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What is Program
Analysis?

Course Details

Standard Memory Architecture of Programs

Code

Static Data

Stack

Heap

Heap allocation provides the flexibility of

• Variable Sizes. Data structures can grow or
shrink as desired at runtime.

(Not bound to the declarations in program.)

• Variable Lifetimes. Data structures can be
created and destroyed as desired at runtime.

(Not bound to the activations of procedures.)
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What is Program
Analysis?
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Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)
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Course Details

Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

Decision 2: When to Deallocate?

• Explicit. Manual Memory Management (eg. C/C++)

• Implicit. Automatic Memory Management aka Garbage Collection (eg.

Java/Declarative languages)
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State of Art in Manual Deallocation

• Memory leaks

10% to 20% of last development effort goes in plugging leaks

• Tool assisted manual plugging

Purify, Electric Fence, RootCause, GlowCode, yakTest, Leak Tracer, BDW Garbage

Collector, mtrace, memwatch, dmalloc etc.

• All leak detectors

◦ are dynamic (and hence specific to execution instances)
◦ generate massive reports to be perused by programmers
◦ usually do not locate last use but only allocation escaping a call

⇒ At which program point should a leak be “plugged”?
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Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?
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Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.
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Course Details

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

What if an object has an access path, but is not accessed after the
given program point?
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

We use Java style statements for convenience

Read “x.lptr” as “x→lptr
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What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4
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All white nodes are unused and should be considered garbage
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Is Reachable Same as Live?

From www.memorymanagement.org/glossary

live (also known as alive, active) : Memory(2) or an object is live if the program
will read from it in future. The term is often used more broadly to mean reachable.

It is not possible, in general, for garbage collectors to determine exactly which
objects are still live. Instead, they use some approximation to detect objects that
are provably dead, such as those that are not reachable.

Similar terms: reachable. Opposites: dead. See also: undead.
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Is Reachable Same as Live?

• Not really. Most of us know that.

Even with the state of art of garbage collection, 24% to 76% unused memory
remains unclaimed

• The state of art compilers, virtual machines, garbage collectors cannot
distinguish between the two
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Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
HeapStack
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Hence, ¬Live ⊇ ¬Reachable ⊇ ¬Allocated
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Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC FAQ:
http://www.iecc.com/gclist/GC-harder.html)
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Make the unused memory unreachable by setting references to NULL. (GC FAQ:
http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

29/48



IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Cedar Mesa Folk Wisdom

• Most promising, simplest to understand, yet the hardest to implement.

• Which references should be set to NULL?

◦ Most approaches rely on feedback from profiling.
◦ No systematic and clean solution.
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Distinguishing Between Reachable and Live

The state of art

• Eliminating objects reachable from root variables which are not live.

• Uses liveness data flow analysis of root variables (stack data).

• What about liveness of heap data?
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum
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Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum
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The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data

For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack and static
data.

What about heap data?

◦ Given two access expressions at a program point, do they have the same
l-value?

◦ Given the same access expression at two program points, does it have
the same l-value?
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Our Solution (1)

y = z = null
1 w = x

w = null
2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum
z = null
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Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum
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• Whether we dereference lptr out of x or
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• A static analysis can discover only
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New access expressions are created.
Can they cause exceptions?
• The memory address that x holds when the

execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only some
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An Overview of Heap Reference Analysis

• A reference (called a link) can be represented by an access path.

Eg. “x → lptr → rptr”

• A link may be accessed in multiple ways

• Setting links to null

◦ Alias Analysis. Identify all possible ways of accessing a link

◦ Liveness Analysis. For each program point, identify “dead” links
(i.e. links which are not accessed after that program point)

◦ Availability and Anticipability Analyses. Dead links should be reachable
for making null assignment.

◦ Code Transformation. Set “dead” links to null
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Assumptions

For simplicity of exposition

• Java model of heap access

◦ Root variables are on stack and represent references to memory in heap.

◦ Root variables cannot be pointed to by any reference.

• Simple extensions for C++

◦ Root variables can be pointed to by other pointers.

