
IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Standard Memory Architecture of Programs

Code

Static Data

Stack

Heap

Heap allocation provides the flexibility of

• Variable Sizes. Data structures can grow or
shrink as desired at runtime.

(Not bound to the declarations in program.)

• Variable Lifetimes. Data structures can be
created and destroyed as desired at runtime.

(Not bound to the activations of procedures.)

21/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

22/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Managing Heap Memory

Decision 1: When to Allocate?

• Explicit. Specified in the programs. (eg. Imperative/OO languages)

• Implicit. Decided by the language processors. (eg. Declarative Languages)

Decision 2: When to Deallocate?

• Explicit. Manual Memory Management (eg. C/C++)

• Implicit. Automatic Memory Management aka Garbage Collection (eg.

Java/Declarative languages)

22/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

State of Art in Manual Deallocation

• Memory leaks

10% to 20% of last development effort goes in plugging leaks

• Tool assisted manual plugging

Purify, Electric Fence, RootCause, GlowCode, yakTest, Leak Tracer, BDW Garbage

Collector, mtrace, memwatch, dmalloc etc.

• All leak detectors

◦ are dynamic (and hence specific to execution instances)
◦ generate massive reports to be perused by programmers
◦ usually do not locate last use but only allocation escaping a call

⇒ At which program point should a leak be “plugged”?

23/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

24/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

24/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Garbage Collection ≡ Automatic Deallocation

• Retain active data structure.

Deallocate inactive data structure.

• What is an Active Data Structure?

If an object does not have an access path, (i.e. it is unreachable)

then its memory can be reclaimed.

What if an object has an access path, but is not accessed after the
given program point?

24/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

We use Java style statements for convenience

Read “x.lptr” as “x→lptr

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

25/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

(x.data < MAX)

False

a

i

m

x

y

25/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

(x.data < MAX)

True

b

f
hx

y

25/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

What is Garbage?

1 w = x // x points to ma

2 if (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

The blue nodes will be
used after statement 4

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
Garbage

Garbage

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
hx

y

All white nodes are unused and should be considered garbage
25/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Is Reachable Same as Live?

From www.memorymanagement.org/glossary

live (also known as alive, active) : Memory(2) or an object is live if the program
will read from it in future. The term is often used more broadly to mean reachable.

It is not possible, in general, for garbage collectors to determine exactly which
objects are still live. Instead, they use some approximation to detect objects that
are provably dead, such as those that are not reachable.

Similar terms: reachable. Opposites: dead. See also: undead.

26/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Is Reachable Same as Live?

• Not really. Most of us know that.

Even with the state of art of garbage collection, 24% to 76% unused memory
remains unclaimed

• The state of art compilers, virtual machines, garbage collectors cannot
distinguish between the two

27/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
h

28/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Reachability and Liveness

Some unused memory remains unclaimed be-
cause garbage collectors collect unreachable
memory and not unused (i.e. non-live) memory

For the heap memory on the right

Allocated White + Blue + Brown nodes
Reachable White + Blue nodes

Live Blue nodes
HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

b

f
h

Live ⊆ Reachable ⊆ Allocated

Hence, ¬Live ⊇ ¬Reachable ⊇ ¬Allocated

28/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC FAQ:
http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

X

X

29/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Cedar Mesa Folk Wisdom

Make the unused memory unreachable by setting references to NULL. (GC FAQ:
http://www.iecc.com/gclist/GC-harder.html)

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o
lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

29/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Cedar Mesa Folk Wisdom

• Most promising, simplest to understand, yet the hardest to implement.

• Which references should be set to NULL?

◦ Most approaches rely on feedback from profiling.
◦ No systematic and clean solution.

30/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Distinguishing Between Reachable and Live

The state of art

• Eliminating objects reachable from root variables which are not live.

• Uses liveness data flow analysis of root variables (stack data).

• What about liveness of heap data?

31/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is not executed even once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

a

i

m

32/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed once.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

b

f
h

32/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Applying Cedar Mesa Folk Wisdom to Heap Data

Liveness Analysis of Heap Data

If the while loop is executed twice.

