maintained, we get much smaller points-to graphs
 - ▶ Efficient *Union-Find* algorithms to merge intersecting subsets

General Frameworks: Pointer Analyses

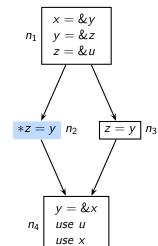




Constraints on Points-to Sets

67/178

 $P_{x} \supseteq \{y\}$ $P_{y} \supseteq \{z\}$ $P_{z} \supseteq \{u\}$



- Pointees of z should point to pointees of y also
- u should point to z

o Granh

Points-to Graph

Points-to Sets

Constraints on

67/178

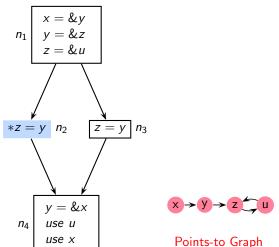
$$P_{x} \supseteq \{y\}$$

$$P_{y} \supseteq \{z\}$$

$$P_{z} \supseteq \{u\}$$

 $\forall w \in P_z, P_w \supset P_v$

IIT Bombay

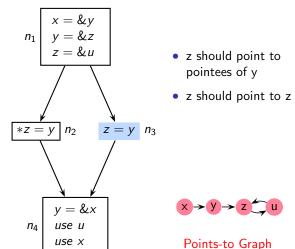


Constraints on Points-to Sets

67/178

 $P_x\supseteq\{y\}$ $P_y\supseteq\{z\}$ $P_z\supseteq\{u\}$

 $\forall w \in P_z, P_w \supset P_v$



Constraints on Points-to Sets

67/178

$$P_{x} \supseteq \{y\}$$

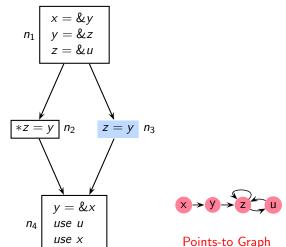
$$P_{y} \supseteq \{z\}$$

$$P_{z} \supseteq \{u\}$$

 $\begin{aligned}
P_z &\supseteq \{u\} \\
\forall w \in P_z, \ P_w &\supseteq P_y \\
P_z &\supseteq P_y
\end{aligned}$

IIT Bombay

General Frameworks: Pointer Analyses



Constraints on Points-to Sets

67/178

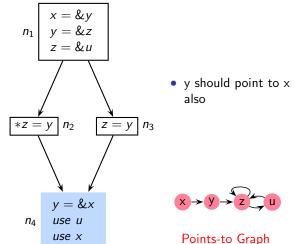
$$P_x \supseteq \{y\}$$

$$P_y \supseteq \{z\}$$

$$P_z \supseteq \{y\}$$

 $P_z \supseteq \{u\}$ $\forall w \in P_z, P_w \supseteq P_y$ $P_z \supseteq P_v$

General Frameworks: Pointer Analyses



Constraints on Points-to Sets

67/178

$$P_{x} \supseteq \{y\}$$

$$P_{y} \supseteq \{z\}$$

$$P_{z} \supseteq \{u\}$$

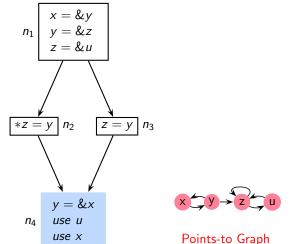
$$\forall w \in P_{z}, P_{w} \supseteq P_{y}$$

$$P_{z} \supseteq P_{y}$$

$$P_{y} \supseteq \{x\}$$

Sep 2017

General Frameworks: Pointer Analyses



Constraints on Points-to Sets

$$P_{x} \supseteq \{y\}$$

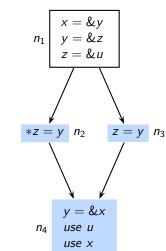
$$P_{y} \supseteq \{z\}$$

$$P_{z} \supseteq \{u\}$$

$$\forall w \in P_{z}, P_{w} \supseteq P_{y}$$

$$P_{z} \supseteq P_{y}$$

$$P_{y} \supseteq \{x\}$$



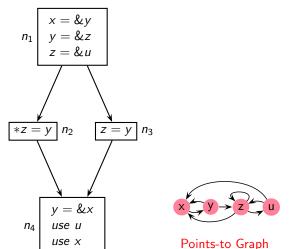
- z and its pointees should point to new pointee of y also u and z should point
 - to x

Points-to Graph

 $P_x \supseteq \{y\}$ $P_{y} \supseteq \{z\}$ $P_z \supseteq \{u\}$ $\forall w \in P_z, P_w \supseteq P_y$ $P_z \supseteq P_v$ $P_v \supseteq \{x\}$

Constraints on

Points-to Sets



Constraints on Points-to Sets

$$P_{x} \supseteq \{y\}$$

$$P_{y} \supseteq \{z\}$$

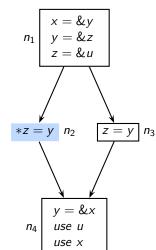
$$P_{z} \supseteq \{u\}$$

$$\forall w \in P_{z}, P_{w} \supseteq P_{y}$$

$$P_{z} \supseteq P_{y}$$

$$P_{y} \supseteq \{x\}$$

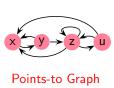
Inclusion Based (aka Andersen's) Points-to Analysis: Example 2



point to pointees of yx should point to

Pointees of z should

itself and z



Constraints on Points-to Sets

 $P_x \supseteq \{y\}$

67/178

$$P_{y} \supseteq \{z\}$$

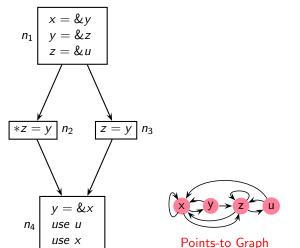
$$P_{z} \supseteq \{u\}$$

$$\forall w \in P_{z}, P_{w} \supseteq P_{y}$$

$$P_{z} \supseteq P_{y}$$

$$P_{y} \supseteq \{x\}$$

Sep 2017



Constraints on Points-to Sets

67/178

$$P_{x} \supseteq \{y\}$$

$$P_{y} \supseteq \{z\}$$

$$P_{z} \supseteq \{u\}$$

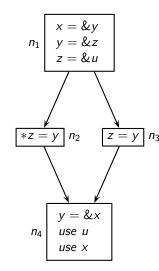
$$\forall w \in P_{z}, P_{w} \supseteq P_{y}$$

$$P_{z} \supseteq P_{y}$$

$$P_{y} \supseteq \{x\}$$

Sep 2017

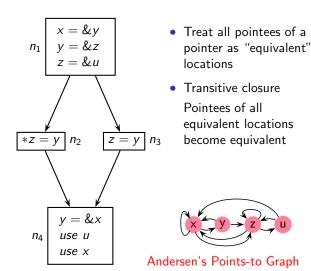
Equality Based (aka Steensgaard's) Points-to Analysis: Example 2



- Treat all pointees of a pointer as "equivalent" locations
- Transitive closure Pointees of all equivalent locations become equivalent

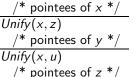
IIT Bombay

Equality Based (aka Steensgaard's) Points-to Analysis: Example 2

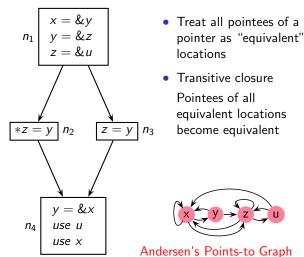


Effective additional constraints

 $\overline{Unify}(x,y)$



Equality Based (aka Steensgaard's) Points-to Analysis: Example 2



Effective additional constraints

Unify(x, y)

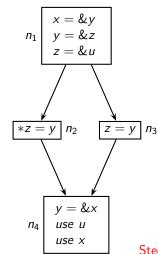
Unify(x,z)

/* pointees of y */ Unify(x, u)/* pointees of z */

/* pointees of x */

 $\Rightarrow x, y, z, u$ are equivalent

IIT Bombay



- Treat all pointees of a pointer as "equivalent" locations Transitive closure Pointees of all
 - equivalent locations become equivalent

Steensgaard's Points-to Graph

Effective additional constraints

 $\overline{Unify}(x,y)$

/* pointees of x */ Unify(x,z)/* pointees of y */ Unify(x, u)

/* pointees of z */ $\Rightarrow x, y, z, u$ are

equivalent \Rightarrow Complete graph

IIT Bombay

Inclusion based

General Frameworks: Pointer Analyses

_	
p = &q	
r=&s	
t = & p	
u = p	
*t = r	
	l

Program

69/178

CS 618

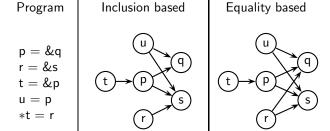
Equality based

Inclusion based

 $\begin{array}{c} p = \&q \\ r = \&s \\ t = \&p \\ u = p \\ *t = r \end{array}$

Program

Equality based



Inclusion based

p = &qr = &st = &pu = p*t = r

Program

Equality based

Inclusion based

Tutorial Froblem for Flow inscristive Founter Analysis (1)

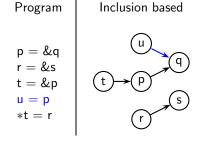
p = &q r = &s t = &p u = p *t = r

Program

Equality based

Inclusion based Program p = &qr = &st = &pu = p*t = r

Equality based



Equality based

Inclusion based

Program p = &qr = &st = &pu = p*t = r

Equality based

IIT Bombay

Tutorial Problem for Flow Insensitive Pointer Analysis (1)

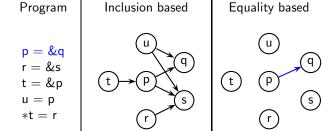
Inclusion based

p = &qr = &st = &pu = p*t = r

Program

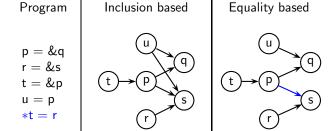
Equality based

Tutorial Problem for Flow Insensitive Pointer Analysis (1)



Inclusion based Program Equality based p = &qr = &st = &pu = p*t = r

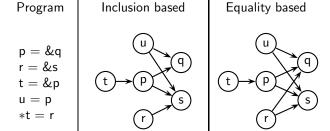
Inclusion based Program Equality based p = &qr = &st = &pu = p*t = r



Sep 2017 IIT Bombay

Inclusion based Program Equality based p = &qr=&st = &pu = p*t = r

Inclusion based Program Equality based p = &qr=&st = &pu = p*t = r



well as equality based method

Compute flow insensitive points-to information using inclusion based method as

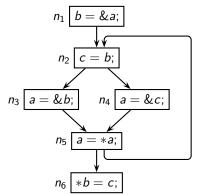
General Frameworks: Pointer Analyses

```
\begin{array}{c} \text{if (...)} \\ \quad p = \&x; \\ \text{else} \\ \quad p = \&y; \end{array}
x = &a:
 y = \&b;
*p = \&c;
 *y = \&a;
```

Tutorial Problem for Flow Insensitive Pointer Analysis (3)

General Frameworks: Pointer Analyses

Compute flow insensitive points-to information using inclusion based method as well as equality based method



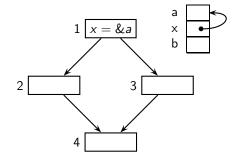
- The larger perspective
- Comparing Points-to and Alias information
- Flow Insensitive Points-to Analysis
- Flow Sensitive Points-to Analysis Next Topic
- Pointer Analyses: An Engineer's Landscape
- Liveness Based Points-to Analysis
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

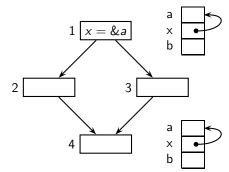
IIT Bom

CS 618

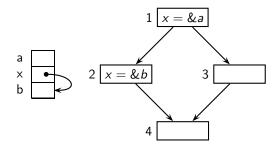
73/178

wast romes to mornation

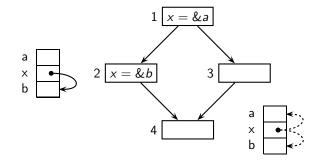




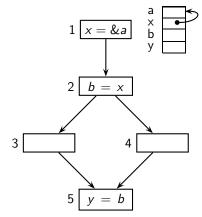
way Folits-to illioillation



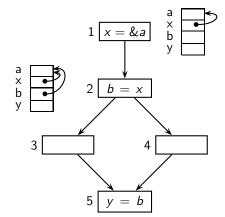
way Points-to information



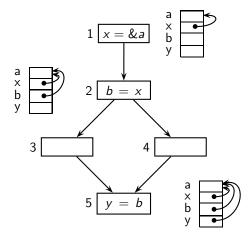
CS 618



Must Alias Information

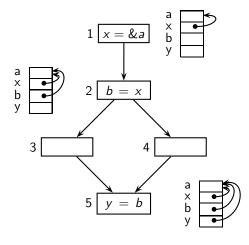


Must Alias Information



Widst Alius Illioilliation

CS 618



 $x \stackrel{\circ}{=} b$ and $b \stackrel{\circ}{=} y \Rightarrow x \stackrel{\circ}{=} y$

1 | x = &a

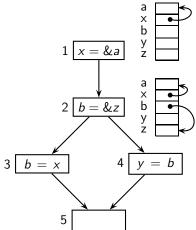
2b = &z

5

76/178

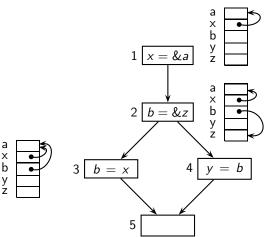
IIT Bombay

iviay Alias Illioilliation

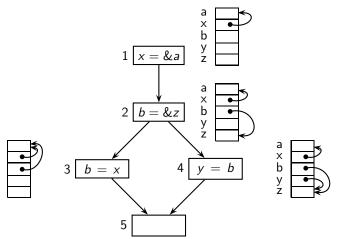


76/178

May Alias Information



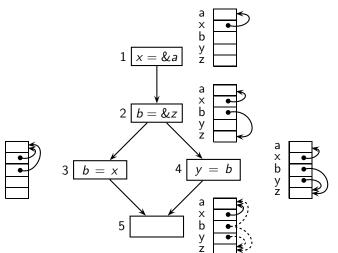
May Alias Information



a X

b y z

May Alias Information



a X b

y Z

way Anas information

General Frameworks: Pointer Analyses



 $x \stackrel{\circ}{=} b$ and $b \stackrel{\circ}{=} y \not\Rightarrow x \stackrel{\circ}{=} y$

76/178

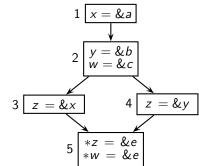
b

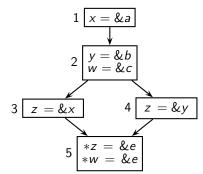
y z

CS 618

Strong and Weak Updates

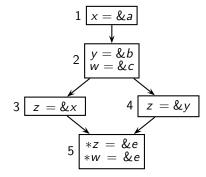
General Frameworks: Pointer Analyses





Weak update: Modification of x or y due to *z in block 5

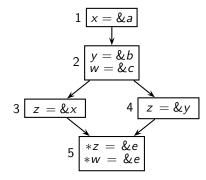
Strong and weak opuates



Weak update: Modification of x or y due to *z in block 5

Strong update: Modification of c due to *w in block 5

Strong and Weak Opuates



Weak update: Modification of x or y due to *z in block 5

Strong update: Modification of c due to *w in block 5

How is this concept related to May/Must nature of information?

What About Heap Data?

- Compile time entities, abstract entities, or summarized entities
- Three options:
 - Represent all heap locations by a single abstract heap location
 - ▶ Represent all heap locations of a particular type by a single abstract heap location
 - ▶ Represent all heap locations allocated at a given memory allocation site by a single abstract heap location
- Summarization: Usually based on the length of pointer expression
- Initially, we will restrict ourselves to stack and static data We will later introduce heap using the allocation site based abstraction

General Frameworks: Pointer Analyses

LCt I	the set of pon	iters. Assume var	-(p,q) and $-(p)$

Product View	Mapping view	

IIT Bombay

79/178

Let $\mathbf{P} \subseteq \mathbb{V}$ ar be the set of pointers. Assume \mathbb{V} ar $= \{p,q\}$ and $\mathbf{P} = \{p\}$

Product View	Mapping view	
$\{(p,p)\}$ $\{(p,q)\}$		
$\{(p,p),(p,q)\}$		
$Data \; flow \; values \subseteq \boxed{\mathbf{P} \times \mathbb{V}ar}$		
$Lattice = \left(2^{P \times \mathbb{V}ar}, \supseteq\right)$		

Let $P \subseteq \mathbb{V}$ ar be the set of pointers. Assume \mathbb{V} ar $= \{p, q\}$ and $P = \{p\}$

Product View	Mapping view
	$\{(p,\emptyset)\}$

$$\{(p,p),(p,q)\}$$
 Data flow values \subseteq $\boxed{\mathbf{P} imes\mathbb{V}$ ar $}$

 $\{(p,p)\}\ \{(p,q)\}$

w values
$$\subseteq$$
 $igl(\mathbf{P} imes \mathbb{V} \mathsf{ar} igr)$ Lattice $= igl(2^{\mathbf{P} imes \mathbb{V} \mathsf{ar}}, \supseteq igr)$

Data flow values
$$\in$$
 $(\mathbf{P} \to 2^{\mathbb{V}ar})$

 $\{(p, \{p\})\}\ \{(p, \{q\})\}$

 $\{(p, \{p, q\})\}$

General Frameworks: Pointer Analyses

Let $P \subseteq \mathbb{V}$ ar be the set of pointers. Assume \mathbb{V} ar $= \{p, q\}$ and $P = \{p\}$

Product View Mapping view $\{(p,\emptyset)\}$

$$\{(p,p),(p,q)\}$$
 Data flow values \subseteq $\mathbf{P} \times \mathbb{V}$ ar

 $\{(p,p)\}\ \{(p,q)\}$

Lattice =
$$(2^{P \times Var}, \supseteq)$$

Points-to graph as a list of directed edges

Data flow values
$$\in$$
 $\left(\mathbf{P} \rightarrow 2^{\mathbb{V}ar}\right)$

 $\{(p, \{p\})\}\ \{(p, \{q\})\}\$

 $\{(p, \{p, q\})\}$

Lattice = $(\mathbf{P} \to 2^{\mathbb{V}ar}, \sqsubseteq_{map})$

IIT Bomba

79/178

list of directed edges

General Frameworks: Pointer Analyses

Let $P \subseteq \mathbb{V}$ ar be the set of pointers. Assume \mathbb{V} ar $= \{p, q\}$ and $P = \{p\}$

$$\{(p,p)\}\ \{(p,q)\}$$
 $\{(p,p),(p,q)\}$

Data flow values $\subseteq [\mathbf{P} \times \mathbb{V}ar]$

Product View

Lattice =
$$(2^{\mathbf{P} \times \mathbb{V}ar}, \supseteq)$$

Points-to graph as a

$$\{(p,\{p,q\})\}$$

Mapping view

 $\{(p,\emptyset)\}$

 $\{(p, \{p\})\}\ \{(p, \{q\})\}\$

Data flow values
$$\in$$
 $(\mathbf{P} \to 2^{\mathbb{V}ar})$

$$\mathsf{Lattice} = (\mathbf{P} \to 2^{\mathbb{V}ar}, \sqsubseteq_{\mathit{map}})$$

Points-to graph as a list of adjacency lists

General Frameworks: Pointer Analyses

Let $P \subseteq \mathbb{V}$ are be the set of pointers. Assume \mathbb{V} are $\{p, q, r\}$ and $P = \{p\}$ Mapping View Set View

	ļ	

80/178

CS 618

 $\{(p,\widehat{\top})\}$

 $\{(p,p)\}\ \{(p,q)\}\ \{(p,r)\}$

 $\{(p, \widehat{\perp})\}$

ysis

Set View

80/178

Let $\mathbf{P} \subseteq \mathbb{V}$ ar be the set of pointers. Assume \mathbb{V} ar = $\{p, q, r\}$ and $\mathbf{P} = \{p\}$

General Frameworks: Pointer Analyses

$\{(p, \widehat{\top})\}$ $\{(p, p)\} \{(p, q)\} \{(p, r)\}$ $\{(p, \widehat{\bot})\}$	Component Lattice \widehat{T} q q q q
Data flow values $=\mathbf{P} ightarrow\mathbb{V}$ ar U	$\cup \{\widehat{\top}, \widehat{\bot}\}$

 $\mathsf{Lattice} = \left(2^{\mathbf{P} \to \mathbb{V}\mathsf{ar} \, \cup \{\, \widehat{\top}\,, \widehat{\bot}\,\}}, \sqsubseteq_{\mathit{map}}\right)$