◦ Pointer arithmetic is not handled.
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Key Idea #1 : Access Paths Denote Links
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m
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n
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lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

• Root variables : x , y , z

• Field names : rptr, lptr

• Access path : x rptr lptr

Semantically, sequence of “links”

• Frontier : name of the last link

• Live access path : If the link
corresponding to its frontier is
used in future
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What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for accessing the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

sum = x .rptr.data x ,O1,O2 x , x rptr
if (x .rptr.data < sum) x ,O1,O2 x , x rptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3
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Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the
corresponding target object:

Example
Objects
read

Live access
paths
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Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the
corresponding target object:

Example
Objects
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Live access
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Statement

Statement

Statement involving
memory references

Statement

Statement

Live Access Paths

Live Access Paths

Effect of the statement on
the access paths

Program Semantic Information
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r

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

Generated {x , x n, x n r}

Killed {x , x r}

x after the assignment is same
as x n before the assignment

56/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #3 : Liveness Closure Under Link Aliasing

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r

57/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #3 : Liveness Closure Under Link Aliasing

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r

x and y are node aliases

x .n and y .n are link aliases

x n is live ⇒ y n is live
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1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4
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Explicit Liveness
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x

y
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q q
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Effect of Aliasing
y p ≡ x p

y p q ≡ x p q
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x
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q q

x
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q q
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Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

Required Liveness

{y , y q}

{y , y p, y p q}

{x , y , t, t q }

Spurious

Missing

The need of link alias closure of LHS

• Transferring liveness to RHS (soundness)

• Killing liveness (precision)

Link alias closure of RHS can be computed later
for implicit liveness but transfer and killing can-
not wait
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Notation for Defining Flow Functions for Explicit Liveness

• Basic entities

◦ Variables u, v ∈ Var

◦ Pointer variables w , x , y , z ∈ P ⊆ Var

◦ Pointer fields f , g , h ∈ pF

◦ Non-pointer fields a, b, c , d ∈ npF

• Additional notation

◦ Sequence of pointer fields σ ∈ pF ∗ (could be ǫ)

◦ Access paths ρ ∈ P× pF ∗

Example: {x , x f , x f g}

◦ Summarized access paths rooted at x or x σ for a given x and σ

− x ∗ = {x σ | σ ∈ pF ∗}

− x σ ∗ = {x σ σ
′ | σ′ ∈ pF∗}
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Data Flow Equations for Explicit Liveness Analysis

Inn =
(
Outn − Killn(Outn)

)
∪ Genn(Outn)

Outn =




BI n is End⋃
s∈succ(n)

Ins otherwise
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Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅
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x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅
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Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗
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Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

• Why is y /∈ Genn(X ) for x .f = y when x /∈ X?

Strong liveness

• Why is y /∈ Genn(X ) for x = y .f when x σ /∈ X?

Strong liveness

• Why is x /∈ Genn(X ) for x .f = y?

◦ If x f σ /∈ Outn, we can do dead code elimination
◦ If ∃ x f σ ∈ Outn, then ∃ x ∈ Outn

It will not be killed, so no need of x ∈ Genn

Unlike LFCPA, x .f cannot point to a variable whose pointees
are to be found

We are using a storeless abstraction of memory, LFCPA uses a
store-based abstraction
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Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

y

x
n

r r r
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Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

x n extended with r

y

x
n

r r r

y

x
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r r r
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Analysis x = x .n
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Analysis x = x .n

. . . = x .r .d
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Analysis x = x .n
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Infinite Number of Unbounded Access Paths
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Key Idea #5: Using Graphs as Data Flow Values

Analysis x = x .n

. . . = x .r .d

x r
r

x n r

n
n r

x n r

n
n r

Finite Number of Bounded Structures
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Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct

65/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct
(pattern of subsequent dereferences could be distinct)

65/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

(pattern of subsequent dereferences remains same)
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1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

(pattern of subsequent dereferences remains same)

Access Graph : x n1 nn

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct
(pattern of subsequent dereferences could be distinct)

Access Graph : x n1 n2 r2n n r
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1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4
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Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

r

Iteration #3

x n1
n r2

r

r

n

x n1
n n1

n
n
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r
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Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment
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x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

x
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l
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x l2 n2
l n

y r2 n2
r n
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Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

(Store-based View)

x

y

l

r

n

Access Graphs

x l2 n2
l n

y r2 n2
r n

• Memory Graph: Nodes represent locations and edges represent
links (i.e. pointers).
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x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

(Store-based View)

x

y

l

r

n

Access Graphs

(Storeless View)

x l2 n2
l n

y r2 n2
r n

• Memory Graph: Nodes represent locations and edges represent
links (i.e. pointers).