1 w = x // x points to ma

2 while (x.data < MAX)
3 x = x.rptr
4 y = x.lptr

5 z = New class of z
6 y = y.lptr
7 z.sum = x.data + y.data
8 return z.sum

HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

rpt
r

lptr

rptr

lptr

rptr

lptr

lptr

rpt
r

rptr

lptr

rptr

lptr

c
e

32/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

The Moral of the Story

• Mappings between access expressions and l-values keep changing

• This is a rule for heap data

For stack and static data, it is an exception!

• Static analysis of programs has made significant progress for stack and static
data.

What about heap data?

◦ Given two access expressions at a program point, do they have the same
l-value?

◦ Given the same access expression at two program points, does it have
the same l-value?

33/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (1)

y = z = null
1 w = x

w = null
2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum
z = null

34/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is not executed even once

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed once

a

i

m

b

f
hlptr

rp
tr

rpt
r

lptr rptr

lptr

rptr

lptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Our Solution (2)

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

While loop is executed twice

a

i

m

b

f
h

c
e

lptr

rp
tr

rpt
r

lptr rptr

lptr

rpt
r

rptr

35/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

Node i is live but link a → i is nullified

36/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

36/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

36/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

• The memory address that x holds when the
execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only

invariants

36/48

IIT Bombay

cs618: Program Analysis

Topic:

cs618 Introduction

Section:

Classical
Optimizations

Optimizing Heap
Memory Usage

What is Program
Analysis?

Course Details

Some Observations

y = z = null

1 w = x

w = null

2 while (x.data < MAX)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = null

8 return z.sum

z = null HeapStack

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

rptr

lptr

a

i

m
lptr

rpt
r

lptr

lptr

rptr

lptr

rptr

rp
tr

rpt
r

lptr

rptr

New access expressions are created.
Can they cause exceptions?
• The memory address that x holds when the

execution reaches a given program point is
not an invariant of program execution

• Whether we dereference lptr out of x or
rptr out of x at a given program point is an
invariant of program execution

• A static analysis can discover only some

invariants

36/48

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

An Overview of Heap Reference Analysis

• A reference (called a link) can be represented by an access path.

Eg. “x → lptr → rptr”

• A link may be accessed in multiple ways

• Setting links to null

◦ Alias Analysis. Identify all possible ways of accessing a link

◦ Liveness Analysis. For each program point, identify “dead” links
(i.e. links which are not accessed after that program point)

◦ Availability and Anticipability Analyses. Dead links should be reachable
for making null assignment.

◦ Code Transformation. Set “dead” links to null

51/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Assumptions

For simplicity of exposition

• Java model of heap access

◦ Root variables are on stack and represent references to memory in heap.

◦ Root variables cannot be pointed to by any reference.

• Simple extensions for C++

◦ Root variables can be pointed to by other pointers.

◦ Pointer arithmetic is not handled.

52/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #1 : Access Paths Denote Links

x

z

w

y

a

p

q

b

i

c

f

g

h

d

e

j

m

k

l

n

o

lptr

rp
tr

lptr

rptr

lptr

rptr

lptr

lptr

rptr

lptr

rptr

lptr

a

i

m

b

f
h

• Root variables : x , y , z

• Field names : rptr, lptr

• Access path : x rptr lptr

Semantically, sequence of “links”

• Frontier : name of the last link

• Live access path : If the link
corresponding to its frontier is
used in future

53/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for accessing the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

sum = x .rptr.data x ,O1,O2 x , x rptr
if (x .rptr.data < sum) x ,O1,O2 x , x rptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3

54/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

y = x .rptr x ,O1 x , x .rptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3

54/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for copying the contents of the
corresponding target object:

Example
Objects
read

Live access
paths

y = x .rptr x ,O1 x , x .rptr
x .lptr = y x ,O1, y x , y

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3

54/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the
corresponding target object:

Example
Objects
read

Live access
paths

if (x .lptr == null) x ,O1 x , x lptr

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3

54/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

What Makes a Link Live?

Assuming that a statement must be executed, if nullifying a link read in the
statement can change the semantics of the program, then the link is live.