Mapping View

A pointer can point to at most one location

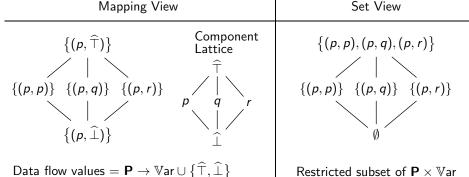
nie location

Lattice = $\left(2^{\mathbf{P} \to \mathbb{V}ar \cup \{\widehat{\top}, \widehat{\bot}\}}, \sqsubseteq_{map}\right)$

80/178

General Frameworks: Pointer Analyses

Let $P \subseteq \mathbb{V}$ are be the set of pointers. Assume \mathbb{V} are $\{p, q, r\}$ and $P = \{p\}$



Restricted subset of $\mathbf{P} \times \mathbb{V}$ ar

 \cap can be used for \sqcap

A pointer can point to at most one location

81/178

CS 618

Lattice for Combined May-Must Points-to Analysis (1)

General Frameworks: Pointer Analyses

ullet Consider the following abbreviation of the May-Must lattice L

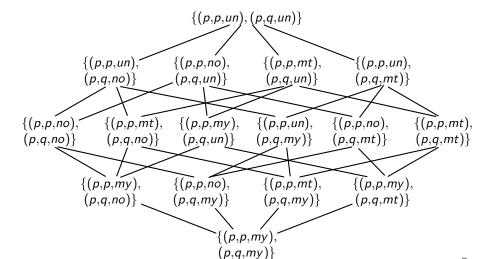
ullet For \mathbb{V} ar $=\{p,q\}$, $\mathbf{P}=\{p\}$, the May-Must points-to lattice is the product

$$\mathbf{P} \times \mathbb{V}$$
ar $\times \widehat{L}$

- Some elements are prohibited because of the semantics of *Must*
- ▶ If we have (p,p,mt) in a data flow value $X \in \mathbf{P} imes \mathbb{V}$ ar $imes \widehat{L}$, then
 - we cannot have (p,q,un), (p,q,mt), or (p,q,my) in X
 - we can only have (p,q,no) in X

Lattice for Combined May-Must Points-to Analysis (2)

For \mathbb{V} ar = $\{p, q\}$, $\mathbf{P} = \{p\}$, the May-Must points-to lattice is



CS 618

Lattice for Combined May-Must Points-to Analysis (2)

For $Var = \{p, q\}$, $P = \{p\}$, the May-Must points-to lattice is **Prohibited** $\{(p,p,un),(p,q,un)\}$ $\{(p,p,un),$ $\{(p,p,no),$ (p,p,mt)(p,q,no)(p,q,un) $\{(p,p,no),$ $\{(p,p,mt),$ $\{(p,p,my),$ $\{(p,p,\iota/\iota),$ $\{(p,p,no),$ p,p,mt(p,q,no)(p,q,no)(p,q,un)(p,q,n,y)(p,q,mt) $\{(p,p,no),$ $\{(p,p,my),$ (p,p,my)(p,q,no)(p,q,my)(p,q,my)p,q,mt $\{(p,p,my)\}$ (p,q,my)

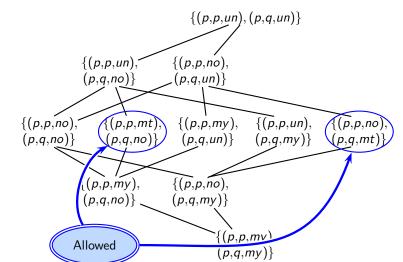
82/178

Lattice for Combined May-Must Points-to Analysis (2)

For $Var = \{p, q\}$, $P = \{p\}$, the May-Must points-to lattice is **Prohibited** $\{(p,p,un),(p,q,un)\}$ $\{(p,p,un).$ $\{(p,p,no),$ (p,p,mt)(p,q,no)(p,q,un)(p,q,un p,p,mt $\{(p,p,no),$ (p,p,mt) $\{(p,p,my),$ $\{(p,p,\iota/\iota),$ (p,p,no), (p,q,no)(p,q,no)(p,q,un)(p,q,n,y)(p,q,mt) $\{(p,p,no),$ (p,p,my),(p,p,mt)(p,q,no)(p,q,my)(p,q,my)p,q,mt $\{(p,p,mv)\}$ Allowed (p,q,my)

Lattice for Combined May-Must Points-to Analysis (2)

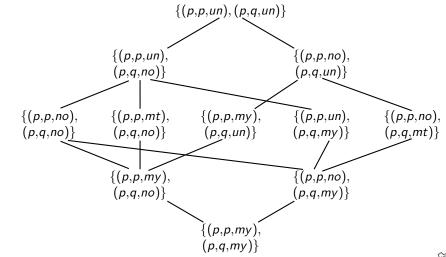
For \mathbb{V} ar = $\{p, q\}$, $\mathbf{P} = \{p\}$, the May-Must points-to lattice is



Sep 2017

Editice for Combined Way Wast Forms to Analysis (2)

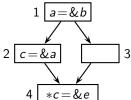
For \mathbb{V} ar = $\{p, q\}$, $\mathbf{P} = \{p\}$, the May-Must points-to lattice is



CS 618

May and Must Analysis for Killing Points-to Information (1)

2 [



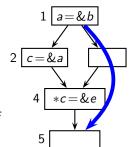
IIT Bombay

83/178

May and Must Analysis for Killing Points-to Information (1)

May Points-to Analysis • (a, b) should be in

- MayIn₅ Holds along path 1-3-4 Block 4 should not kill
 - (a,b)
- Possible if pointee set of c is ∅
- However, MayIn₄ contains (c, a)



Must Points-to Analysis

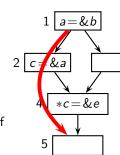
IIT Bombay

3

May and Must Analysis for Killing Points-to Information (1)

May Points-to Analysis

- (a, b) should be in MayIn₅
 - Holds along path 1-3-4
- Block 4 should not kill (a,b)
- Possible if pointee set of c is ∅
- However, MayIn₄ contains (c, a)



Must Points-to Analysis

• (a, b) should not be in

83/178

- MustIns Does not hold along path 1 - 2 - 4
- Block 4 should kill (a, b)
- Possible if pointee set of c is {a}
- However, MustIn₄ contains (a, b)

Sep 2017 IIT Bombay CS 618

- Possible if pointee set of c is \emptyset (Use MustIn₄)
- However, MayIn₄ contains (c, a)

• (a, b) should be in

MayIn₅

(a,b)

Must Points-to Analysis

- (a, b) should not be in MustIns
- 1 2 4Block 4 should kill (a, b)

83/178

- Possible if pointee set of c is $\{a\}$ (Use $MayIn_4$)
- However. MustIn_A contains (a, b)

For killing points-to information through indirection,

Must points-to analysis should identify pointees of c using MayIn₄

5

 $1 \mid a = \&b$

*c = &e

May points-to analysis should identify pointees of c using MustIn₄

IIT Bomba

Sep 2017

84/178

General Frameworks: Pointer Analyses

- May Points-to analysis should remove a May points-to pair
 - only if it must be removed along all paths

Kill should remove only strong updates

- \Rightarrow should use Must Points-to information
 - Must Points-to analysis should remove a Must points-to pair
 - ▶ if it can be removed along any path

Kill should remove all weak updates

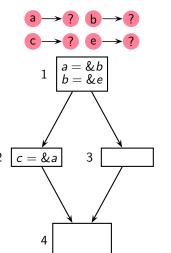
⇒ should use May Points-to information

IIT Bombay

Discovering Must Points-to Information from May Points-to

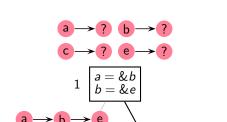
4

CS 618

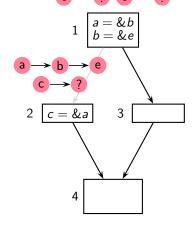


Bl. every pointer points to "?"

85/178

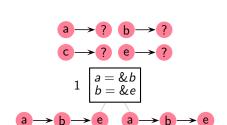


- BI. every pointer points to "?" Perform usual may points-to
- analysis

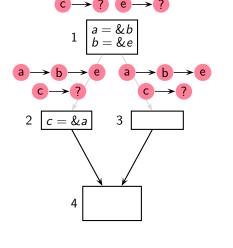


IIT Bombay

85/178

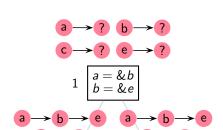


- Bl. every pointer points to "?"
- Perform usual may points-to analysis

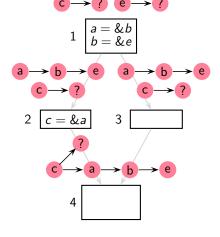


IIT Bombay

85/178

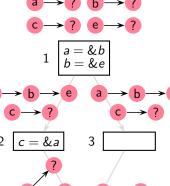


- Bl. every pointer points to "?"
- Perform usual may points-to analysis



85/178

a →? b →?

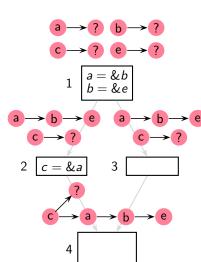


4

- BI. every pointer points to "?"
- Perform usual may points-to analysis
- Since c has multiple pointees, it is a MAY relation

IIT Bombay

85/178



CS 618

- BI. every pointer points to "?"Perform usual may points-to
- analysis

 Since c has multiple pointees i
- Since c has multiple pointees, it is a MAY relation
- Since a has a single pointee, it is a MUST relation

Sep 2017 IIT Bombay

Relevant Algebraic Operations on Relations (1)

- Let $\mathbf{P} \subseteq \mathbb{V}$ ar be the set of pointer variables
- May-points-to information: $\mathcal{A} = \left\langle 2^{\mathbf{P} \times \mathbb{V}ar}, \supseteq \right\rangle$
- Given relation $R \subseteq \mathbf{P} \times \mathbb{V}$ ar and $X \subseteq \mathbf{P}$,

• Standard algebraic operations on points-to relations

- ▶ Relation application $R X = \{v \mid u \in X \land (u, v) \in R\}$
- ▶ Relation restriction $(R|_X)$ $R|_X = \{(u, v) \in R \mid u \in X\}$

Relevant Algebraic Operations on Relations (1)

- Let P ⊂ Var be the set of pointer variables
- May-points-to information: $\mathcal{A} = \langle 2^{\mathbf{P} \times \mathbb{V}ar}, \supseteq \rangle$
- Standard algebraic operations on points-to relations Given relation $R \subseteq \mathbf{P} \times \mathbb{V}$ ar and $X \subseteq \mathbf{P}$,
 - ▶ Relation application $R X = \{v \mid u \in X \land (u, v) \in R\}$ (Find out the pointees of the pointers contained in X)
 - ▶ Relation restriction $(R|_X)$ $R|_X = \{(u, v) \in R \mid u \in X\}$

Relevant Algebraic Operations on Relations (1)

- Let P ⊆ Var be the set of pointer variables
- May-points-to information: $\mathcal{A} = \left\langle 2^{\mathbf{P} \times \mathbb{V}ar}, \supseteq \right\rangle$
- Standard algebraic operations on points-to relations
 Given relation R ⊂ P × Var and X ⊂ P,
 - ▶ Relation application $R \ X = \{v \mid u \in X \land (u, v) \in R\}$ (Find out the pointees of the pointers contained in X)
 - Relation restriction $(R|_X)$ $R|_X = \{(u, v) \in R \mid u \in X\}$ (Restrict the relation only to the pointers contained in X by removing points-to information of other pointers)

87/178

IIT Bomba

Sep 2017

CS 618

Let

$$\mathbb{V}\mathsf{ar} = \{a, b, c, d, e, f, g, ?\}$$

$$\mathbf{P} = \{a, b, c, d, e\}$$

$$R = \{(a,b),(a,c),(b,d),(c,e),(c,g),(d,a),(e,?)\}$$

$$X = \{a,c\}$$

 $R|_{X} = \{(u,v) \in R \mid u \in X\}$

$$RX = \{v \mid u \in X \land (u, v) \in R\}$$

$$\in X$$

$$u \in X$$

$$\in X \land$$

General Frameworks: Pointer Analyses

CS 618

Let

 $P = \{a, b, c, d, e\}$ $R = \{(a,b),(a,c),(b,d),(c,e),(c,g),(d,a),(e,?)\}$ $X = \{a, c\}$ $RX = \{v \mid u \in X \land (u, v) \in R\}$

 $Var = \{a, b, c, d, e, f, g, ?\}$

 $R|_{X} = \{(u,v) \in R \mid u \in X\}$

Then, $= \{b, c, e, g\}$

IIT Bomba

CS 618

$$Var = \{a, b, c, d, e, f, g, ?\}$$

$$P = \{a, b, c, d, e\}$$

$$R = \{(a, b), (a, c), (b, d), (c, e), (c, g), (d, a), (e, ?)\}$$

$$X = \{a,c\}$$

$$RX = \{v \mid u \in X \land (u, v) \in R\}$$

= \{b, c, e, g\}

$$= \{b, c, e, g\}$$

$$P|_{X} = \{(u, v) \in R \mid$$

$$R|_{X} = \{(u, v) \in R \mid u \in X\}$$

= \{(a, b), (a, c), (c, e), (c, g)\}

$$Ain_n = \left\{ egin{array}{ll} \mathbb{V}{
m ar} imes \{?\} & n ext{ is } Start_p \ igcup_{p \in pred(n)} & {
m otherwise} \end{array}
ight.$$
 $Aout_n = \left(Ain_n - \left(\begin{array}{cc} {\it Kill}_n imes \mathbb{V}{
m ar} \end{array} \right) \right) \cup \left(\begin{array}{cc} {\it Def}_n imes {\it Pointee}_n \end{array} \right)$

- Ain/Aout: sets of mAy points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Ain_n

88/178

$$Ain_n = \begin{cases} \mathbb{V}ar \times \{?\} & n \text{ is } Start_p \\ \bigcup_{p \in pred(n)} Aout_p & \text{otherwise} \end{cases}$$

$$Aout_n = \left(Ain_n - \left(\frac{Kill_n}{N} \times \mathbb{V}ar\right)\right) \cup \left(\frac{Def_n \times Pointee_n}{N}\right)$$

- Ain/Aout: sets of mAy points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Ain_n

Pointers whose points-to relations should be removed

$$Ain_n = \begin{cases} \mathbb{V}ar \times \{?\} & n \text{ is } Start_p \\ \bigcup_{p \in pred(n)} Aout_p & \text{otherwise} \end{cases}$$

$$Aout_n = \left(Ain_n - \left(Kill_n \times \mathbb{V}ar\right)\right) \cup \left(\underbrace{Def_n} \times Pointee_n\right)$$

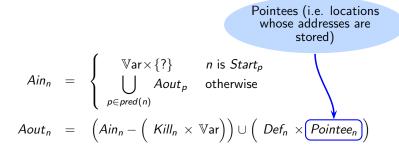
- Ain/Aout: sets of mAy points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Ain_n

Pointers that are defined (i.e. pointers in which addresses are stored) 88/178

Sep 2017 IIT Bombay

88/178

Points-to Analysis Data Flow Equations



- Ain/Aout: sets of mAy points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Ain_n

Bombay

$$Ain_n = \left\{ egin{array}{ll} \mathbb{V}{
m ar} imes \{?\} & n ext{ is } Start_p \ igcup_{p \in pred(n)} & {
m otherwise} \end{array}
ight.$$
 $Aout_n = \left(Ain_n - \left(\begin{array}{cc} {\it Kill}_n imes \mathbb{V}{
m ar} \end{array} \right) \right) \cup \left(\begin{array}{cc} {\it Def}_n imes {\it Pointee}_n \end{array} \right)$

- Ain/Aout: sets of mAy points-to pairs
- Kill_n, Def_n, and Pointee_n are defined in terms of Ain_n

88/178

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x			
x = &a			
x = y			
x = *y			
*x = y			
other			

Values defined in terms of Ain_n (denoted A)

		(Def_n)	Kill _n	$Pointee_n$
	use x	1		
	x = &a	/		
	x = y/			
	x = xy			
	*/x = y			
/	other			
/				

Pointers that are defined (i.e. pointers in which addresses are stored)

Values defined in terms of Ain_n (denoted A)

	Def _n	Kill _n	(Pointee _n)
use x			^
x = &a			
x = y			
x = *y			
*x = y			
other			

Pointees (i.e. locations whose addresses are stored)

Values defined in terms of Ain_n (denoted A)

	Def_n	$(Kill_n)$	Pointee _n
use x		1	
x = &a			
x = y			
x = *y			
*x = y			
other			
/			
- /			

Pointers whose points-to relations should be removed

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a			
x = y			
x = *y			
*x = y			
other			

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y			
x = *y			
*x = y			
other			

Extractor Functions for Points-to Analysis

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{ <i>x</i> }	{x}	$\longrightarrow A\{y\}$
x = *y			
*x = y			
other			

Pointees of y in Ain_n are the targets of defined pointers

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{ <i>x</i> }	{x}	$A\{y\}$
x = *y	{x}	{x} →	$A(A\{y\}\cap \mathbf{P})$
*x = y			
other			

Pointees of those pointees of y in Ain_n which are pointers

Extractor Functions for Points-to Analysis

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\}\cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other	<u> </u>		

Pointees of x in Ain_n receive new addresses

Values defined in terms of A:
Strong update using must-points-to information computed from Ain,

	Dein	Kilin	
use x	Ø	Ø	Ø
x = &a	{x}	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{ X }	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other			

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{cases}$$

Values defined in terms of Air Strong update using must-points-to information computed from Ain, Killn Def,

		• • • • • • • • • • • • • • • • • • • •	
use x	Ø	Ø	Ø
x = &a	{x}	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{ X }	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other			

$$Must(R) = \bigcup_{z \in P} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{cases}$$

Find out must-pointees of all pointers

IIT Bomba

Values defined in terms of Air Strong update using must-points-to information computed from Ain, Killn Def,

use x	Ø	Ø	,\bar{b}
x = &a	{x}	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{ x }	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other			

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} \\ \emptyset \end{cases} & \text{otherwise} \end{cases}$$

$$z \text{ has a single pointee}$$

$$w \text{ in must-points-to}$$

Sep 2017 **IIT Bombay**

relation

Values defined in terms of A:— Strong update using must-points-to information computed from Ain,

	,,		
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{ X }	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other			

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \text{otherwise} \end{cases}$$

$$z \text{ has no pointee}$$

$$z \text{ in must-points-to}$$

Sep 2017

relation

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{ <i>x</i> }	{x}	$A\{y\}$
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other			

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{cases}$$

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other			

$$Must(R) = \bigcup_{P} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{cases}$$

Pointees of y in Ain_n are the targets of defined pointers

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other	Ø	Ø	Ø

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{cases}$$

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{x}	{x}	$A\{y\}$
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other	Ø	Ø	Ø

$$Must(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \begin{cases} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{cases}$$

Values defined in terms of Ain_n (denoted A)

	Def_n	Kill _n	Pointee _n
use x	Ø	Ø	Ø
x = &a	{ <i>x</i> }	{x}	{a}
x = y	{ <i>x</i> }	{x}	$A\{y\}$
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$
other	Ø	Ø	Ø

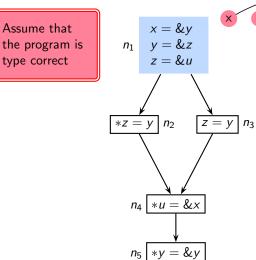
$$\mathit{Must}(R) = \bigcup_{z \in \mathbf{P}} \{z\} \times \left\{ \begin{array}{cc} \{w\} & R\{z\} = \{w\} \land w \neq ? \\ \emptyset & \text{otherwise} \end{array} \right.$$