• Access Graphs: Nodes represent dereference of links at
particular statements. Memory locations are implicit.
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Lattice of Access Graphs

• Finite number of nodes in an access graph for a variable

• ⊎ induces a partial order on access graphs

⇒ a finite (and hence complete) lattice

⇒ All standard results of classical data flow analysis can be extended to
this analysis.

Termination and boundedness, convergence on MFP, complexity etc.
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Access Graph Operations

• Union. G ⊎ G ′

• Path Removal

G ⊖ R removes those access paths in G which have ρ ∈ R as a prefix

• Factorization (/)

• Extension
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Defining Factorization

Given statement x .n = y , what should be the result of transfer?

Live AP Memory Graph
Result of
Transfer Remainder

x n r x

y

n r
y r

r (LHS is contained in
the live access path)

x n x

y

n r
y

ǫ (LHS is contained in
the live access path)

x x

y

n r
no transfer

?? (LHS is not contained
in the live access path)
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Defining Factorization

Given statement x .n = y , what should be the result of transfer?

Live AP Memory Graph
Result of
Transfer Remainder

x n r x

y

n r
y r

r (LHS is contained in
the live access path)

x n x

y

n r
y

ǫ (LHS is contained in
the live access path)

x x

y

n r
no transfer

?? (LHS is not contained
in the live access path)
Quotient is empty
So no remainder

71/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Semantics of Access Graph Operations

• P (G) is the set of all paths in graph G

• P (G ,M) is the set of paths in G terminating on nodes in M

• S is the set of remainder graphs

• P (S) is the set of all paths in all remainder graphs in S

Operation Access Paths

Union G3 = G1 ⊎ G2 P (G3) ⊇ P (G1) ∪ P (G2)

Path Removal G2 = G1 ⊖ X
P (G2) ⊇ P (G1) −

{ρ σ | ρ ∈ X , ρ σ ∈ P (G1)}

Factorization S = G1/ρ P (S) = {σ | ρ σ ∈ P (G1)}

Extension

G2 = (G1,M)# ∅ P (G2) = ∅

G2 = (G1,M)# S
P (G2) ⊇ P (G1) ∪

{ρ σ | ρ ∈ P (G1,M), σ ∈ P (S)}
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Semantics of Access Graph Operations

• P (G) is the set of all paths in graph G

• P (G ,M) is the set of paths in G terminating on nodes in M

• S is the set of remainder graphs

• P (S) is the set of all paths in all remainder graphs in S

Operation Access Paths

Union G3 = G1 ⊎ G2 P (G3) ⊇ P (G1) ∪ P (G2)

Path Removal G2 = G1 ⊖ X
P (G2) ⊇ P (G1) −

{ρ σ | ρ ∈ X , ρ σ ∈ P (G1)}

Factorization S = G1/ρ P (S) = {σ | ρ σ ∈ P (G1)}

Extension

G2 = (G1,M)# ∅ P (G2) = ∅

G2 = (G1,M)# S
P (G2) ⊇ P (G1) ∪

{ρ σ | ρ ∈ P (G1,M), σ ∈ P (S)}

σ represents remainder
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Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension
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Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6
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x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1
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Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅
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g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

(g3, {l1})# {rg1}= g4
(g3, {x , l1})# {rg1, rg2}= g6

(g2, {r2})# {ǫRG}= g2
(g2, {r2})# ∅= EG
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Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