Reading a link for comparing the address of the
corresponding target object:

Example
Objects
read

Live access
paths

if (x .lptr == null) x ,O1 x , x lptr
if (y == x .lptr) x ,O1, y x , x lptr, y

Stack

Heap

w x y z

lptr

rptr
data

lptr

rptr

data

lptr

rptr
data

O1

O2

O3

54/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Liveness Analysis

Statement

Statement

Statement involving
memory references

Statement

Statement

Live Access Paths

Live Access Paths

Effect of the statement on
the access paths

Program Semantic Information

55/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #2 : Transfer of Access Paths

x = x.n

x

r

p qn

s

r

x

p

r

q

s

r

n

. . .= x.r.d

{x , x r}

Analysis

Generated {x , x n, x n r}

Killed {x , x r}

x after the assignment is same
as x n before the assignment

56/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #3 : Liveness Closure Under Link Aliasing

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r

57/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #3 : Liveness Closure Under Link Aliasing

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r

x and y are node aliases

x .n and y .n are link aliases

x n is live ⇒ y n is live

57/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #3 : Liveness Closure Under Link Aliasing

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r

x and y are node aliases

x .n and y .n are link aliases

x n is live ⇒ y n is live

Nullifying y n will have the
side effect of nullifying x n

57/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Explicit and Implicit Liveness

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r
x n is live ⇒ y n is live

58/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Explicit and Implicit Liveness

x = y

. . . = x.n.d

x

y

z c

a b

d

n

r
x n is live ⇒ y n is live

y n is implicitly live
x n is explicitly live

58/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

x

y

t

p

q
p

q

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

x

y

t

p

q
p

q

x

y

t

p

q q
p

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

x

y

t

p

q
p

q

x

y

t

p

q q
p

Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

x

y

t

p

qp
q

x

y

t

p

q q
p

Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

Required Liveness

{y , y q}

{y , y p, y p q}

{x , y , t, t q }

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

x

y

t

p

q
p

q

x

y

t

p

q q
p

Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

Required Liveness

{y , y q}

{y , y p, y p q}

{x , y , t, t q }

Spurious

Missing

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #4: Aliasing is Required with Explicit Liveness

1 x = y 1

2 x.p = t 2

3 y = y.p 3

4 use y.q.d 4

Explicit Liveness

{y , y q}

{y , y p, y p q}

{x , y , y p, y p q }
x

y

t

p p

q q

x

y

t

p

q
p

q

x

y

t

p

q q
p

Effect of Aliasing
y p ≡ x p

y p q ≡ x p q

Required Liveness

{y , y q}

{y , y p, y p q}

{x , y , t, t q }

Spurious

Missing

The need of link alias closure of LHS

• Transferring liveness to RHS (soundness)

• Killing liveness (precision)

Link alias closure of RHS can be computed later
for implicit liveness but transfer and killing can-
not wait

59/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Notation for Defining Flow Functions for Explicit Liveness

• Basic entities

◦ Variables u, v ∈ Var

◦ Pointer variables w , x , y , z ∈ P ⊆ Var

◦ Pointer fields f , g , h ∈ pF

◦ Non-pointer fields a, b, c , d ∈ npF

• Additional notation

◦ Sequence of pointer fields σ ∈ pF ∗ (could be ǫ)

◦ Access paths ρ ∈ P× pF ∗

Example: {x , x f , x f g}

◦ Summarized access paths rooted at x or x σ for a given x and σ

− x ∗ = {x σ | σ ∈ pF ∗}

− x σ ∗ = {x σ σ
′ | σ′ ∈ pF∗}

60/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Data Flow Equations for Explicit Liveness Analysis

Inn =
(
Outn − Killn(Outn)

)
∪ Genn(Outn)

Outn =




BI n is End⋃
s∈succ(n)

Ins otherwise

61/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

62/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

May link aliasing for soundness

62/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

May link aliasing for soundness Must link aliasing for precision

62/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

• Why is y /∈ Genn(X) for x .f = y when x /∈ X?

Strong liveness

• Why is y /∈ Genn(X) for x = y .f when x σ /∈ X?