Assume that the program is type correct

An Example of Flow Sensitive May Points-to Analysis

x = &yy = &zz = &u $*z = y \mid n_2$ $z = y \mid n_3$ $n_4 \mid *u = \&x \mid$

IIT Bombay

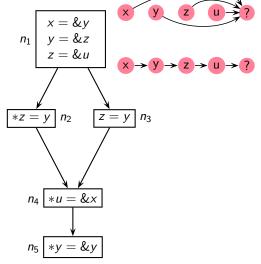


IIT Bombay

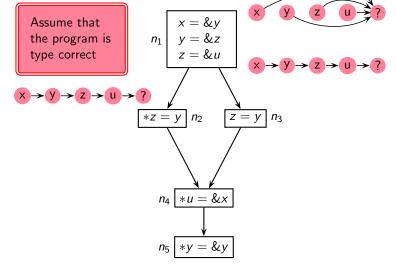
Assume that

type correct

the program is

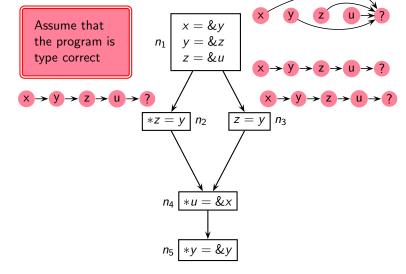


Sep 2017



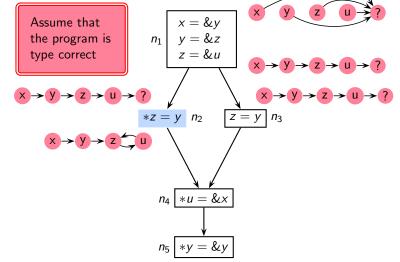
IIT Bombay

An Example of Flow Sensitive May Points-to Analysis

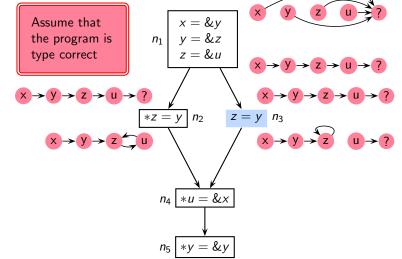


IIT Bombay

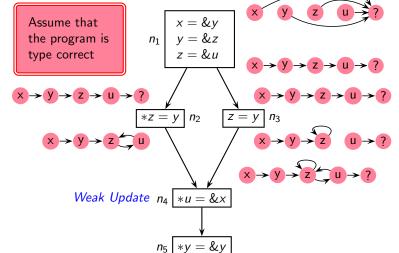
An Example of Flow Sensitive May Points-to Analysis



IIT Bombay

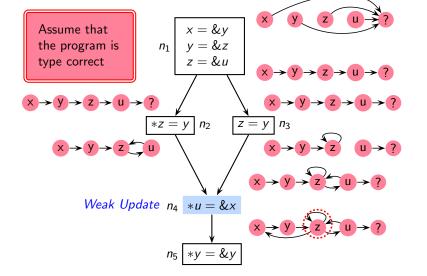


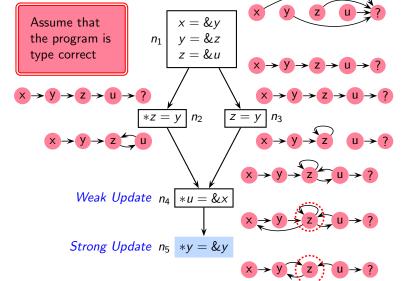
IIT Bombay



IIT Bombay

An Example of Flow Sensitive May Points-to Analysis





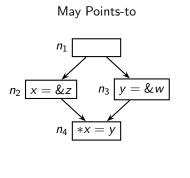
CS 618

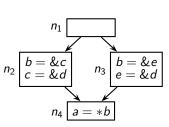
Compute May and Must points-to information

```
if (...)
      p = &x;
p = &y;
else
x = &a;
y = \&b;
*p = \&c;
*y = \&a;
```

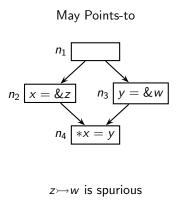
General Frameworks: Pointer Analyses

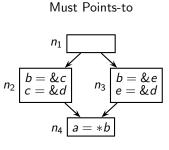
Must Points-to





Non-Distributivity of Points-to Analysis

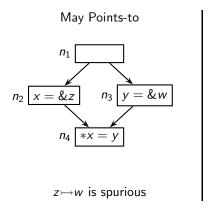


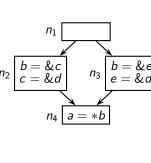


IIT Bombay

Must Points-to

Non-Distributivity of Points-to Analysis





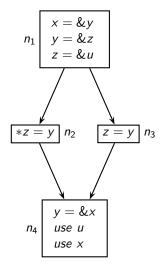
 $a \rightarrow d$ is missing

An Outline of Pointer Analysis Coverage

- The larger perspective
- Comparing Points-to and Alias information
- Flow Insensitive Points-to Analysis
- Flow Sensitive Points-to Analysis
- Pointer Analyses: An Engineer's Landscape Next Topic
- Liveness Based Points-to Analysis
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

IIT Bom

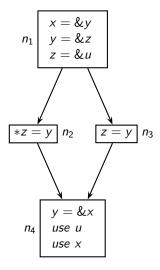
An Example of Flow Insensitive May Points-to Analysis



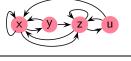
Andersen's Points-to Graph

Steensgaard's Points-to Graph

An Example of Flow Insensitive May Points-to Analysis

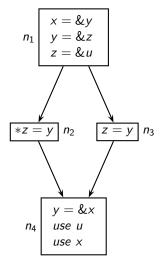


Andersen's Points-to Graph

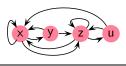


Steensgaard's Points-to Graph

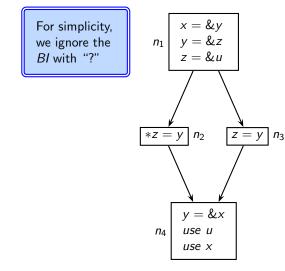
An Example of Flow Insensitive May Points-to Analysis

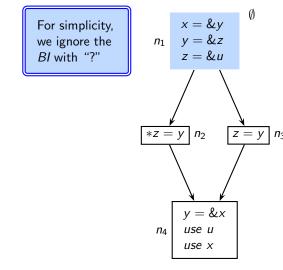


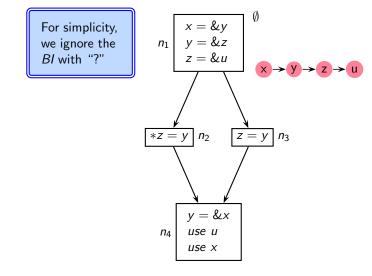
Andersen's Points-to Graph

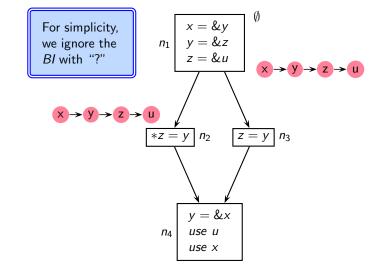


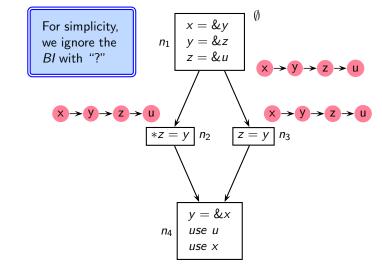
Steensgaard's Points-to Graph

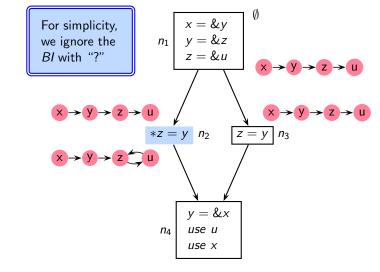




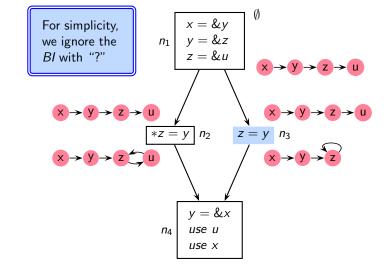




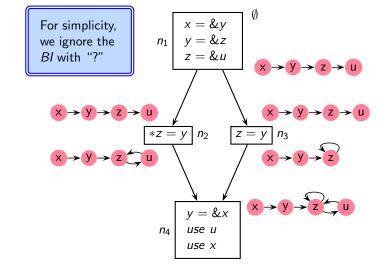




An Example of Flow Sensitive May Points-to Analysis

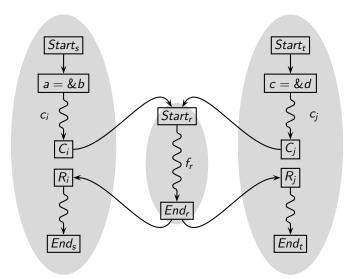


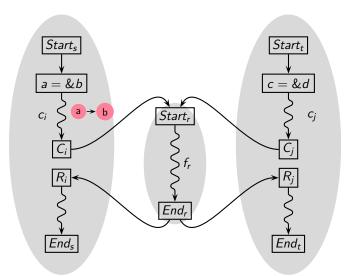
An Example of Flow Sensitive May Points-to Analysis

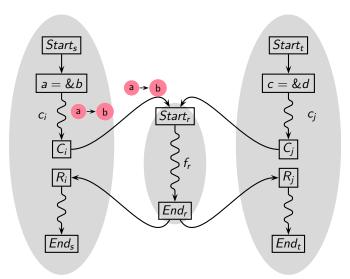


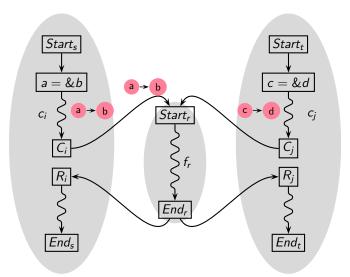
An Example of Flow Sensitive May Points-to Analysis

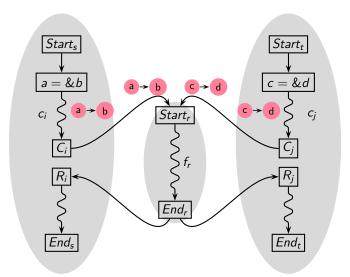


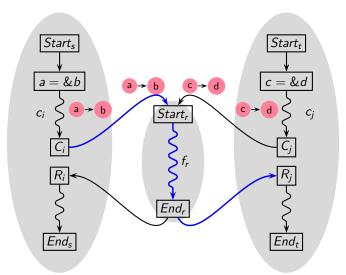


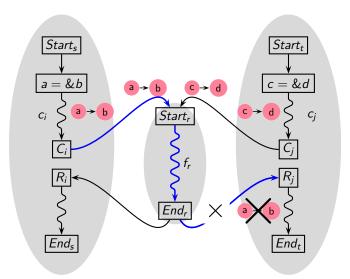


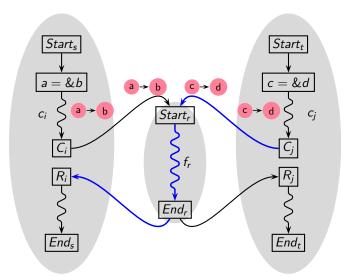


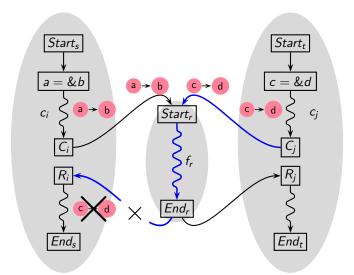


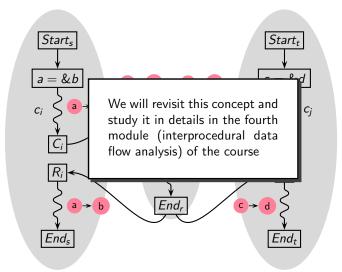


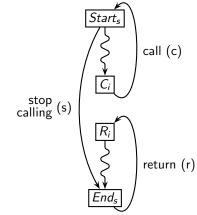












IIT Bombay

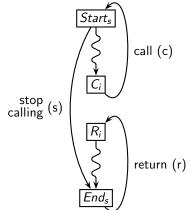
97/178

CS 618

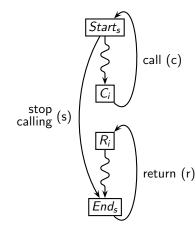
CS 618

Context Sensitivity in the Presence of Recursion

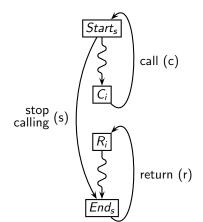
General Frameworks: Pointer Analyses



Paths from Starts to Ends should constitute a context free language cⁿsrⁿ



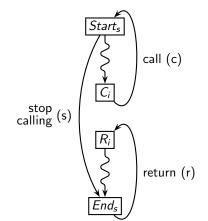
- Paths from Start_s to End_s should constitute a context free language cⁿsrⁿ
- Many interprocedural analyses treat cycle of recursion as an SCC and approximate paths by a regular language c*sr*



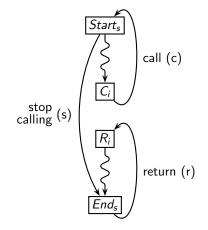
- Paths from Starts to Ends should constitute a context free language cⁿsrⁿ
- Many interprocedural analyses treat cycle of recursion as an SCC and approximate paths by a regular language c^*sr^*
- We do not know any practical points-to analysis that is fully context sensitive Most context sensitive approaches

IIT Bomba

CS 618

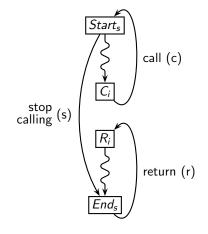


- Paths from Start_s to End_s should constitute a context free language cⁿsrⁿ
- Many interprocedural analyses treat cycle of recursion as an SCC and approximate paths by a regular language c*sr*
- We do not know any practical points-to analysis that is fully context sensitive
 Most context sensitive approaches
 - either do not consider recursion, or



- Paths from Starts to Ends should constitute a context free language cⁿsrⁿ
- Many interprocedural analyses treat cycle of recursion as an SCC and approximate paths by a regular language c^*sr^*
- We do not know any practical points-to analysis that is fully context sensitive Most context sensitive approaches
 - either do not consider recursion, or
 - do not consider recursive pointer manipulation (e.g. " $p = p \rightarrow n$ "), or

IIT Bomba



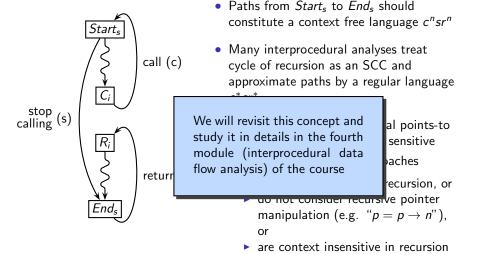
 Paths from Start_s to End_s should constitute a context free language cⁿsrⁿ

Many interprocedural analyses treat

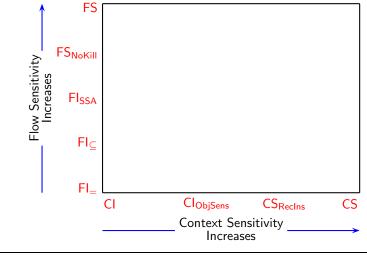
- cycle of recursion as an SCC and approximate paths by a regular language c^*sr^*
- We do not know any practical points-to analysis that is fully context sensitive
 Most context sensitive approaches
 - ▶ either do not consider recursion, or
 - do not consider recursive pointer manipulation (e.g. " $p = p \rightarrow n$ "),
 - or

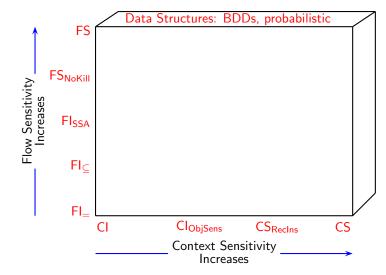
are context insensitive in recursion

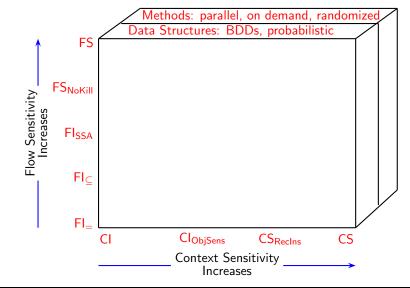
Sep 2017 IIT Bombay



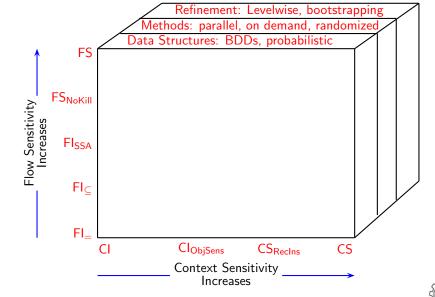
Sep 2017 IIT Bomba

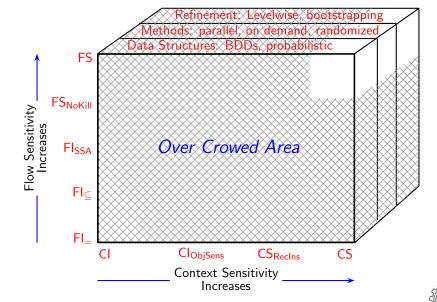


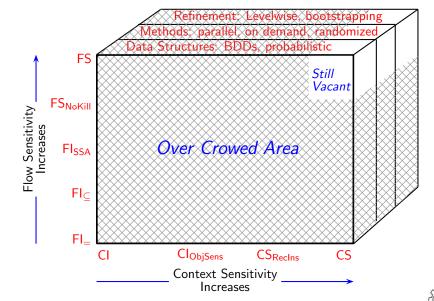


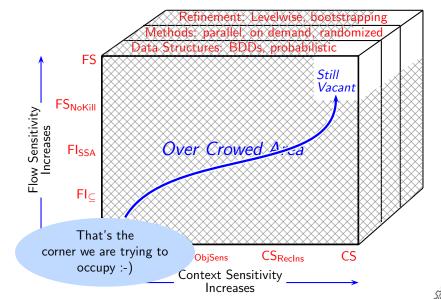


Tomter Analysis. An Engineer's Edituseape







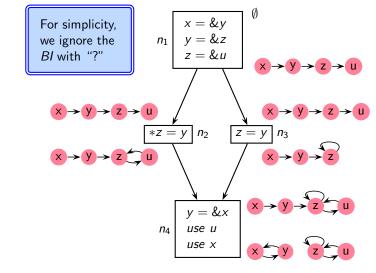


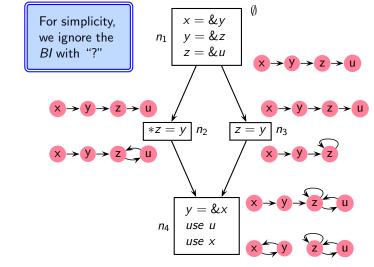
An Outline of Pointer Analysis Coverage

- The larger perspective
- Comparing Points-to and Alias information
- Flow Insensitive Points-to Analysis
- Flow Sensitive Points-to Analysis
- Pointer Analyses: An Engineer's Landscape
- Liveness Based Points-to Analysis Next Topic
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

IIT Bom

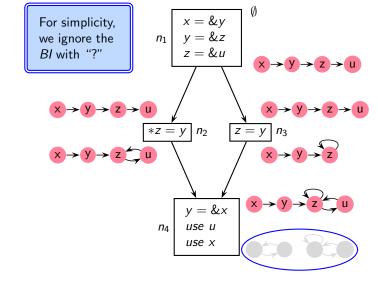
Our Motivating Example for FCPA

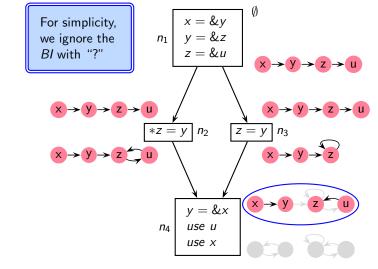


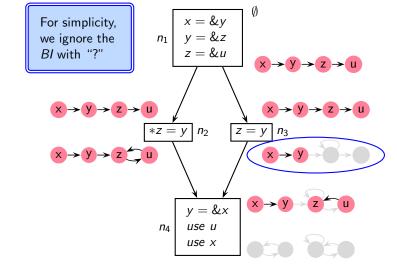


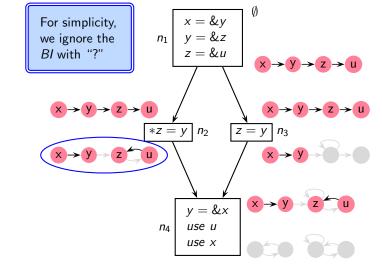
101/178

CS 618

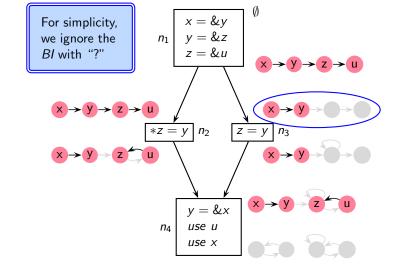








Is All This Information Useful?