(g3, {l1})# {rg1}= g4
(g3, {x , l1})# {rg1, rg2}= g6

(g2, {r2})# {ǫRG}= g2
(g2, {r2})# ∅= EG

Remainder is empty Quotient is empty
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Data Flow Equations for Explicit Liveness Analysis: Access
Graphs Version

Inn =
(
Outn ⊖ Killn(Outn)

)
⊎ Genn(Outn)

Outn =




BI n is End⊎
s∈succ(n)

Ins otherwise

• Inn, Outn, and Genn are access graphs

• Killn is a set of access paths
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Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅
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Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

May link aliasing for soundness
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Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X ) Killn(X )

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

May link aliasing for soundness Must link aliasing for precision
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Flow Functions for Explicit Liveness Analysis: Access Graphs
Version

• A denotes May Aliases at the exit of node n

• mkGraph(ρ) creates an access graph for access path ρ

Statement n Genn(X ) Killn(X )

x = y mkGraph(y)#(X/x) {x}

x = y .f mkGraph(y f )#(X/x) {x}

x .f = y mkGraph(y)#

( ⋃
z∈A(x)

(X/(z f ))

)
{z f | z ∈ Must(A)(x)}

x = new ∅ {x}

x = null ∅ {x}

other ∅ ∅
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Liveness Analysis of Example Program: Ist Iteration

1 w = x 1

x l4 l6

x l4 l6

2 while (x.data < max) 2

x l4 l6

3 x = x.rptr 3

EG

EG

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Liveness Analysis of Example Program: 2nd Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Liveness Analysis of Example Program: 3rd Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Liveness Analysis of Example Program: 4th Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z
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Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5
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Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

Why are the access
graphs for programs
B and D identical?
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Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

The final magic!!

Rotate each picture
anti-clockwise by 90o and
compare it with its access graph
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Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

The final magic!!

Rotate each picture
anti-clockwise by 90o and
compare it with its access graph

The structure of access graph of
variable x is identical to the
control flow structure between
pointer assignments of x
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Tutorial Problem for Explicit Liveness (2)

• Unfortunately the student who constructed these access graphs forgot to
attach statement numbers as subscripts to node labels and has misplaced the
programs which gave rise to these graphs

• Please help her by constructing CFGs for which these access graphs represent
explicit liveness at some program point in the CFGs

x l l r

r

y
l l

r

r l
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Tutorial Problem for Explicit Liveness (3)

• Compute explicit liveness for the program.

• Are the following access paths live at node 1?
Show the corresponding execution sequence
of statements

P1 : y m l
P2 : y l n m
P3 : y l n l
P4 : y n l n

x = z1

x=y .l2

x .n=y .m3

y=x .n4

use x .d5
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Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.
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• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely
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Consider link
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Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely
dereferenced

Consider link
aliases at p

Cannot be hoisted and is
not redefined at p
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Availability and Anticipability Analyses

• ρ is available at program point p if the target of each prefix of ρ is guaranteed
to be created along every control flow path reaching p.

• ρ is anticipable at program point p if the target of each prefix of ρ is
guaranteed to be dereferenced along every control flow path starting at p.
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Availability and Anticipability Analyses

• ρ is available at program point p if the target of each prefix of ρ is guaranteed
to be created along every control flow path reaching p.

• ρ is anticipable at program point p if the target of each prefix of ρ is
guaranteed to be dereferenced along every control flow path starting at p.

• Finiteness.

◦ An anticipable (available) access path must be anticipable (available)
along every paths. Thus unbounded paths arising out of loops cannot be
anticipable (available).

◦ Due to “every control flow path nature”, computation of anticipable and
available access paths uses ∩ as the confluence. Thus the sets are
bounded.