Strong liveness

• Why is x /∈ Genn(X) for x .f = y?

◦ If x f σ /∈ Outn, we can do dead code elimination
◦ If ∃ x f σ ∈ Outn, then ∃ x ∈ Outn

It will not be killed, so no need of x ∈ Genn

Unlike LFCPA, x .f cannot point to a variable whose pointees
are to be found

We are using a storeless abstraction of memory, LFCPA uses a
store-based abstraction

62/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

y

x
n

r r r

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

y

x
n

r r r

y

x
n

r r r

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

x n extended with r

y

x
n

r r r

y

x
n

r r r

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

{x , x n, x n r}

y

x
n

r r r

y

x
n

r r r

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

{x , x n, x n r}

Anticipability of Heap References: An All Paths problem

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x n, x n r}

Anticipability of Heap References: An All Paths problem

{x , x r} ∩ {x , x n, x n r}

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x n, x n r}

Anticipability of Heap References: An All Paths problem

{x}

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

Anticipability of Heap References: An All Paths problem

{x}

{x , x n}

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x r}

{x , x n, x n r}

Liveness of Heap References: An Any Path problem

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

{x , x n, x n r}

Liveness of Heap References: An Any Path problem

{x , x r} ∪ {x , x n, x n r}

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

Liveness of Heap References: An Any Path problem

{x , x r , x n, x n r}

x n extended with r , n, and n r

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

Liveness of Heap References: An Any Path problem

{x , x r , x n, x n r}

{x , x n, x n n, x n r , x n n r}

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Computing Explicit Liveness Using Sets of Access Paths

Analysis x = x .n

. . . = x .r .d

{x , x r}

Liveness of Heap References: An Any Path problem

{x , x n, x n r , x n n r , x n · · · n r}

{x , x r , x n, x n r , x n · · · n r}

Infinite Number of Unbounded Access Paths

63/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #5: Using Graphs as Data Flow Values

Analysis x = x .n

. . . = x .r .d

x r
r

x n r

n
n r

x n r

n
n r

Finite Number of Bounded Structures

64/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct

65/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct
(pattern of subsequent dereferences could be distinct)

65/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

(pattern of subsequent dereferences remains same)

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct
(pattern of subsequent dereferences could be distinct)

65/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Key Idea #6 : Include Program Point in Graphs

1 x = x.n

{x , x n, x n n, x n n n, . . .}

Different occurrences of n’s in an access path are

Indistinguishable

(pattern of subsequent dereferences remains same)

Access Graph : x n1 nn

1 x = x.n

2 . . . = x.n.r.d

{x , x n, x n n, x n n r}

Different occurrences of n’s in an access path are

Distinct
(pattern of subsequent dereferences could be distinct)

Access Graph : x n1 n2 r2n n r

65/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4

66/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4

G4x n4
nG4 x n4

n

66/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4

G4x n4
nG4 x n4

n

G3

x r3 n4
r n

66/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4

G4x n4
nG4 x n4

n

G3

x r3 n4
r n

G2

x n4

n2

n
n

66/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

1 x = x.r 1

2 x = x.n.d 2 3 x = x.r 3

4 x = x.n.d 4

G4x n4
nG4 x n4

n

G3

x r3 n4
r n

G2

x n4

n2

n
n

G1

x

n2

r3 n4
r n

n

n

Analysis

G1 = G2 ⊎ G3

66/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

Iteration #1

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

Iteration #1

x r2
r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

Iteration #1

x r2
r

x r2
r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

Iteration #1

x r2
r

x r2
r

x n1
n r2

r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

Iteration #1

x r2
r

x r2
r

x n1
n r2

r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

Iteration #2

x r2
r ⋃

G x n1
n r2

r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

Iteration #2

x n1
n r2

r

r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

Iteration #2

x n1
n r2

r

r

x n1
n n1

n
r2

r

r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

Iteration #2

x n1
n r2

r

r

x n1
n r2

r

n

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

r

Iteration #3

x n1
n r2

r

n

⋃
G x n1

n r2
r

n

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

r

Iteration #3

x n1
n r2

r

n

x n1
n r2

r

r

n

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

r

Iteration #3

x n1
n r2

r

r

n

x n1
n n1

n
n

r2
r

r

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Inclusion of Program Point Facilitates Summarization