General Frameworks: Pointer Analyses

Mutual dependence of liveness and points-to information

- Define points-to information only for live pointers
- For pointer indirections, define liveness information using points-to information

102/178

The Fana C of Er Cr A

- Use call strings method for full flow and context sensitivity
- Use value contexts for efficient interprocedural analysis
 [Khedker-Karkare-CC-2008, Padhye-Khedker-SOAP-2013]

IIT Bombay

General Frameworks: Pointer Analyses

Use of Strong Liveness

- Simple liveness considers every use of a variable as useful
- Strong liveness checks the liveness of the result before declaring the operands to be live

104/178

General Frameworks: Pointer Analyses

- Simple liveness considers every use of a variable as useful
- Strong liveness checks the liveness of the result before declaring the operands to be live
- Strong liveness is more precise than simple liveness

104/178

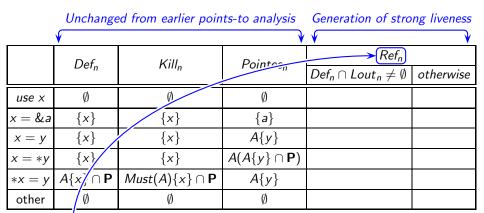
Generation of strong liveness

Ref_n Def_n Killn Pointee_n $Def_n \cap Lout_n \neq \emptyset$ otherwise Ø Ø use x x = &a $\{x\}$ $\{x\}$ {a} $A{y}$ $\{x\}$ $\{x\}$ x = y $A(A\{y\} \cap \mathbf{P})$ x = *y $\{x\}$ $\{x\}$ $Must(A)\{x\} \cap \mathbf{P}$ *x = y $A\{x\} \cap \mathbf{P}$ $A\{y\}$ other Ø Ø

- Lin/Lout: set of Live pointers, Ain/Aout: sets of mAy points-to pairs
- Ref_n, Kill_n, Def_n, and Pointee_n are defined in terms of Ain_n

Unchanged from earlier points-to analysis

105/178



Pointers that become live

	Unchange	ed from earlier poin	ts-to analysis	Generation of strong liveness
	V		V	
	Def_n	Kill _n	Pointee _n	Ref _n
	Dein			$igl(Def_{n} \cap Lout_{n} eq \emptyset igr)$ otherwise
use x	Ø	Ø	Ø)
x = &a	{x}	{x}	{a}	
x = y	{x}	{x}	$A\{y\}$	
x = *y	{x}	{x}	$A(A\{y\} \cap \mathbf{P})$	
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$	
other	Ø	Ф	<u>/</u>	

Defined pointers must be live at the exit for the read pointers to become live

105/178

	Unchange	ed from earlier poin	ts-to analysis	Generation of strong liveness
	V		V	
	Def_n	Kill _n	Pointee _n	Ref _n
				$Def_n \cap Lout_n \neq \emptyset$ otherwise
use x	Ø	Ø	Ø	
x = &a	{x}	{x}	{a}	
x = y	{ <i>x</i> }	{x}	$A\{y\}$	
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$	
other	Ø	Ø	Ø	

Some pointers are unconditionally live

	Unchanged from earlier points-to analysis			Generation of stro	ng liveness
	V		V	•	
	Def_n	Kill _n	Pointee _n	Ref _n	
	Dein	KIII _n		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	({x})	$\{x\}$
x = &a	{x}	{x}	{a}	1	1
x = y	{ <i>x</i> }	{x}	$A\{y\}$		
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$		
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$		
other	Ø	Ø	Ø		

Sep 2017

x is unconditionally live

	Unchange	ed from earlier poin	ts-to analysis	Generation of stro	ng liveness
	V		¥	V	V
	Def_n	Kill _n	Pointee _n -	Ref_n	
	Dein	Kiiin		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{ <i>x</i> }
x = &a	{ <i>x</i> }	{x}	{a}	Ø	Ø
x = y	{ <i>x</i> }	{x}	$A\{y\}$		
x = *y	{ <i>x</i> }	{x}	$A(A\{y\}\cap \mathbf{P})$		
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$		

Ø

other

Ø

Ø

	Unchange	ed from earlier poin	ts-to analysis	Generation of stro	ng liveness
	V		¥	V	¥
	Def_n	Kill _n	Pointee _n	Ref_n	
	Dein	Kilin		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{ <i>x</i> }
x = &a	{ <i>x</i> }	{x}	{a}	Ø	Ø
x = y	{x}	{x}	$A\{y\}$	(<i>y</i>)	
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	^	
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$		
other	Ø	Ø	Ø		

y is live if defined pointers are live

	Unchange	ed from earlier poin	ts-to analysis	Generation of stro	ng liveness
	V		V	Y	
	Def _n	Kill _n	Pointee _n -	Ref_n	
	Dein	KIII _n		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{x}
x = &a	{x}	{x}	{a}	Ø	Ø
x = y	{x}	{x}	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$		
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$		

other

 \emptyset

Ø

	Unchange	ed from earlier poin	ts-to analysis	Generation of stro	ng liveness
	V		¥	V	Y
	Def_n	Kill _n	Pointee _n -	Ref_n	
	Dein	IXIIIn		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{x}
x = &a	{ <i>x</i> }	{x}	{a}	Ø	Ø
x = y	{ <i>x</i> }	{x}	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$	<u> </u>	
other	Ø	Ø	Ø		

y and its pointees in Ain_n are live if defined pointers are live

	Unchange	ed from earlier poin	ts-to analysis	Generation of stro	ng liveness
	V		V	V	
	Def_n	Kill _n	Pointee _n	Ref _n	
	Dein	KIIIn		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{ <i>x</i> }
x = &a	{x}	{x}	{a}	Ø	Ø
x = y	{x}	{x}	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	Ø
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$		
other	Ø	Ø	Ø		

	Unchange	ed from earlier poin	Generation of stro	ng liveness	
	V		Y	V	•
	Def_n	Kill _n	Pointee _n	Ref _n	
	Dein	Kilin	1 Officee _n	$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{x}
x = &a	{ <i>x</i> }	{x}	{a}	Ø	Ø
x = y	{ <i>x</i> }	{x}	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	Ø
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$	\rightarrow $\{x,y\}$	
other	Ø	Ø	0		

y is live if defined pointers are live

	Unchanged from earlier points-to analysis			Generation of stro	ng liveness
	V		¥	V	7
	Def _n Kill _n		Pointos	Ref _n	
	Def _n	KIII _n	Pointee _n	$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{x}
x = &a	{x}	{x}	{a}	Ø	Ø
x = y	{x}	{x}	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	Ø
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$	$\{x,y\}$	$\{x\}$
other	Ø	Ø	Ø	1	<u> </u>

x is unconditionally live

	Unchange	ed from earlier poin	ts-to analysis	Generation of stro	ng liveness
	V		¥	V	Y
	Def_n	Kill _n	Pointee _n	Ref_n	
	Dein	Kilin		$Def_n \cap Lout_n \neq \emptyset$	otherwise
use x	Ø	Ø	Ø	{x}	{ <i>x</i> }
x = &a	{ <i>x</i> }	{x}	{a}	Ø	Ø
x = y	{x}	{x}	$A\{y\}$	{ <i>y</i> }	Ø
x = *y	{x}	{x}	$A(A\{y\}\cap \mathbf{P})$	$\{y\} \cup A\{y\} \cap \mathbf{P}$	Ø
*x = y	$A\{x\} \cap \mathbf{P}$	$Must(A)\{x\} \cap \mathbf{P}$	$A\{y\}$	{ <i>x</i> , <i>y</i> }	{x}
other	Ø	Ø	Ø	Ø	Ø

CS 618

Deriving Must Points-to for LFCPA

For *x = y, unless the pointees of x are known

- points-to propagation should be blocked
- liveness propagation should be blocked

to ensure monotonicity

$$Must(R) = \bigcup_{x \in \mathbf{P}} \{x\} \times \begin{cases} & \mathbb{V}ar \quad R\{x\} = \emptyset \lor R\{x\} = \{?\} \\ & \{y\} \quad R\{x\} = \{y\} \land y \neq ? \\ & \emptyset \quad \text{otherwise} \end{cases}$$

IIT Bombay

106/178

 $Lout_n = \begin{cases} \emptyset & n \text{ is } End_p \\ \bigcup_{s \in succ(n)} Lin_s & \text{otherwise} \end{cases}$

 $Lin_n = \left(Lout_n - Kill_n\right) \cup Ref_n$

107/178

$$Ain_n = \begin{cases} Lin_n \times \{?\} & n \text{ is } Start_p \\ \left(\bigcup_{p \in pred(n)} Aout_p\right) \middle| & \text{otherwise} \end{cases}$$

$$Aout_n = \left(\left(Ain_n - \left(Kill_n \times \mathbb{V}ar\right)\right) \cup \left(Def_n \times Pointee_n\right)\right) \middle| & Lout_n \end{cases}$$

$$Lin/Lout: \text{ set of Live pointers}$$

$$Ain/Aout: \text{ definitions remain unchanged except for restriction to liveness}$$

Sep 2017 IIT Bomba

Kill_n defined

107/178

$$Ain_n = \left\{ egin{array}{ll} Lin_n imes \{?\} & n ext{ is } Start_p \\ \left(igcup_{p \in pred(n)} Aout_p
ight) \middle| & \text{otherwise} \\ Lin_n & \text{otherwise} \end{array} \right.$$
 $Aout_n = \left(\left(Ain_n - \left(Kill_n imes \mathbb{V}ar \right) \right) \cup \left(Def_n imes Points \right) \right)$
 $Lin/Lout: ext{ set of Live pointers}$

 $Lout_n = \left\{ \bigcup_{s \in succ(n)}^{\emptyset} \underbrace{Lin}_{otherwise} \right.$ $Lin_n = \left(Lout_n - \underbrace{Kill_n} \right) \cup Ref_n$

 $Aout_n = \left(\left(Ain_n - \left(Kill_n \times \mathbb{V}ar\right)\right) \cup \left(Def_n \times Pointee_n\right)\right)\Big|_{Lout_n}$ Lin/Lout: set of Live pointers Ain/Aout: definitions remain unchanged except for restriction to liveness

CS 618

LFCPA Data Flow Equations

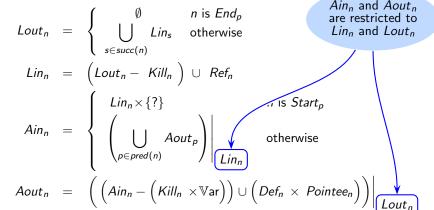
$$Lout_n = \begin{cases} \emptyset & n \text{ is } End_p \\ \bigcup_{s \in succ(n)} Lin_s & \text{otherwise} \end{cases}$$

$$Lin_n = \begin{pmatrix} Lout_n - Kill_n \end{pmatrix} \cup Ref_n & \text{Ref}_n \text{ defined in terms of } Ain_n \\ Ain_n = \begin{cases} Lin_n \times \{?\} & n \text{ is } Start_p \\ \begin{pmatrix} \bigcup_{p \in pred(n)} Aout_p \end{pmatrix} & \text{otherwise} \\ Lin_n \end{cases}$$

$$Aout_n = \begin{pmatrix} \left(Ain_n - \left(Kill_n \times \mathbb{V}ar\right)\right) \cup \left(Def_n \times Pointee_n\right) \end{pmatrix} \begin{vmatrix} Lout_n \\ Lout_n \end{vmatrix}$$

- Lin/Lout: set of Live pointers
- Ain/Aout: definitions remain unchanged except for restriction to liveness

LFCPA Data Flow Equations



Lin/Lout: set of Live pointers

CS 618

Ain/Aout: definitions remain unchanged except for restriction to liveness

Sep 2017

 $Lout_n = \begin{cases} \emptyset & n \text{ is } End_p \\ \bigcup_{s \in succ(n)} Lin_s & \text{otherwise} \end{cases}$

 $Lin_n = \left(Lout_n - Kill_n\right) \cup Ref_n$

BI

restricted to live pointers

n is Start_p

107/178

$$Ain_n = \left\{ \begin{array}{l} Lin_n \times \{?\} \\ \left(\bigcup_{p \in pred(n)} Aout_p \right) \middle| & \text{otherwise} \\ Lin_n \\ Aout_n = \left(\left(Ain_n - \left(Kill_n \times \mathbb{V}ar \right) \right) \cup \left(Def_n \times Pointee_n \right) \right) \middle| & Lout_n \\ Lin/Lout: set of Live pointers \end{array} \right.$$

- Ain/Aout: definitions remain unchanged except for restriction to liveness

 $Lout_n = \begin{cases} \emptyset & n \text{ is } End_p \\ \bigcup_{s \in succ(n)} Lin_s & \text{otherwise} \end{cases}$

 $Lin_n = \left(Lout_n - Kill_n\right) \cup Ref_n$

107/178

$$Ain_n = \begin{cases} Lin_n \times \{?\} & n \text{ is } Start_p \\ \left(\bigcup_{p \in pred(n)} Aout_p\right) \middle| & \text{otherwise} \end{cases}$$

$$Aout_n = \left(\left(Ain_n - \left(Kill_n \times \mathbb{V}ar\right)\right) \cup \left(Def_n \times Pointee_n\right)\right) \middle| & Lout_n \end{cases}$$

$$Lin/Lout: \text{ set of Live pointers}$$

$$Ain/Aout: \text{ definitions remain unchanged except for restriction to liveness}$$

Sep 2017 IIT Bomba

General Frameworks: Pointer Analyses

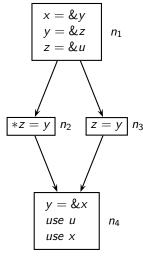
- For convenience, we show complete sweeps of liveness and points-to analysis repeatedly
- This is not required by the computation
- The data flow equations define a single fixed point computation

108/178

CS 618

First Round of Liveness Analysis and Points-to Analysis

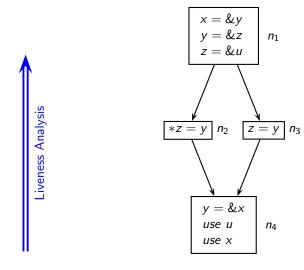
General Frameworks: Pointer Analyses



Sep 2017

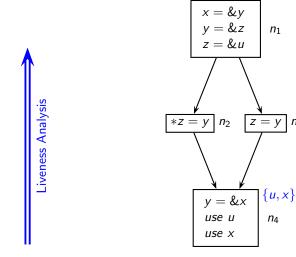
First Round of Liveness Analysis and Points-to Analysis

General Frameworks: Pointer Analyses



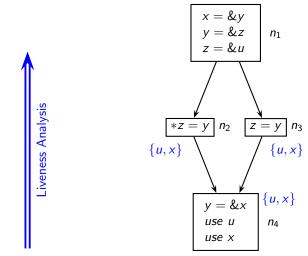
First Round of Liveness Analysis and Points-to Analysis

General Frameworks: Pointer Analyses



First Round of Liveness Analysis and Points-to Analysis

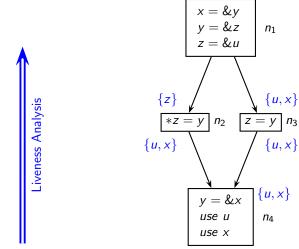
General Frameworks: Pointer Analyses



IIT Bombay

First Round of Liveness Analysis and Points-to Analysis

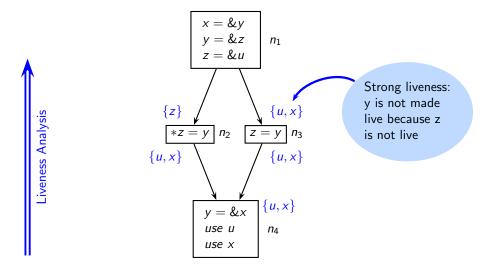
General Frameworks: Pointer Analyses



IIT Bombay

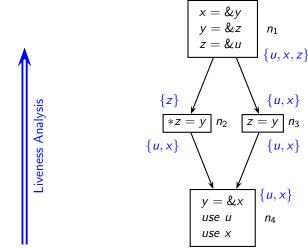
First Round of Liveness Analysis and Points-to Analysis

General Frameworks: Pointer Analyses



First Round of Liveness Analysis and Points-to Analysis

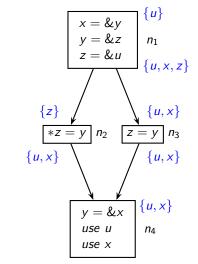
General Frameworks: Pointer Analyses



IIT Bombay

First Round of Liveness Analysis and Points-to Analysis

General Frameworks: Pointer Analyses



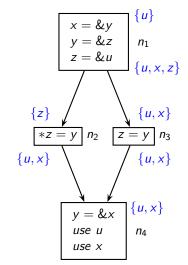
Sep 2017

Liveness Analysis

CS 618

First Round of Liveness Analysis and Points-to Analysis

General Frameworks: Pointer Analyses

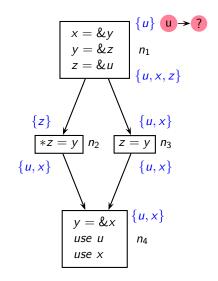


Sep 2017

Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

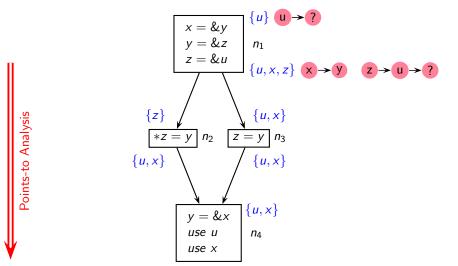
General Frameworks: Pointer Analyses



Sep 2017

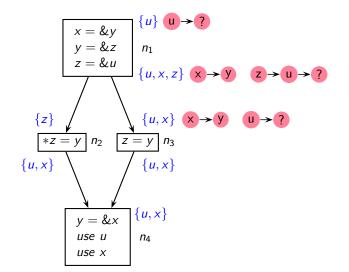
Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis



First Round of Liveness Analysis and Points-to Analysis

General Frameworks: Pointer Analyses



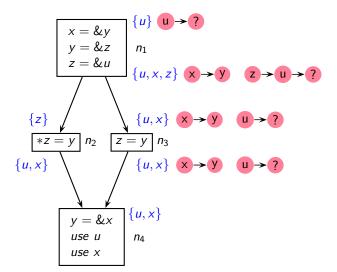
Sep 2017

Points-to Analysis

CS 618

First Round of Liveness Analysis and Points-to Analysis

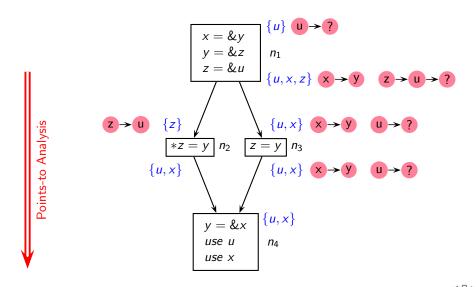
General Frameworks: Pointer Analyses



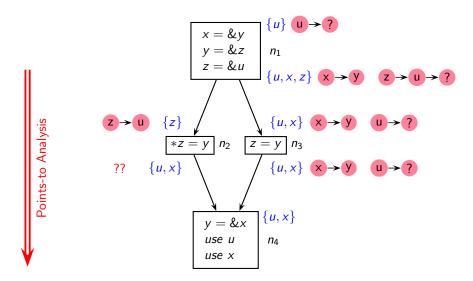
Sep 2017

Points-to Analysis

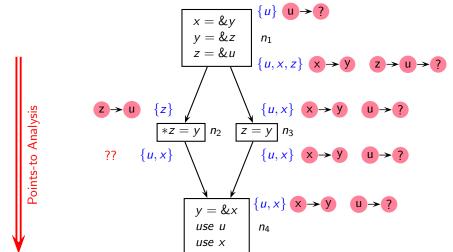
First Round of Liveness Analysis and Points-to Analysis

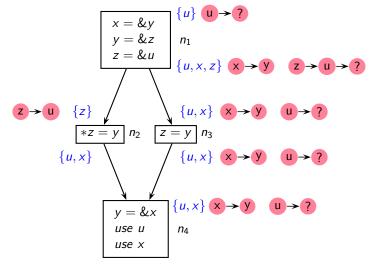


First Round of Liveness Analysis and Points-to Analysis



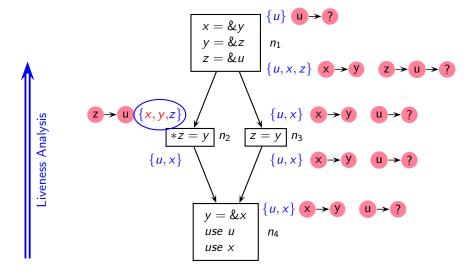
First Round of Liveness Analysis and Points-to Analysis