⇒ No need of access graphs.
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Transfer in Availability and Anticipability Analysis

The essential idea of the transfer of access paths remains same

• Transfer in Availability Analysis is from the RHS to the LHS

ρl = ρr

ρr → σ available here

ρl → σ available here

• Transfer in Anticipability Analysis is from the LHS to the RHS

ρl = ρr

ρr → σ anticipable here

ρl → σ anticipable here

86/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Availability Analysis of Example Program

1 w = x 1

∅

∅

2 while (x.data < max) 2

{x}

3 x = x.rptr 3

{x}

∅

4 y = x.lptr 4

{x}

5 z = New class of z 5

{x}

6 y = y.lptr 6

{x , z}

7 z.sum = x.data + y.data 7

{x , z}

{x , y , z}
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Anticipability Analysis of Example Program

1 w = x 1

{x}

{x}

2 while (x.data < max) 2

{x}

3 x = x.rptr 3

{x , x rptr }

{x}

4 y = x.lptr 4

{x , x lptr, x lptr lptr }

5 z = New class of z 5

{x , y , y lptr }

6 y = y.lptr 6

{x , y , y lptr, z}

7 z.sum = x.data + y.data 7

{x , y , z}

∅
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Live and Accessible Paths

1 w = x 1

x r3 l4 l6

x r3 l4 l6 {x}

{x}

2 while (x.data < max) 2

x r3 l4 l6

{x}

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

{x , x rptr }

{x}

4 y = x.lptr 4

x l4 l6

{x , x lptr, x lptr lptr }

5 z = New class of z 5

x y l6 {x , y , y lptr }

6 y = y.lptr 6

x y l6 z{x , y , y lptr, z}

7 z.sum = x.data + y.data 7

x y z {x , y , z}

{x , y , z}
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Creating null Assignments from Live and Accessible Paths

1 w = x 1

y = z = null

2 while (x.data < max) 2

w = null

3 x = x.rptr 3

x.lptr = null

4 y = x.lptr 4

x.rptr = x.lptr.rptr = null
x.lptr.lptr.lptr = null
x.lptr.lptr.rptr = null

5 z = New class of z 5

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

6 y = y.lptr 6

z.lptr = z.rptr = null

7 z.sum = x.data + y.data 7

y.lptr = y.rptr = null

x = y = z = null 90/96
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The Resulting Program

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x

p1

p3

x p3 t

x p3

x

• The program allocates x p in one
iteration and uses it in the next
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1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x

p1

p3

x p3 t

x p3
p1

p3

x

p1

p3

• The program allocates x p in one
iteration and uses it in the next
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

x

t

p p p

Out1

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

x

t

p
p

Out2

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

• x p p is live at Out2

x p p p is dead at Out2

• First p used in statement 3

Second p used in statement 4

• Third p is reallocated
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Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x . . . . 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

Second occurrence of a dereference

does not necessarily mean an

unbounded number of repetitions!

x

t

p
p

Out2

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

• x p p is live at Out2

x p p p is dead at Out2

• First p used in statement 3

Second p used in statement 4

• Third p is reallocated
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Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3

93/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1
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Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

f1(In2) ⊎ f1(In4)
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

x r4
n6 n7

n5

f1(In2) ⊎ f1(In4)

93/96



IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

x r4
n6 n7

n5

f1(In2) ⊎ f1(In4)

f1
(
In2 ⊎ In4

)
⊏ f1

(
In2

)
⊎ f1

(
In4

)

Access path x r n r (shown in red color) is
a spurious access path that arises due to ⊎ and
is not removed by the assignment in node 1
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1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

x r4
n6 n7

n5

f1
(
In2 ⊎ In4

)
⊏ f1

(
In2

)
⊎ f1

(
In4

)

Access path x r n r (shown in red color) is
a spurious access path that arises due to ⊎ and
is not removed by the assignment in node 1

Node n6 that comes after r4 and node n6 that
comes after n2 are different memory locations
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Issues Not Covered

• Precision of information

◦ Cyclic Data Structures
◦ Eliminating Redundant null Assignments

• Properties of Data Flow Analysis:

Monotonicity, Boundedness, Complexity

• Interprocedural Analysis

• Extensions for C/C++

• Formulation for functional languages

• Issues that need to be researched: Good alias analysis of heap
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BTW, What is Static Analysis of Heap?

Static Dynamic
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Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution
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Conclusions

• Unbounded information can be summarized using interesting insights

◦ Contrary to popular perception, heap structure is not arbitrary

Heap manipulations consist of repeating patterns which bear a close
resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings
between access expressions and l-values keep changing
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