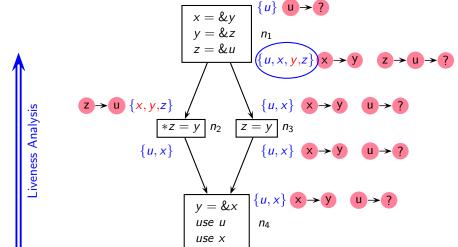


CS 618

CS 618



CS 618



CS 618

110/178

*n*₄

General Frameworks: Pointer Analyses

Second Round of Liveness Analysis and Points-to Analysis

 n_2

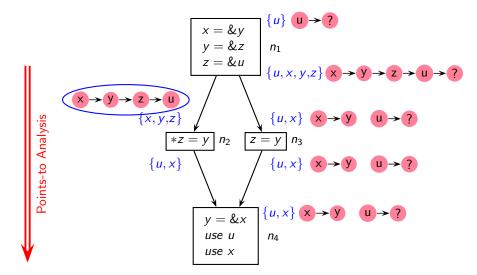
use x

 \rightarrow u $\{x, y, z\}$

 $\{u, x\}$

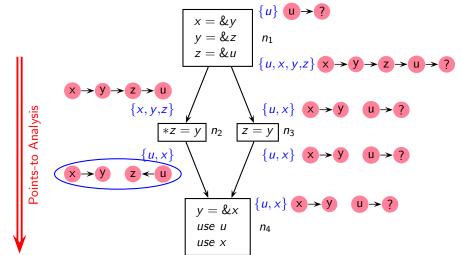
IIT Bombay

Points-to Analysis



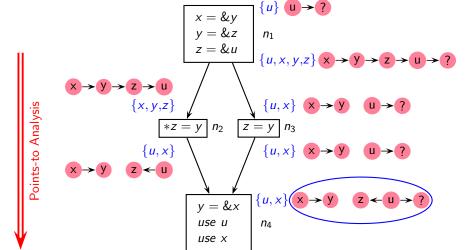
CS 618

Second Round of Liveness Analysis and Points-to Analysis



CS 618

Second Round of Liveness Analysis and Points-to Analysis



LFCPA Implementation

- LTO framework of GCC 4.6.0
- Naive prototype implementation (Points-to sets implemented using linked lists)
- Implemented FCPA without liveness for comparison
- Comparison with GCC's flow and context insensitive method
- SPEC 2006 benchmarks

Analysis Time

	kLoC	Call Sites	Time in milliseconds				
Program			L-FCPA		FCPA	GPTA	
			Liveness	Points-to	TCIA	GI IA	
lbm	0.9	33	0.55	0.52	1.9	5.2	
mcf	1.6	29	1.04	0.62	9.5	3.4	
libquantum	2.6	258	2.0	1.8	5.6	4.8	
bzip2	3.7	233	4.5	4.8	28.1	30.2	
parser	7.7	1123	1.2×10^{3}	145.6	4.3×10^{5}	422.12	
sjeng	10.5	678	858.2	99.0	3.2×10^4	38.1	
hmmer	20.6	1292	90.0	62.9	2.9×10^{5}	246.3	
h264ref	36.0	1992	2.2×10^{5}	2.0×10^{5}	?	4.3×10^{3}	

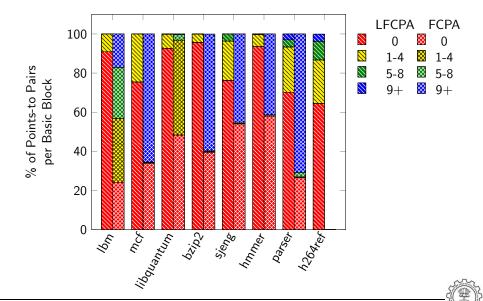
Sep 2017 IIT Bombay

Unique Points-to Pairs

		Call Sites	Unique points-to pairs			
Program	kLoC		L-FCPA	FCPA	GPTA	
lbm	0.9	33	12	507	1911	
mcf	1.6	29	41	367	2159	
libquantum	2.6	258	49	119	2701	
bzip2	3.7	233	60	210	8.8×10^4	
parser	7.7	1123	531	4196	1.9×10^4	
sjeng	10.5	678	267	818	1.1×10^4	
hmmer	20.6	1292	232	5805	1.9×10^{6}	
h264ref	36.0	1992	1683	?	1.6×10^{7}	

IIT Bombay

Points-to Information is Small and Sparse



LFCPA Observations

- Usable pointer information is very small and sparse
- Data flow propagation in real programs seems to involve only a small subset of all possible data flow values
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information

LFCPA Conclusions

- Building quick approximations and compromising on precision may not be necessary for efficiency
- Building clean abstractions to separate the necessary information from redundant information is much more significant

LFCPA Conclusions

- Building quick approximations and compromising on precision may not be necessary for efficiency
- Building clean abstractions to separate the necessary information from redundant information is much more significant

Our experience of points-to analysis shows that

- ▶ Use of liveness reduced the pointer information . . .
- which reduced the number of contexts required . . .
- which reduced the liveness and pointer information . . .

LFCPA Conclusions

- Building quick approximations and compromising on precision may not be necessary for efficiency
- Building clean abstractions to separate the necessary information from redundant information is much more significant

Our experience of points-to analysis shows that

- lackbox Use of liveness reduced the pointer information . . .
- which reduced the number of contexts required . . .
- which reduced the liveness and pointer information . . .
- Approximations should come *after* building abstractions rather than *before*

116/178

exhaustive computation restricted to usable information

computation

incremental computation

computation

demand driven

117/178

IIT Bombay

LFCPA Lessons: The Larger Perspective

Maximum Computation

Minimum Computation

117/178

LFCPA Lessons: The Larger Perspective

117/178

CS 618

Maximum Computation

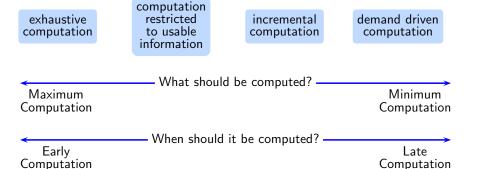
Early Computation

Late Computation

CS 618

LFCFA Lessons. The Larger Ferspective

General Frameworks: Pointer Analyses



exhaustive computation restricted to usable information computation computation

General Frameworks: Pointer Analyses

What should be computed?

Maximum
Computation

When should it be computed?

Early
Computation

Late
Computation

Do not compute what you don't need!

Who defines what is needed?

117/178

exhaustive computation restricted to usable information what should be computed?

What should be computed?

Maximum

Computation incremental computation computation demand driven computation makes and the computation demand driven demand driven computation demand driven driven demand driven d

General Frameworks: Pointer Analyses

LFCPA Lessons: The Larger Perspective

Computation Computation When should it be computed? Early Late Computation Computation Do not compute what you don't need Who defines what is needed? Client

Sep 2017

CS 618

IIT Bombay

LFCPA Lessons: The Larger Perspective computation exhaustive restricted incremental demand driven computation to usable computation computation information What should be computed? Maximum Minimum Computation Computation When should it be computed? Early Late

General Frameworks: Pointer Analyses

Do not compute what you don't need!

Who defines what is needed?

Algorithm, Data Structure

Sep 2017

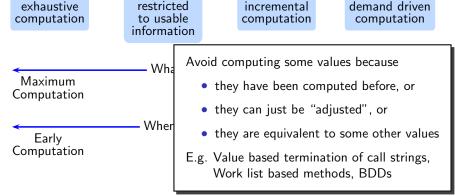
Computation

CS 618

Computation

117/178

computation



Do not compute what you don't need!

CS 618

Algorithm, Data Structure Who defines what is needed?

exhaustive computation restricted to usable information

General Frameworks: Pointer Analyses

Maximum Computation

What should be computed?

Minimum Computation

When should it be computed?

Early Computation

Late Computation

Do not compute what you don't need!

Definition of Analysis

Sep 2017

Who defines what is needed?

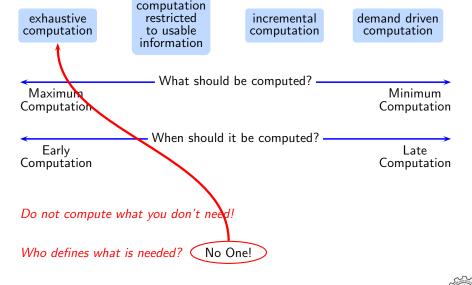
CS 618

IIT Bombay

CS 618 General Frameworks: Pointer Analyses

LFCPA Lessons: The Larger Perspective

Zi Ci A Zessons. The Zuiger i erspective



Sep 2017

IIT Bombay

computation

restricted

to usable

information

What should be computed? Maximum Minimum

incremental

computation

Computation Computation When should it be computed? Early Late Computation Computation Do not compute what you don't need! These seem orthogonal Who defines what is needed? and may be used together

exhaustive

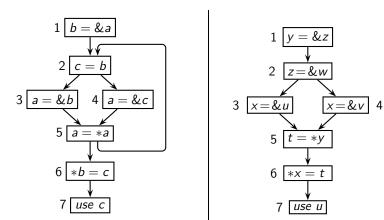
computation

demand driven

computation

Tutorial Problems for FCPA and LFCPA

- Perform may points-to analysis by deriving must info using "?" in BI
- Perform liveness based points-to analysis



IIT Bombay

An Outline of Pointer Analysis Coverage

- The larger perspective
- Comparing Points-to and Alias information
- Flow Insensitive Points-to Analysis
- Flow Sensitive Points-to Analysis
- Pointer Analyses: An Engineer's Landscape
- Liveness Based Points-to Analysis
- Generalizations to Heap, Arrays, Pointer Arithmetic, and Unions

Next Topic

Lattices

120/178

Original LFCPA Formulation

Data flow equations Lin/Lout, Ain/Aout

Extractors for statements

Def, Kill, Ref, Pointee

2^{P×Var}, 2^P
Named locations

Variables Var, Pointers P,

Formulating Generalizations in LFCPA

Data flow equations

Lin/Lout, Ain/Aout

Extractors for statements

Def, Kill Ref, Pointee

Extractors for pointer expressions Ival, rval, deref, ref

Lattices $2^{S \times T}, 2^{S}$

Named locations

Variables Var, Pointers P,

Allocation Sites H, Fields F, pF, npF,

Offsets C

IIT Bomba

122/178

CS 618

Grammar.

$$\alpha := \textit{malloc} \mid \&\beta \mid \beta$$
$$\beta := x \mid \beta.f \mid \beta \to f \mid *\beta$$

where α is a pointer expression, x is a variable, and f is a field

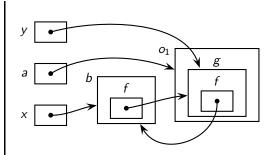
Memory model: Named memory locations. No numeric addresses

$$S = \mathbf{P} \cup H \cup S_p$$
 (source locations)
 $T = \mathbb{V}$ ar $\cup H \cup S_m \cup \{?\}$ (target locations)
 $S_p = R \times npF^* \times pF$ (pointers in structures)
 $S_m = R \times npF^* \times (pF \cup npF)$ (other locations in structures)

Named Locations for Pointer Expressions

```
typedef struct B
  struct B *f;
} sB;
typedef struct A
  struct B g;
} sA;
    sA *a;
    sB *x, *y, b;
1. a = (sA*) malloc
         (sizeof(sA));
2. y = &a->g;
3. b.f = y;
   x = \&b;
5. y.f = &x;
```

6. return x->f->f;



Pointer Expression	l-value	r-value
X	X	Ь
$x \rightarrow f$	b.f	$o_1.g.f$
$x \to f \to f$	$o_1.g.f$	b

General Frameworks: Pointer Analyses

L- and R-values of Pointer Expressions

$$\mathit{Ival}(\alpha, A) = \begin{cases} \{\sigma\} & (\alpha \equiv \sigma) \land (\sigma \in \mathbb{V}\mathsf{ar}) \\ \{\sigma.f \mid \sigma \in \mathit{Ival}(\beta, A)\} & \alpha \equiv \beta.f \\ \{\sigma.f \mid \sigma \in \mathit{rval}(\beta, A), \sigma \neq ?\} & \alpha \equiv \beta \rightarrow f \\ \{\sigma \mid \sigma \in \mathit{rval}(\beta, A), \sigma \neq ?\} & \alpha \equiv *\beta \\ \emptyset & \text{otherwise} \end{cases}$$

$$\mathit{rval}(lpha,A) = egin{cases} \mathit{Ival}(eta,A) & lpha \equiv \η \\ \{o_i\} & lpha \equiv \mathit{malloc} \land o_i = \mathit{get_heap_loc}() \\ A(\mathit{Ival}(lpha,A) \cap S) & \mathsf{otherwise} \end{cases}$$

124/178

CS 618

Denning Extractor Functions

• Pointer assignment statement $lhs_n = rhs_n$

$$\begin{aligned} \textit{Def}_n &= \textit{Ival}(\textit{Ihs}_n, \textit{Ain}_n) \\ \textit{Kill}_n &= \textit{Ival}\left(\textit{Ihs}_n, \textit{Must}(\textit{Ain}_n)\right) \\ \textit{Ref}_n &= \begin{cases} \textit{deref}\left(\textit{Ihs}_n, \textit{Ain}_n\right) & \textit{Def}_n \cap \textit{Lout}_n = \emptyset \\ \textit{deref}\left(\textit{Ihs}_n, \textit{Ain}_n\right) \cup \textit{ref}\left(\textit{rhs}_n, \textit{Ain}_n\right) & \text{otherwise} \end{cases} \\ \textit{Pointee}_n &= \textit{rval}\left(\textit{rhs}_n, \textit{Ain}_n\right) \end{aligned}$$

• Use α statement

$$egin{aligned} extit{Def}_n &= \mathsf{Kill}_n &= extit{Pointee}_n &= \emptyset \ extit{Ref}_n &= extit{ref}\left(lpha, extit{Ain}_n
ight) \end{aligned}$$

Any other statement

$$Def_n = Kill_n = Ref_n = Pointee_n = \emptyset$$

CS 618

Extensions for Handling Arrays and Pointer Arithmetic

Grammar.

$$\alpha := malloc \mid \&\beta \mid \beta \mid \&\beta + e$$
$$\beta := x \mid \beta.f \mid \beta \to f \mid *\beta \mid \beta[e] \mid \beta + e$$

- Memory model: Named memory locations. No numeric addresses
 - No address calculation
 - ▶ R-values of index expressions retained for each dimension If rval(x) = 10, then lval(a.f[5][2 + x].g) = a.f.5.12.g
 - Sizes of the array elements ignored

$$\begin{array}{ll} S &= \mathbf{P} \ \cup \ H \ \cup \ G_p \\ T &= \mathbb{V}\text{ar} \ \cup \ H \ \cup \ G_m \ \cup \ \{?\} \\ G_p &= R \times (C \cup npF)^* \times (C \cup pF) \\ G_m &= R \times (C \cup npF)^* \times (C \cup pF \cup npF) \end{array} \qquad \begin{array}{ll} \text{(source locations)} \\ \text{(pointers in aggregates)} \\ \text{(locations in aggregates)} \end{array}$$

127/178

CS 618

Arithmetic

- Pointer arithmetic does not have an I-value
- For handling arrays
 - evaluate index expressions using evale and accumulate offsets
 - if e cannot be evaluated at compile time, $evale = \bot_{eval}$ (i.e. array accesses in that dimension are treated as index-insensitive)

$$\mathit{Ival}(\alpha,A) = \begin{cases} \{\sigma\} & (\alpha \equiv \sigma) \land (\sigma \in \mathbb{V}ar) \\ \{\sigma.f \mid \sigma \in \mathit{Ival}(\beta,A)\} & \alpha \equiv \beta.f \\ \{\sigma.f \mid \sigma \in \mathit{rval}(\beta,A), \sigma \neq ?\} & \alpha \equiv \beta \rightarrow f \\ \{\sigma \mid \sigma \in \mathit{rval}(\beta,A), \sigma \neq ?\} & \alpha \equiv *\beta \\ \{\sigma.\mathit{evale} \mid \sigma \in \mathit{Ival}(\beta,A)\} & \alpha \equiv \beta[e] \\ \emptyset & \text{otherwise} \end{cases}$$

General Frameworks: Pointer Analyses

For handling pointer arithmetic

- If the r-value of the pointer is an array location, add evale to the offset
- Otherwise, over-approximate the pointees to all possible locations

$$\mathit{rval}(\alpha, A) = \begin{cases} \mathit{lval}(\beta, A) & \alpha \equiv \&\beta \\ \{o_i\} & \alpha \equiv \mathit{malloc} \land o_i = \mathit{get_heap_loc}() \\ T & (\alpha \equiv \beta + e) \land \\ (\exists \sigma \in \mathit{rval}(\beta, A), \sigma \not\equiv \sigma'.c, \sigma' \in T, c \in C) \\ \bigcup \left\{ \sigma.(c + \mathit{evale}) \right\} & (\alpha \equiv \beta + e) \land \\ (\sigma.c \in \mathit{rval}(\beta, A)) \land (c \in C) \\ A(\mathit{lval}(\alpha, A) \cap S) & \mathsf{otherwise} \end{cases}$$

Sep 2017

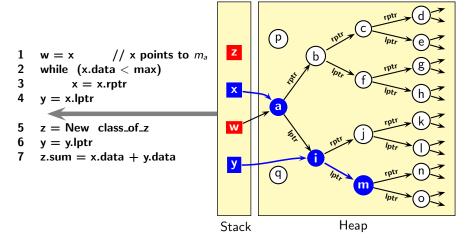
CS 618

Part 6

Heap Reference Analysis

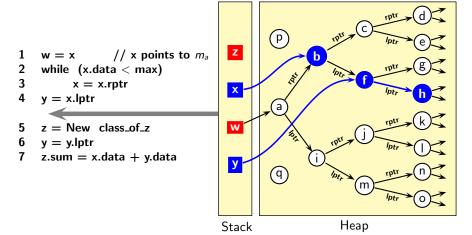
Motivating Example for Heap Liveness Analysis

If the while loop is not executed even once.



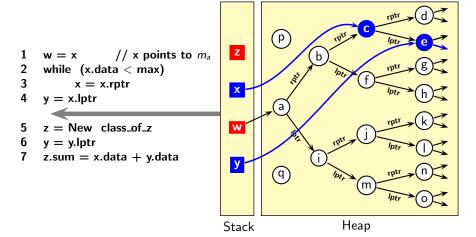
Motivating Example for Heap Liveness Analysis

If the while loop is executed once.



Motivating Example for Heap Liveness Analysis

If the while loop is executed twice.



CS 618

130/178

- Mappings between access expressions and I-values keep changing
- This is a rule for heap data
 For stack and static data, it is an exception!
- Static analysis of programs has made significant progress for stack and static data.

What about heap data?

- ► Given two access expressions at a program point, do they have the same I-value?
- Given the same access expression at two program points, does it have the same I-value?

w = null

x.lptr = null

General Frameworks: Heap Reference Analysis

```
while (x.data < max)
```

x = x.rptr

3

y = x.lptr

y = y.lptr

 $z = New class_of_z$

z.sum = x.data + y.data

z.lptr = z.rptr = null

y.lptr = y.rptr = null

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

x = y = z = null

131/178

CS 618

```
y = z = null
```

 $1 \quad w = x$

w = null

2 while (x.data < max)

 $\{ x.lptr = null \}$

 $3 \qquad x = x.rptr$

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null

 $x.\mathsf{lptr}.\mathsf{lptr}.\mathsf{rptr} = \mathsf{null}$

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

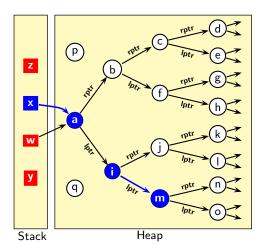
 $5 z = New class_of_z$

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = null



```
y = z = null
```

 $1 \quad w = x$

3

w = null

2 while (x.data < max)

 $\{$ x.lptr = null

x = x.rptr

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

5 z = New class_of_z

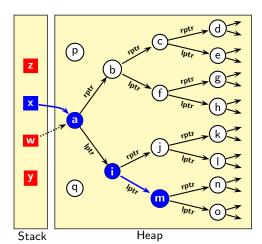
 $\mathsf{z}.\mathsf{lptr} = \mathsf{z}.\mathsf{rptr} = \mathsf{null}$

y = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null



```
y = z = null
```

w = x

w = null

while (x.data < max)

x.lptr = null

3 x = x.rptr

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

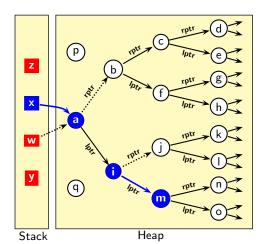
z.lptr = z.rptr = null

y = y.lptry.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

While loop is not executed even once



```
y = z = null
```

1 w = x

3

w = null

2 while (x.data < max)

 $\{ x.lptr = null \}$

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

 $4 \quad y = x.lptr$

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null 5 z = New class_of_z

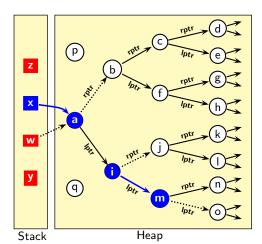
z.lptr = z.rptr = null

y = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null



y = z = null

w = x

w = null

while (x.data < max)

 $\{$ x.lptr = null

x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

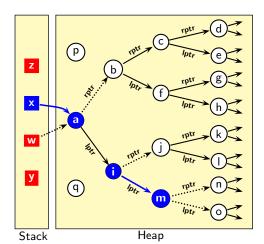
5 $z = New class_of_z$

 $\mathsf{z}.\mathsf{lptr} = \mathsf{z}.\mathsf{rptr} = \mathsf{null}$

6 y = y.lptr

y.lptr = y.rptr = null z.sum = x.data + y.data

x = y = z = null



```
y = z = null
```

1 w = x

w = null

2 while (x.data < max)

 $\{ x.lptr = null \}$

3 x = x.rptr }

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

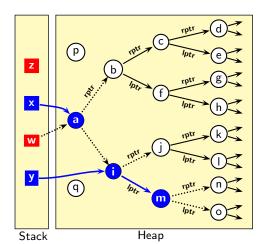
5 $z = New class_of_z$

 $\mathsf{z}.\mathsf{lptr} = \mathsf{z}.\mathsf{rptr} = \mathsf{null}$

5 y = y.lptr y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null



y = z = null

 $1 \quad w = x$

w = null

2 while (x.data < max)

 $\{$ x.lptr = null

3 x = x.rptr

x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null

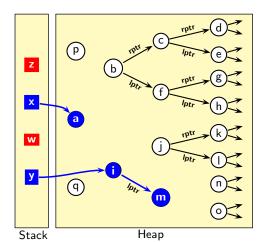
 $z = New class_of_z$

 $\mathsf{z}.\mathsf{lptr} = \mathsf{z}.\mathsf{rptr} = \mathsf{null}$

6 y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

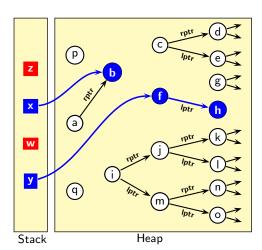
x = y = z = null



```
y = z = null
```

- 1 w = x
 - w = null
- 2 while (x.data < max)
- $\{$ x.lptr = null
- 3 x = x.rptr
- x.rptr = x.lptr.rptr = null x.lptr.lptr.lptr = null x.lptr.lptr.rptr = null
- 4 y = x.lptr
 - x.lptr = y.rptr = null y.lptr.lptr = y.lptr.rptr = null
- $5 z = New class_of_z$
 - $\mathsf{z}.\mathsf{lptr} = \mathsf{z}.\mathsf{rptr} = \mathsf{null}$
- 6 y = y.lptr
 - y.lptr = y.rptr = null
- 7 z.sum = x.data + y.data
 - x = y = z = null

While loop is executed once



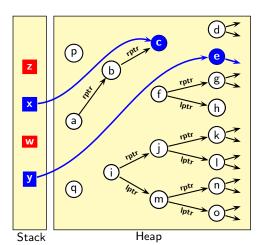
132/178

Our Solution

y = z = null

- w = x
 - w = null
- while (x.data < max)
- x.lptr = null
- 3 x = x.rptr
- x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null
- 4 y = x.lptr
 - x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null
- 5 $z = New class_of_z$
 - z.lptr = z.rptr = null
- y = y.lptr
 - y.lptr = y.rptr = nullz.sum = x.data + y.data
 - x = y = z = null

While loop is executed twice



```
y = z = null
w = x
w = null
while (x.data < max)
```

x.lptr = null3

x = x.rptrx.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

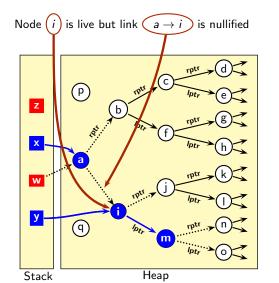
5 $z = New class_of_z$

z.lptr = z.rptr = null

y = y.lptry.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null



```
w = x
```

w = null

while (x.data < max)

y = z = null

x.lptr = null

3 x = x.rptrx.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptrx.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

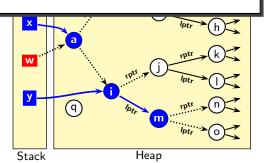
5 $z = New class_of_z$ z.lptr = z.rptr = null

y = y.lptry.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

The memory address that x holds when the execution reaches a given program point is not an invariant of program execution



- y = z = nullw = x
- w = null
- while (x.data < max)

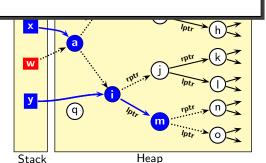
x.lptr = null

3 x = x.rptr

> x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

- 4 y = x.lptr
 - x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null
- 5 $z = New class_of_z$ z.lptr = z.rptr = null
- y = y.lptry.lptr = y.rptr = null
 - z.sum = x.data + y.data
 - x = y = z = null

- The memory address that x holds when the execution reaches a given program point is not an invariant of program execution
- Whether we dereference lptr out of x or rptr out of x at a given program point is an invariant of program execution



```
y = z = null
```

w = x

w = null

while (x.data < max)

x.lptr = null3

x = x.rptrx.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

5 $z = New class_of_z$

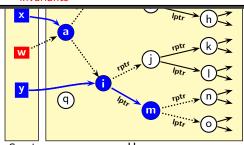
z.lptr = z.rptr = nully = y.lptr

y.lptr = y.rptr = null

z.sum = x.data + y.data

x = y = z = null

- The memory address that x holds when the execution reaches a given program point is not an invariant of program execution
- Whether we dereference lptr out of x or rptr out of x at a given program point is an invariant of program execution
- A static analysis can discover only invariants



Stack Heap

y = z = null

w = x

3

w = null

while (x.data < max)

x.lptr = null

x = x.rptrx.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

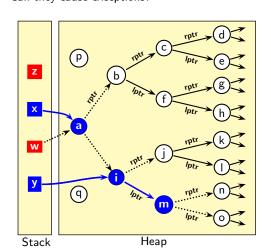
5 $z = New class_of_z$ z.lptr = z.rptr = null

y = y.lptr

y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = null

New access expressions are created. Can they cause exceptions?



134/178

- A reference (called a *link*) can be represented by an *access path*.
 - Eg. " $x \rightarrow lptr \rightarrow rptr$ "
- A link may be accessed in multiple ways
- Setting links to null
 - Alias Analysis. Identify all possible ways of accessing a link
 - Liveness Analysis. For each program point, identify "dead" links (i.e. links which are not accessed after that program point)
 - ► Availability and Anticipability Analyses. Dead links should be reachable for making null assignment.
 - ► Code Transformation. Set "dead" links to null

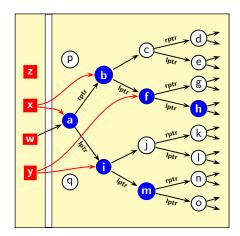
CS 618

CS 618

For simplicity of exposition

- Java model of heap access
 - ▶ Root variables are on stack and represent references to memory in heap.
 - ▶ Root variables cannot be pointed to by any reference.
- Simple extensions for C++
 - Root variables can be pointed to by other pointers.
 - Pointer arithmetic is not handled.

Key Idea #1: Access Paths Denote Links

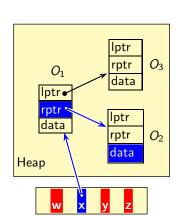


- Root variables: x, y, z
- Field names : rptr, lptr
- Access path : x→rptr→lptr Semantically, sequence of "links"
- Frontier: name of the last link
- Live access path: If the link corresponding to its frontier is used in future

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for accessing the contents of the corresponding target object:

Example	Objects read	Live access paths
sum = x.rptr.data	x, O_1, O_2	$x, x \rightarrow rptr$
if $(x.rptr.data < sum)$	x, O_1, O_2	$x, x \rightarrow rptr$



Stack

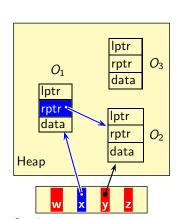
137/178

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the corresponding target object:

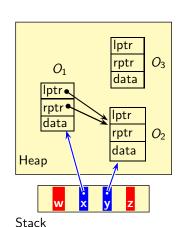
Example	Objects read	Live access paths
y = x.rptr	x, O_1	x, x.rptr



Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the corresponding target object:

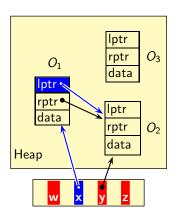
Example	Objects read	Live access paths
y = x.rptr	x, O_1	x, x.rptr
x.lptr = y	x, O_1, y	x, y



Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the corresponding target object:

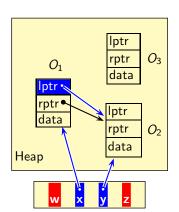
Example	Objects read	Live access paths
if $(x.lptr == null)$	x, O_1	$x, x \rightarrow lptr$



Assuming that a statement must be executed, if nullifying a link read in the statement can change the semantics of the program, then the link is live.

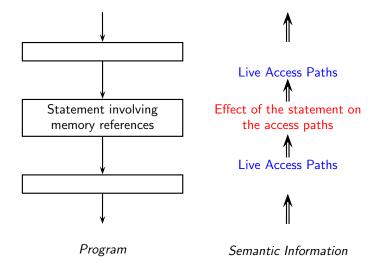
Reading a link for comparing the address of the corresponding target object:

Example	Objects read	Live access paths
if $(x.lptr == null)$	x, O_1	$x, x \rightarrow lptr$
if $(y == x.lptr)$	x, O_1, y	$x, x \rightarrow lptr, y$

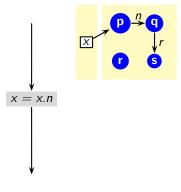


General Frameworks: Heap Reference Analysis

CS 618



Rey lice #2. Transfer of Access Faths



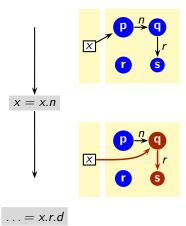
139/178

reg raca #2 . Transfer of Access Facilis



139/178

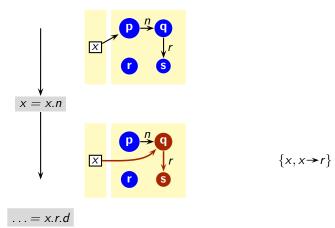
Rey lited #2. Hallster of Access I atils



139/178

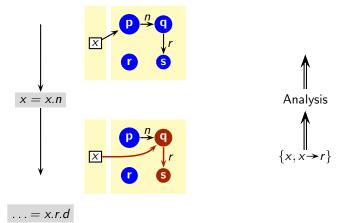
"

General Frameworks: Heap Reference Analysis



139/178

Rey Idea #2. Hansier of Access Faths



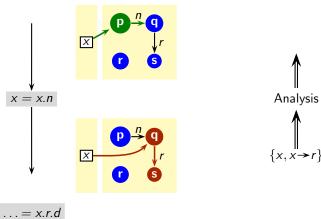
139/178

r}

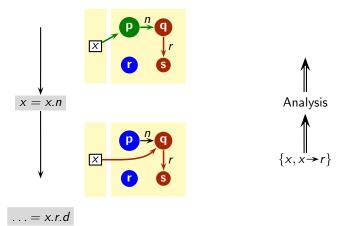
139/178

reg raca #2 : Transfer of recess racins

General Frameworks: Heap Reference Analysis

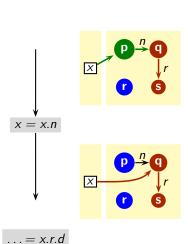


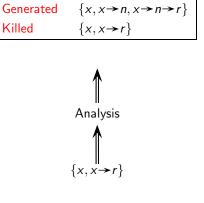
Rey lued #2: Transfer of Access Paths



139/178

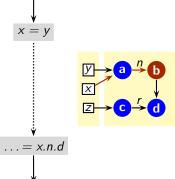
Key Idea #2: Transfer of Access Paths





x after the assignment is same as $x \rightarrow n$ before the assignment

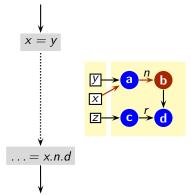
Key Idea #3: Liveness Closure Under Link Aliasing



140/178

They ruck #5. Elveriess closure officer Ellik Allasing

General Frameworks: Heap Reference Analysis



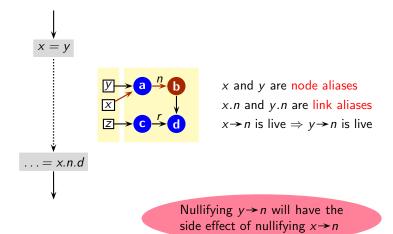
x and y are node aliases

x.n and y.n are link aliases $x \rightarrow n$ is live $\Rightarrow y \rightarrow n$ is live

140/178

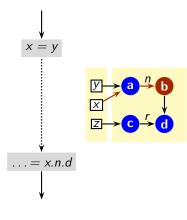
Rey luca #5 : Liveness Closure Officer Link Allasing

General Frameworks: Heap Reference Analysis



IIT Bombay

140/178



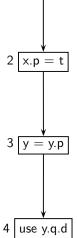
 $x \rightarrow n$ is live $\Rightarrow y \rightarrow n$ is live

 $y \rightarrow n$ is implicitly live $x \rightarrow n$ is explicitly live

IIT Bombay

141/178

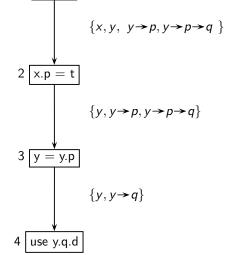
Key Idea #4: Aliasing is Required with Explicit Liveness



IIT Bombay

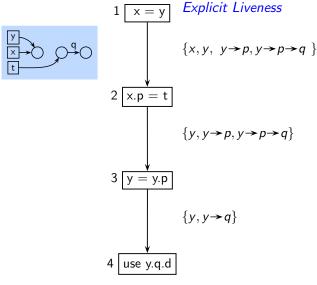
142/178

Key Idea #4: Aliasing is Required with Explicit Liveness



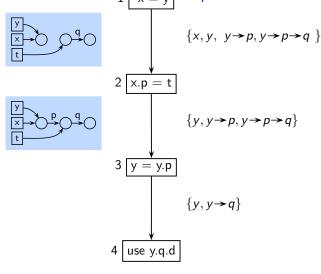
142/178

Key Idea #4: Aliasing is Required with Explicit Liveness



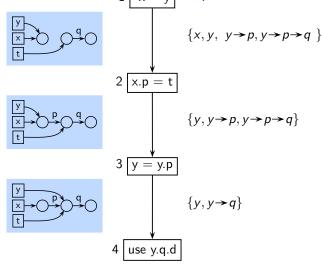
142/178

Key Idea #4: Aliasing is Required with Explicit Liveness



142/178

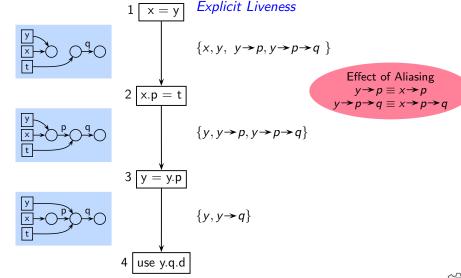
Key Idea #4: Aliasing is Required with Explicit Liveness



142/178

Furlish Liverses

General Frameworks: Heap Reference Analysis



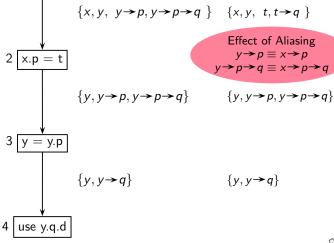
Sep 2017

CS 618

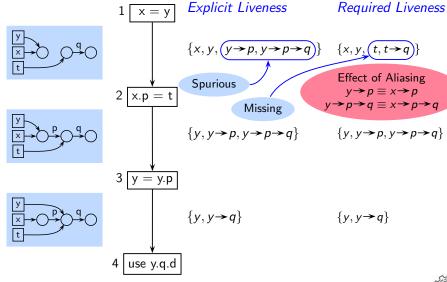
Key Idea #4: Aliasing is Required with Explicit Liveness

IIT Bombay

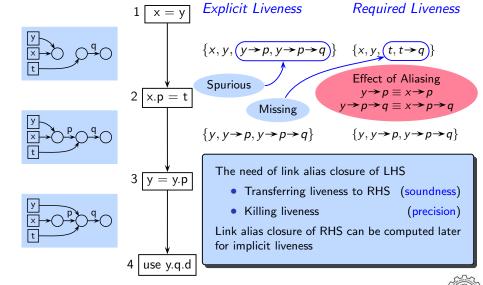
142/178



Sep 2017



CS 618



CS 618

143/178

Notation for Defining Flow Functions for Explicit Liveness

General Frameworks: Heap Reference Analysis

- Basic entities
 - ▶ Variables $u, v \in \mathbb{V}$ ar
 - ▶ Pointer variables $w, x, y, z \in \mathbf{P} \subseteq \mathbb{V}$ ar
 - ▶ Pointer fields $f, g, h \in pF$
 - ▶ Non-pointer fields $a, b, c, d \in npF$
- Additional notation
 - ▶ Sequence of pointer fields $\sigma \in pF^*$ (could be ϵ)
 - Access paths $\rho \in \mathbf{P} \times pF^*$ Example: $\{x, x \rightarrow f, x \rightarrow f \rightarrow g\}$
 - ▶ Summarized access paths rooted at x or $x \rightarrow \sigma$ for a given x and σ
 - $x \rightarrow * = \{x \rightarrow \sigma \mid \sigma \in pF^*\}$
 - $x \rightarrow \sigma \rightarrow * = \{x \rightarrow \sigma \rightarrow \sigma' \mid \sigma' \in pF^*\}$

 $In_n = (Out_n - Kill_n(Out_n)) \cup Gen_n(Out_n)$

General Frameworks: Heap Reference Analysis

Data Flow Equations for Explicit Liveness Analysis

$$Out_n = \begin{cases} BI & n \text{ is } End \\ \bigcup_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$$

144/178

General Frameworks: Heap Reference Analysis Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{ y \rightarrow \sigma \mid z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	Ø	<i>x</i> →*
x = null	Ø	<i>x</i> →*
other	Ø	Ø

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	${y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X}$	χ→∗
x.f = y	$\left\{y \rightarrow \sigma \mid \underbrace{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)}\right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	<i>x</i> →*
x = null	Ø	<i>x</i> →*
other	Ø	Ø

May link aliasing for soundness

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$	
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*	
x = y.f	${y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X}$	χ→∗	
x.f = y	$\left\{ y \rightarrow \sigma \mid \underbrace{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)} \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$	
x = new	0	<i>x</i> / > ∗	
x = null	0	/< → *	
other	Ø	/ Ø	

May link aliasing for soundness

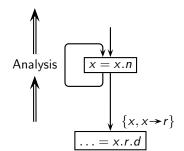
Must link aliasing for precision

Flow Functions for Explicit Liveness Analysis

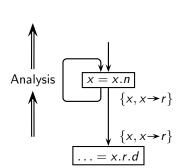
Let A denote May Aliases at the exit of node n

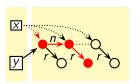
Statement n	$Gen_n(X)$	$Kill_n(X)$
If ∄ Why If ∄ Why Why	is $y \notin \operatorname{Gen}_n(X)$ for $x.f = y$ when $x \notin x \in \operatorname{Out}_n$, we can do dead code eliminaries $y \notin \operatorname{Gen}_n(X)$ for $x = y.f$ when $x \to \sigma$ $x \to \sigma \in \operatorname{Out}_n$, we can do dead code eliminaries $x \notin \operatorname{Gen}_n(X)$ for $x.f = y$? If $\exists x \to f \to \sigma \in \operatorname{Out}_n$, we can do dead If $\exists x \to f \to \sigma \in \operatorname{Out}_n$, then $\exists x \in \operatorname{Out}_n$ It will not be killed, so no need of $x \in \operatorname{Im}_n(X)$	tion

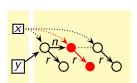
Computing Explicit Liveness Using Sets of Access Paths



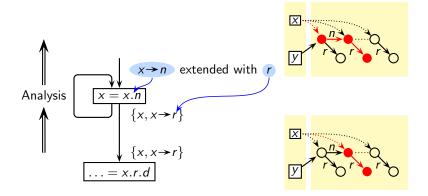




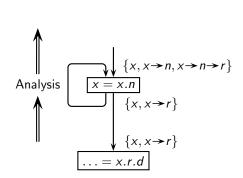


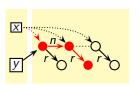


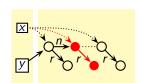
Computing Explicit Liveness Using Sets of Access Paths



Computing Explicit Liveness Using Sets of Access Paths



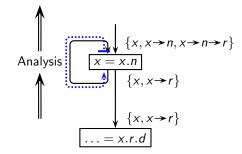




Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

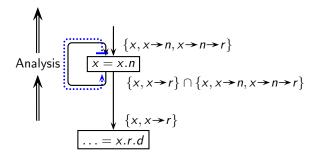
Anticipability of Heap References: An All Paths problem



Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

Anticipability of Heap References: An All Paths problem

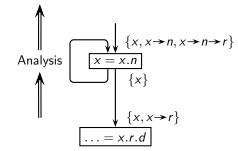


CS 618

Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

Anticipability of Heap References: An All Paths problem

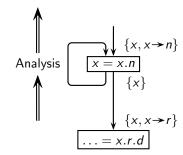


CS 618

Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

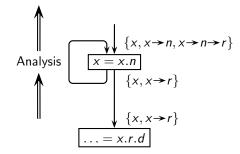
Anticipability of Heap References: An All Paths problem



Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

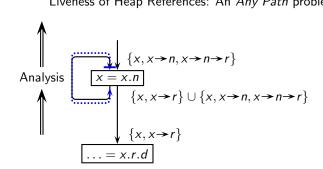
Liveness of Heap References: An Any Path problem



Computing Explicit Liveness Using Sets of Access Paths

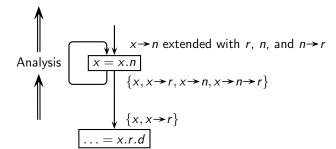
General Frameworks: Heap Reference Analysis

Liveness of Heap References: An Any Path problem



Computing Explicit Liveness Using Sets of Access Paths

Liveness of Heap References: An Any Path problem

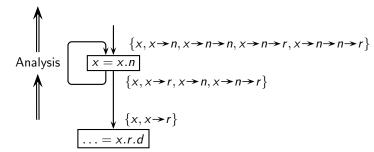


CS 618

Computing Explicit Liveness Using Sets of Access Paths

General Frameworks: Heap Reference Analysis

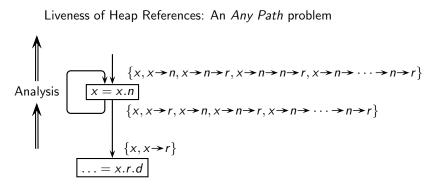
Liveness of Heap References: An Any Path problem



CS 618

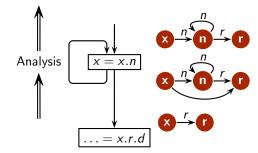
General Frameworks: Heap Reference Analysis

Liveness of Heap References: An Any Path problem



Infinite Number of Unbounded Access Paths

Key Idea #5: Using Graphs as Data Flow Values



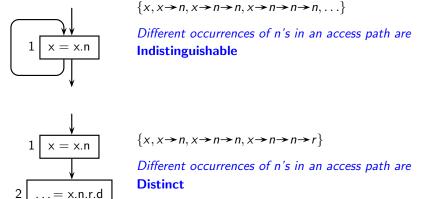
Finite Number of Bounded Structures

CS 618

148/178

Key Idea #6: Include Program Point in Graphs

General Frameworks: Heap Reference Analysis



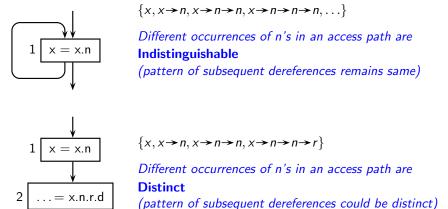
General Frameworks: Heap Reference Analysis

148/178

 $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow n, \ldots\}$ Different occurrences of n's in an access path are Indistinguishable $\{x, x \rightarrow n, x \rightarrow n \rightarrow n, x \rightarrow n \rightarrow n \rightarrow r\}$ Different occurrences of n's in an access path are Distinct .. = x.n.r.d(pattern of subsequent dereferences could be distinct)

Sep 2017 IIT Bomb CS 618

General Frameworks: Heap Reference Analysis

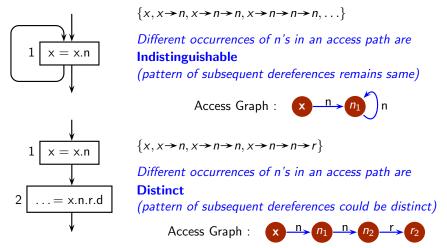


Sep 2017 IIT Bomb

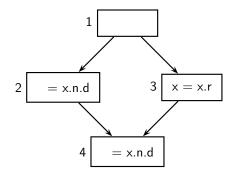
CS 618

Key Idea #6: Include Program Point in Graphs

General Frameworks: Heap Reference Analysis



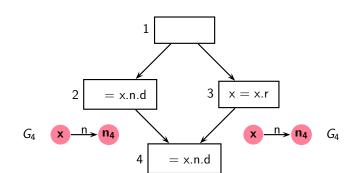
General Frameworks: Heap Reference Analysis



149/178

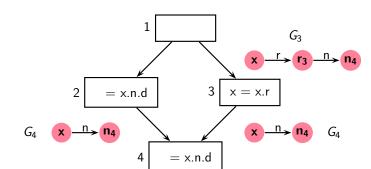
CS 618

General Frameworks: Heap Reference Analysis



inclusion of Program Point Facilitates Summarization

General Frameworks: Heap Reference Analysis

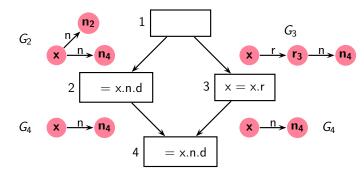


149/178

CS 618

inclusion of Program Point Facilitates Summarization

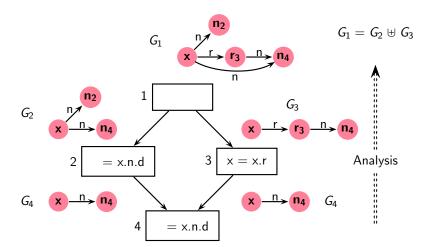
General Frameworks: Heap Reference Analysis



149/178

CS 618

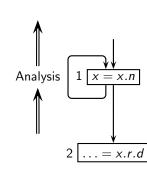
Inclusion of Program Point Facilitates Summarization



CS 618

Inclusion of Program Point Facilitates Summarization

General Frameworks: Heap Reference Analysis

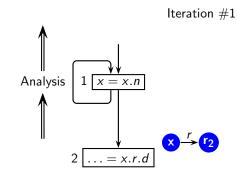


Iteration #1

IIT Bombay

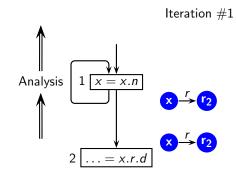
Inclusion of Program Point Facilitates Summarization

General Frameworks: Heap Reference Analysis

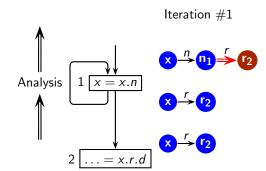


Inclusion of Program Point Facilitates Summarization

General Frameworks: Heap Reference Analysis

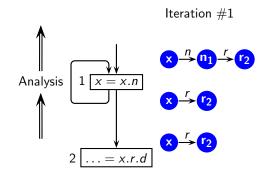


Inclusion of Program Point Facilitates Summarization

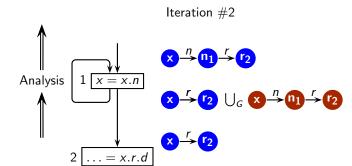


Inclusion of Program Point Facilitates Summarization

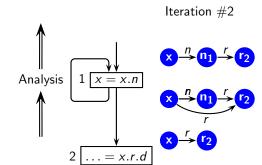
General Frameworks: Heap Reference Analysis



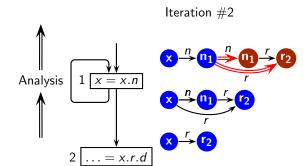
Inclusion of Program Point Facilitates Summarization

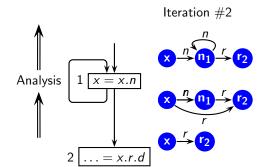


Inclusion of Program Point Facilitates Summarization

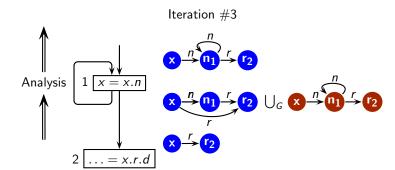


Inclusion of Program Point Facilitates Summarization

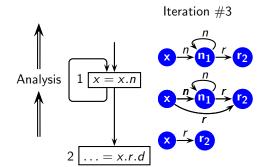


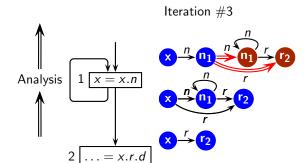


Inclusion of Program Point Facilitates Summarization

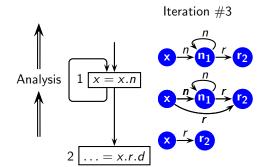


Inclusion of Program Point Facilitates Summarization



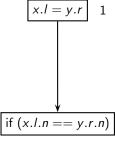


Inclusion of Program Point Facilitates Summarization



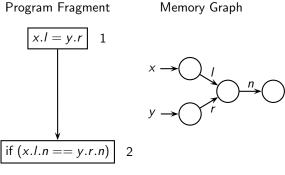
iory Crapii

Program Fragment

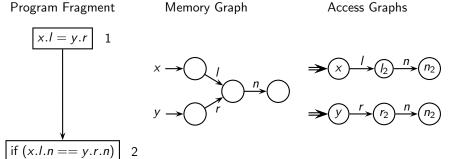


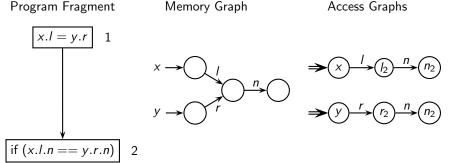
IIT Bombay

Access Graph and Memory Graph



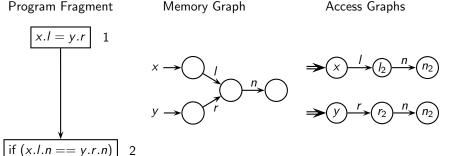
Access Graph and Memory Graph





 Memory Graph: Nodes represent locations and edges represent links (i.e. pointers).

Access Graph and Memory Graph



- Memory Graph: Nodes represent locations and edges represent links (i.e. pointers).
- Access Graphs: Nodes represent dereference of links at particular statements. Memory locations are implicit.

Lattice of Access Graphs

- Finite number of nodes in an access graph for a variable
- \forall induces a partial order on access graphs
 - ⇒ a finite (and hence complete) lattice
 - \Rightarrow All standard results of classical data flow analysis can be extended to this analysis.

Termination and boundedness, convergence on MFP, complexity etc.

CS 618

Access Graph Operations

- Union. $G \uplus G'$
- Path Removal

 $G \ominus R$ removes those access paths in G which have $\rho \in R$ as a prefix

- Factorization (/)
- Extension

IIT Bomba

Defining Factorization

Given statement x.n = y, what should be the result of transfer?

Live AP	Memory Graph	Transfer	Remainder
<i>x</i> → <i>n</i> → <i>r</i>	$x \rightarrow 0$ $y \rightarrow 0$ $y \rightarrow 0$	y→r	r (LHS is contained in the live access path)
x→n	$x \rightarrow 0$	у	ϵ (LHS is contained in the live access path)
x	$x \rightarrow 0$	no transfer	?? (LHS is not contained in the live access path)

Defining Factorization

Given statement $x \cdot n = y$, what should be the result of transfer?

Live AP	Memory Graph	Transfer	Remainder
<i>x</i> → <i>n</i> → <i>r</i>	$x \rightarrow 0$	y→r	r (LHS is contained in the live access path)
x→n	$x \rightarrow 0$	У	ϵ (LHS is contained in the live access path)
x	$x \rightarrow 0$	no transfer	?? (LHS is not contained in the live access path) Quotient is empty So no remainder

CS 618

- P(G) is the set of all paths in graph G
 - P(G, M) is the set of paths in G terminaing on nodes in M
 - *S* is the set of remainder graphs
 - P(S) is the set of all paths in all remainder graphs in S

Operation		Access Paths
Union	$G_3 = G_1 \uplus G_2$	$P\left(G_{3} ight)\supseteq P\left(G_{1} ight)\cup\ P\left(G_{2} ight)$
Path Removal	$G_2=G_1\ominus X$	$P(G_2) \supseteq P(G_1) - \{\rho \rightarrow \sigma \mid \rho \in X, \rho \rightarrow \sigma \in P(G_1)\}$
Factorization	$S=G_1/\rho$	$P(S) = \{ \sigma \mid \rho \rightarrow \sigma \in P(G_1) \}$
	$G_2 = (G_1, M) \# \emptyset$	$P(G_2) = \emptyset$
Extension	$G_2 = (G_1, M) \# S$	$P(G_2) \supseteq P(G_1) \cup \{\rho \rightarrow \sigma \mid \rho \in P(G_1, M), \ \sigma \in P(S)\}$

Sep 2017 IIT Bombay

Semantics of Access Graph Operations

- P(G) is the set of all paths in graph G
 - P(G, M) is the set of paths in G terminaing on nodes in M
 - S is the set of remainder graphs
 - P(S) is the set of all paths in all remainder graphs in S

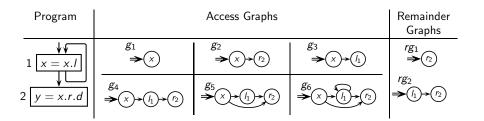
<u> </u>		
Operation		Access Paths
Union	$G_3 = G_1 \uplus G_2$	$P\left(G_{3} ight)\supseteq P\left(G_{1} ight)\cup\ P\left(G_{2} ight)$
Path Removal	$G_2 = G_1 \ominus X$	$P(G_2) \supseteq P(G_1) - \{\rho \rightarrow \sigma \mid \rho \in X, \rho \rightarrow \sigma \in P(G_1)\}$
Factorization	$S=G_1/\rho$	$P(S) = \{ \sigma \mid \rho \rightarrow \sigma \in P(G_1) \}$
	$G_2 = (G_1, M) \# \emptyset$	$P(G_2) = \emptyset$
Extension	$G_2 = (G_1, M) \# S$	$P(G_2) \supseteq P(G_1) \cup \{\rho \rightarrow \sigma \mid \rho \in P(G_1, M), \ \sigma \in P(S)\}$

 σ represents remainder

155/178

CS 618

Access Graph Operations: Examples



Extension	Factorisation	Path Removal	Union

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g_3 \Rightarrow (I_1)	rg ₁ → (r ₂)
2 y = x.r.d	g_4 \Rightarrow $(l_1) \Rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$			
$g_2 \uplus g_4 = g_5$			
$g_5 \uplus g_4 = g_5$			
$g_5 \uplus g_6 = g_6$			

Access Graph Operations: Examples

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g ₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g_3 (I_1)	$rg_1 \rightarrow r_2$
2 y = x.r.d	$g_4 \longrightarrow (I_1) \rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	rg_2 rg_2 rg_2

Union	Path Removal	Factorisation	Extension
	$g_6 \ominus \{x \rightarrow I\} = g_2$		
	$g_5 \ominus \{x\} = \mathcal{E}_G$		
	$g_4 \ominus \{x \rightarrow r\} = g_4$		
$g_5 \uplus g_6 = g_6$	$g_4 \ominus \{x \rightarrow I\} = g_1$		

Access Graph Operations: Examples

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g ₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g ₃ → (I ₁)	$rg_1 \rightarrow r_2$
2 y = x.r.d	g_4 \Rightarrow $(l_1) \Rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$	$g_6 \ominus \{x \rightarrow I\} = g_2$		
$g_2 \uplus g_4 = g_5$	$g_5 \ominus \{x\} = \mathcal{E}_G$	$g_5/x = \{rg_1, rg_2\}$	
	$g_4 \ominus \{x \rightarrow r\} = g_4$		
$g_5 \uplus g_6 = g_6$	$g_4 \ominus \{x \rightarrow I\} = g_1$	$g_4/x \rightarrow r = \emptyset$	

IIT Bombay

Access Graph Operations: Examples

Program	Access Graphs			Remainder Graphs
$1 \boxed{x = x.l}$	g ₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g_3 (I_1)	$rg_1 \rightarrow r_2$
2 y = x.r.d	g_4 \Rightarrow $(I_1) \Rightarrow (r_2)$	g_5 x f_1 f_2	g_6 x f_1 f_2	$rg_2 \rightarrow (l_1) \rightarrow (r_2)$

Union	Path Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$	$g_6 \ominus \{x \rightarrow I\} = g_2$		$(g_3, \{l_1\}) \# \{rg_1\} = g_4$
$g_2 \uplus g_4 = g_5$			$(g_3, \{x, l_1\}) \# \{rg_1, rg_2\} = g_6$
$g_5 \uplus g_4 = g_5$	$g_4\ominus\{x\rightarrow r\}=g_4$	$g_5/x \rightarrow r = \{\epsilon_{RG}\}$	$(g_2, \{r_2\}) \# \{\epsilon_{RG}\} = g_2$
$g_5 \uplus g_6 = g_6$	$g_4 \ominus \{x \rightarrow I\} = g_1$	$g_4/x \rightarrow r = \emptyset$	$(g_2,\{r_2\}) \# \emptyset = \mathcal{E}_G$

Sep 2017 **IIT Bombay**

Access Graph Operations: Examples

	Program	Access Graphs		Remainder Graphs	
	$1 \boxed{x = x.l}$	g ₁ →(x)	g_2 \Rightarrow (x) \Rightarrow (r_2)	g_3 (l_1)	$rg_1 \rightarrow r_2$
2	y = x.r.d	g_4 X f_1	g_5 x r_2	g_6 r_2	rg_2 $\rightarrow (l_1) \rightarrow (r_2)$

Union	Pat	h Removal	Factorisation	Extension
$g_3 \uplus g_4 = g_4$	g ₆ ⊖	$\{x \rightarrow l\} = g_2$		$(g_3, \{l_1\}) \# \{rg_1\} = g_4$
$g_2 \uplus g_4 = g_5$		$\{x\} = \mathcal{E}_{G}$		$(g_3, \{x, l_1\}) \# \{rg_1, rg_2\} = g_6$
			$g_5/x \rightarrow r = \{\epsilon_{RG}\}$	$(g_2, \{r_2\}) \# \{\epsilon_{RG}\} = g_2$
$g_5 \uplus g_6 = g_6$	$g_4 \ominus$	$\{x \rightarrow l\} = g_1$	$g_4/x \rightarrow r = \emptyset$	$(g_2,\{r_2\}) \# \emptyset = \mathcal{E}_G$
				<u> </u>

Remainder is empty

Quotient is empty

Data Flow Equations for Explicit Liveness Analysis: Access
Graphs Version

 $In_n = (Out_n \ominus Kill_n(Out_n)) \ \uplus \ Gen_n(Out_n)$

157/178

$$Out_n = \begin{cases} BI & n \text{ is } End \\ \biguplus & In_s & \text{otherwise} \end{cases}$$

- In_n , Out_n , and Gen_n are access graphs
- Kill_n is a set of access paths

CS 618

Sep 2017

Flow Functions for Explicit Liveness Analysis: Access Paths **Version**

Let A denote May Aliases at the exit of node n

Statement <i>n</i>	$\operatorname{Gen}_n(X)$	$Kill_n(X)$	
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*	
x = y.f	${y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X}$	<i>x</i> →*	
x.f = y	$\left\{ y \rightarrow \sigma \mid z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$	
x = new	Ø	<i>x</i> →*	
x = null	Ø	<i>x</i> →*	
other	Ø	Ø	

Version

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{y \rightarrow \sigma \mid \underbrace{z \rightarrow f \rightarrow \sigma \in X, z \in A(x)}\right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	<i>x</i> →*
x = null	0	<i>x</i> →*
other	0	Ø

May link aliasing for soundness

Version

General Frameworks: Heap Reference Analysis

Let A denote May Aliases at the exit of node n

Statement n	$\operatorname{Gen}_n(X)$	$Kill_n(X)$
x = y	$\{y \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x = y.f	$\{y \rightarrow f \rightarrow \sigma \mid x \rightarrow \sigma \in X\}$	<i>x</i> →*
x.f = y	$\left\{ y \rightarrow \sigma \mid \left(z \rightarrow f \rightarrow \sigma \in X, z \in A(x) \right) \right\}$	$\bigcup_{z \in Must(A)(x)} z \rightarrow f \rightarrow *$
x = new	0	<i>x</i> / > ∗
x = null	0	/ ⟨→∗
other	Ø	/ Ø
May link ali	asing for soundness Must li	nk aliasing for precision

Sep 2017

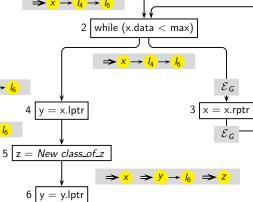
IIT Bombay

CS 618

- A denotes May Aliases at the exit of node n
- $mkGraph(\rho)$ creates an access graph for access path ρ

Statement n	$Gen_n(X)$	$Kill_n(X)$	
x = y	mkGraph(y)#(X/x)	{x}	
x = y.f	$mkGraph(y \rightarrow f) \# (X/x)$	{x}	
x.f = y	$mkGraph(y)\#\left(\bigcup_{z\in A(x)}(X/(z\rightarrow f))\right)$	$\{z \rightarrow f \mid z \in Must(A)(x)\}$	
x = new	Ø	{x}	
x = null	Ø	{x}	
other	Ø	Ø	

General Frameworks: Heap Reference Analysis



General Frameworks: Heap Reference Analysis

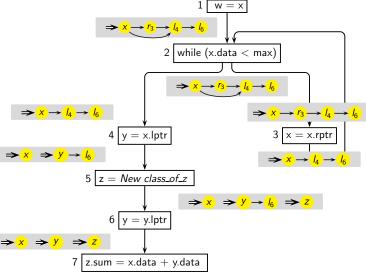
Liveness Analysis of Example Program: Ist Iteration

 $\mathsf{w}=\mathsf{x}$

 $\rightarrow x \rightarrow l_4 \rightarrow l_6$

z.sum = x.data + y.data

CS 618



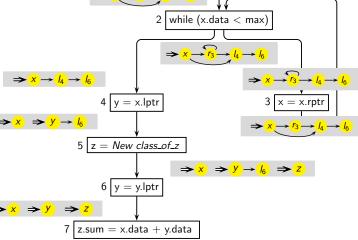
General Frameworks: Heap Reference Analysis

Liveness Analysis of Example Program: 2nd Iteration

CS 618

Liveness Analysis of Example Program: 3rd Iteration

 $\mathsf{w}=\mathsf{x}$



CS 618

$\mathsf{w}=\mathsf{x}$ 2 while (x.data < max) $4 \mid y = x.lptr$ $5 \mid z = New class_of_z$ $\Rightarrow x \Rightarrow y \rightarrow l_6 \Rightarrow z$ $6 \mid y = y.lptr$

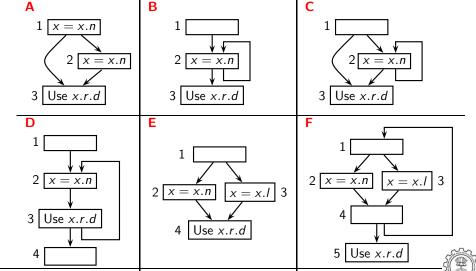
z.sum = x.data + y.data

General Frameworks: Heap Reference Analysis

Liveness Analysis of Example Program: 4th Iteration

CS 618

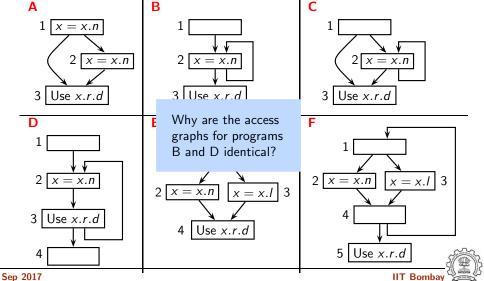
Construct access graphs at the entry of block 1 for the following programs



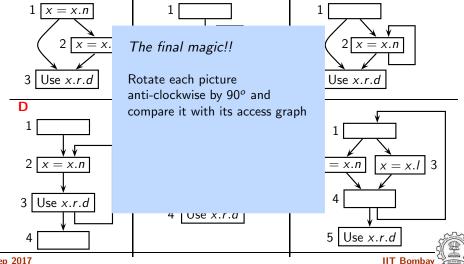
IIT Bombay

Sep 2017

Construct access graphs at the entry of block 1 for the following programs



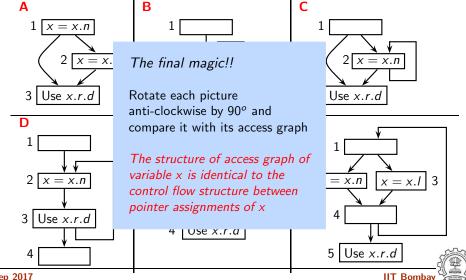
Α В



Tutorial Problem for Explicit Liveness (1)

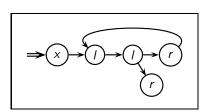
164/178

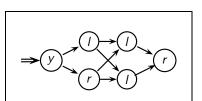
Construct access graphs at the entry of block 1 for the following programs



Tutorial Problem for Explicit Liveness (2)

- Unfortunately the student who constructed these access graphs forgot to attach statement numbers as subscripts to node labels and has misplaced the programs which gave rise to these graphs
- Please help her by constructing CFGs for which these access graphs represent explicit liveness at some program point in the CFGs



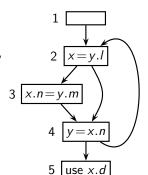


- Compute explicit liveness for the program.
- Are the following access paths live at node 1? Show the corresponding execution sequence of statements

 $P1: y \rightarrow m \rightarrow l$ $P2: y \rightarrow l \rightarrow n \rightarrow m$

 $P3: y \rightarrow l \rightarrow n \rightarrow l$

 $P4: y \rightarrow n \rightarrow l \rightarrow n$



• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) for each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f = \text{null}$ at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

CS 618

Which Access Paths Can be Nullified?

Can be safely dereferenced

Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) **for** each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f$ = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Sep 2017 IIT Bomb

Which Access Paths Can be Nullified?

Can be safely dereferenced

Consider link aliases at p

Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) **for** each reference field f of the object pointed to by ρ if $\rho \rightarrow f$ is not live at p then Insert $\rho \rightarrow f$ = null at p subject to profitability

For simple access paths, ρ is empty and f is the root variable name.

Can be safely dereferenced

CS 618

Consider link aliases at p

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable) **for** each reference field f of the object pointed to by ρ **if** $\rho \rightarrow f$ is not live at p **then**Insert $\rho \rightarrow f = \text{null}$ at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Cannot be hoisted and is not redefined at p

Availability and Anticipability Analyses

CS 618

- ρ is available at program point p if the target of each prefix of ρ is guaranteed to be created along every control flow path reaching p.
- ρ is anticipable at program point p if the target of each prefix of ρ is guaranteed to be dereferenced along every control flow path starting at p.

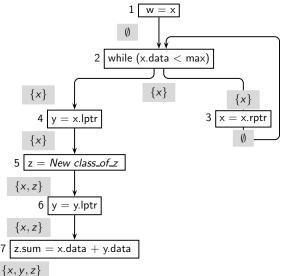
168/178

Sep 2017 IIT Bombay

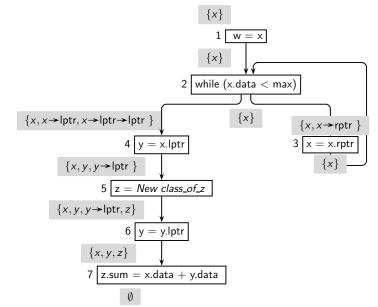
- ρ is available at program point p if the target of each prefix of ρ is guaranteed to be created along every control flow path reaching p.
- ρ is anticipable at program point p if the target of each prefix of ρ is guaranteed to be dereferenced along every control flow path starting at p.
- Finiteness.
 - An anticipable (available) access path must be anticipable (available) along every paths. Thus unbounded paths arising out of loops cannot be anticipable (available).
 - Due to "every control flow path nature", computation of anticipable and available access paths uses ∩ as the confluence. Thus the sets are bounded.
 - \Rightarrow No need of access graphs.

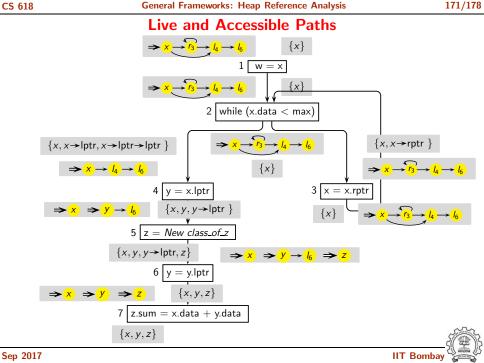
CS 618

0



CS 618





Creating null Assignments from Live and Accessible Paths

y = z = null

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = nully = x.lptrx.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null $5 | z = New class_of_z$ z.lptr = z.rptr = nully.lptr = y.rptr = null

> z.sum = x.data + y.datax = y = z = null

172/178

CS 618

x.lptr = null

w = null

x.lptr = null

x.rptr = x.lptr.rptr = nullx.lptr.lptr.lptr = nullx.lptr.lptr.rptr = null

x.lptr = y.rptr = nully.lptr.lptr = y.lptr.rptr = null

z.lptr = z.rptr = null

General Frameworks: Heap Reference Analysis

173/178

while (x.data < max)

3

CS 618

x = x.rptr

4 y = x.lptr

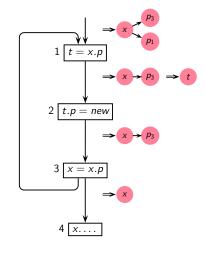
 $z = New class_of_z$

y = y.lptr

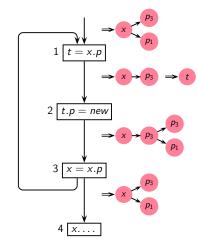
y.lptr = y.rptr = nullz.sum = x.data + y.data

x = y = z = nullSep 2017 **IIT Bombay**

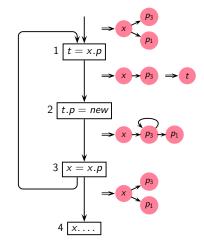
Overapproximation Caused by Our Summarization



• The program allocates $x \rightarrow p$ in one iteration and uses it in the next

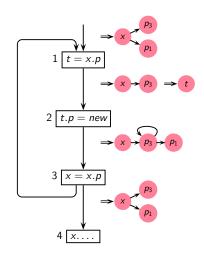


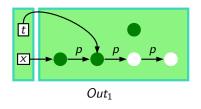
• The program allocates $x \rightarrow p$ in one iteration and uses it in the next



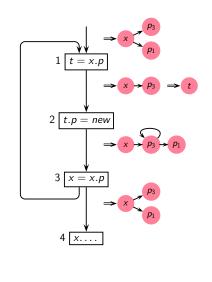
- The program allocates $x \rightarrow p$ in one iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2

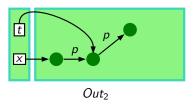
IIT Bombay





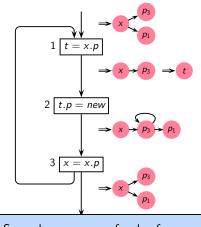
- The program allocates $x \rightarrow p$ in one iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2



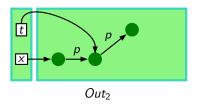


The program allocates $x \rightarrow p$ in one

- iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2
- $x \rightarrow p \rightarrow p$ is live at Out_2 $x \rightarrow p \rightarrow p \rightarrow p$ is dead at Out_2
- First *p* used in statement 3 Second *p* used in statement 4
- Third p is reallocated

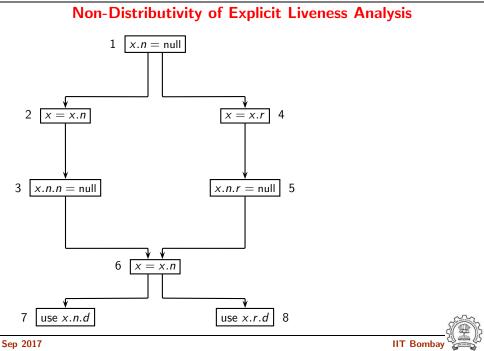


Second occurrence of a dereference does not necessarily mean an unbounded number of repetitions!

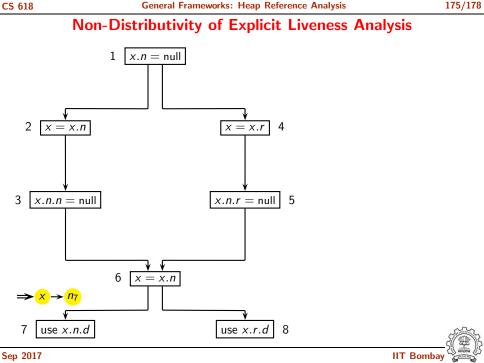


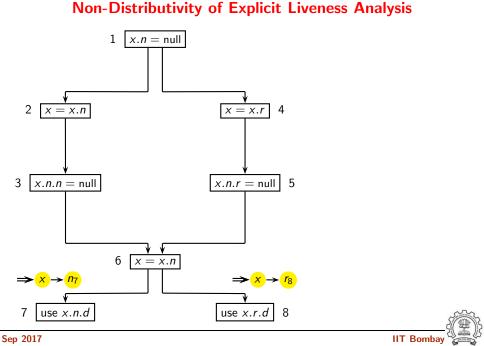
The program allocates $x \rightarrow p$ in one

- iteration and uses it in the next
- Only $x \rightarrow p \rightarrow p$ is live at Out_2
- $x \rightarrow p \rightarrow p$ is live at Out_2 $x \rightarrow p \rightarrow p \rightarrow p$ is dead at Out_2
- First p used in statement 3
 Second p used in statement 4
- Third p is reallocated



175/178





175/178

use x.r.d

8

General Frameworks: Heap Reference Analysis

Non-Distributivity of Explicit Liveness Analysis

x.n = null

x = x.n

175/178

IIT Bombay

use x.n.d

x.n.r = null

use x.r.d

8

General Frameworks: Heap Reference Analysis

Non-Distributivity of Explicit Liveness Analysis

x.n = null

x = x.n

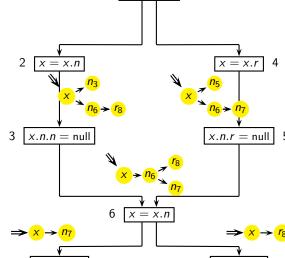
x.n.n = null

CS 618

Non-Distributivity of Explicit Liveness Analysis

use x.r.d

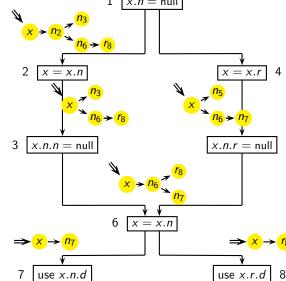
8



175/178

use x.n.d

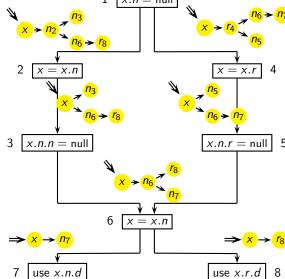
Non-Distributivity of Explicit Liveness Analysis



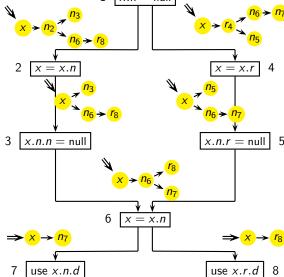
IIT Bombay

175/178

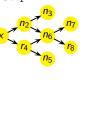
Non-Distributivity of Explicit Liveness Analysis



175/178



CS 618



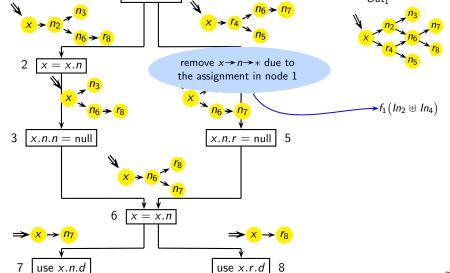
175/178

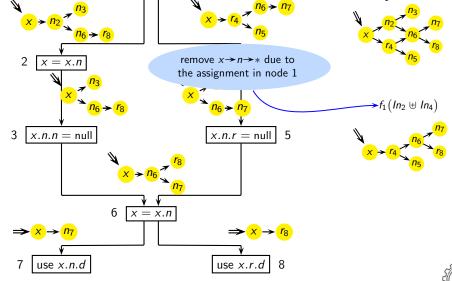
Sep 2017 IIT

Non-Distributivity of Explicit Liveness Analysis

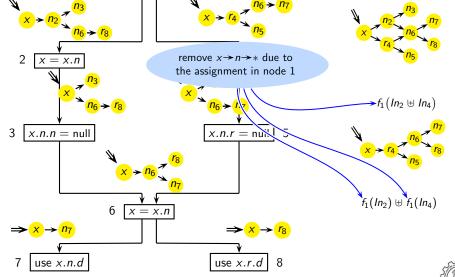
175/178

IIT Bombay





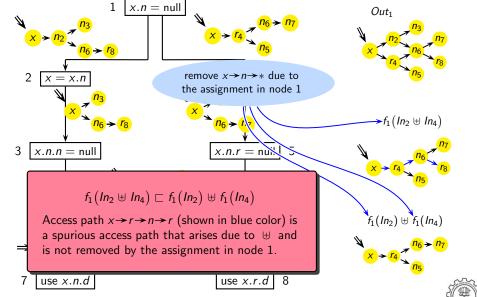
CS 618



CS 618



IIT Bombay



176/178

Issues Not Covered

- Precision of information
 - Cyclic Data Structures

Properties of Data Flow Analysis:

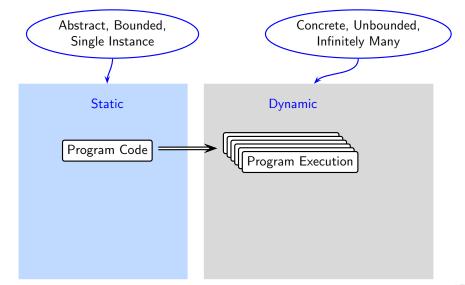
- ▶ Eliminating Redundant null Assignments
- Monotonicity, Boundedness, Complexity
- Interprocedural Analysis
- Extensions for C/C++
- Formulation for functional languages
- Issues that need to be researched: Good alias analysis of heap

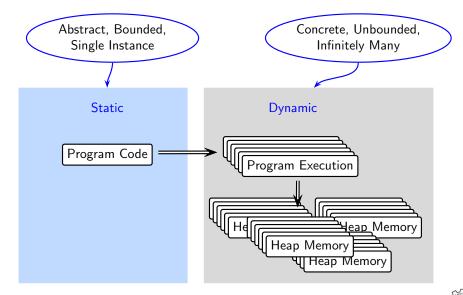
BTW, What is Static Analysis of Heap?

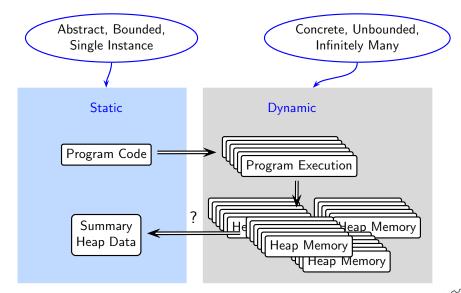
Static

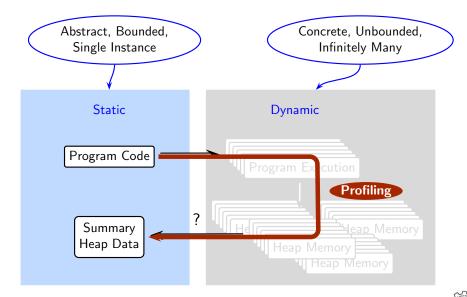
Dynamic

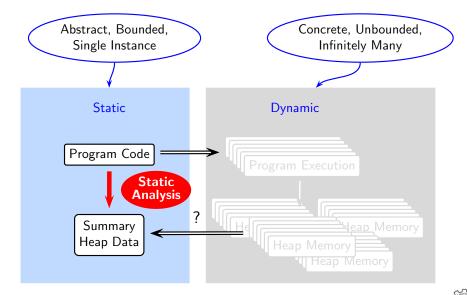
CS 618











Conclusions

- Unbounded information can be summarized using interesting insights
 - ► Contrary to popular perception, heap structure is not arbitrary

 Heap manipulations consist of repeating patterns which bear a close resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings between access expressions and I-values keep changing