Analysis 1 x = x .n 1

2 . . . = x .r .d 2

x r2
r

x r2
r

x n1
n r2

r

r

Iteration #3

x n1
n r2

r

n

x n1
n r2

r

r

n

67/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment

68/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

x

y

l

r

n

68/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

x

y

l

r

n

Access Graphs

x l2 n2
l n

y r2 n2
r n

68/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

(Store-based View)

x

y

l

r

n

Access Graphs

x l2 n2
l n

y r2 n2
r n

• Memory Graph: Nodes represent locations and edges represent
links (i.e. pointers).

68/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph and Memory Graph

x .l = y .r 1

if (x .l .n == y .r .n) 2

Program Fragment Memory Graph

(Store-based View)

x

y

l

r

n

Access Graphs

(Storeless View)

x l2 n2
l n

y r2 n2
r n

• Memory Graph: Nodes represent locations and edges represent
links (i.e. pointers).

• Access Graphs: Nodes represent dereference of links at
particular statements. Memory locations are implicit.

68/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Lattice of Access Graphs

• Finite number of nodes in an access graph for a variable

• ⊎ induces a partial order on access graphs

⇒ a finite (and hence complete) lattice

⇒ All standard results of classical data flow analysis can be extended to
this analysis.

Termination and boundedness, convergence on MFP, complexity etc.

69/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations

• Union. G ⊎ G ′

• Path Removal

G ⊖ R removes those access paths in G which have ρ ∈ R as a prefix

• Factorization (/)

• Extension

70/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Defining Factorization

Given statement x .n = y , what should be the result of transfer?

Live AP Memory Graph
Result of
Transfer Remainder

x n r x

y

n r
y r

r (LHS is contained in
the live access path)

x n x

y

n r
y

ǫ (LHS is contained in
the live access path)

x x

y

n r
no transfer

?? (LHS is not contained
in the live access path)

71/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Defining Factorization

Given statement x .n = y , what should be the result of transfer?

Live AP Memory Graph
Result of
Transfer Remainder

x n r x

y

n r
y r

r (LHS is contained in
the live access path)

x n x

y

n r
y

ǫ (LHS is contained in
the live access path)

x x

y

n r
no transfer

?? (LHS is not contained
in the live access path)
Quotient is empty
So no remainder

71/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Semantics of Access Graph Operations

• P (G) is the set of all paths in graph G

• P (G ,M) is the set of paths in G terminating on nodes in M

• S is the set of remainder graphs

• P (S) is the set of all paths in all remainder graphs in S

Operation Access Paths

Union G3 = G1 ⊎ G2 P (G3) ⊇ P (G1) ∪ P (G2)

Path Removal G2 = G1 ⊖ X
P (G2) ⊇ P (G1) −

{ρ σ | ρ ∈ X , ρ σ ∈ P (G1)}

Factorization S = G1/ρ P (S) = {σ | ρ σ ∈ P (G1)}

Extension

G2 = (G1,M)# ∅ P (G2) = ∅

G2 = (G1,M)# S
P (G2) ⊇ P (G1) ∪

{ρ σ | ρ ∈ P (G1,M), σ ∈ P (S)}

72/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Semantics of Access Graph Operations

• P (G) is the set of all paths in graph G

• P (G ,M) is the set of paths in G terminating on nodes in M

• S is the set of remainder graphs

• P (S) is the set of all paths in all remainder graphs in S

Operation Access Paths

Union G3 = G1 ⊎ G2 P (G3) ⊇ P (G1) ∪ P (G2)

Path Removal G2 = G1 ⊖ X
P (G2) ⊇ P (G1) −

{ρ σ | ρ ∈ X , ρ σ ∈ P (G1)}

Factorization S = G1/ρ P (S) = {σ | ρ σ ∈ P (G1)}

Extension

G2 = (G1,M)# ∅ P (G2) = ∅

G2 = (G1,M)# S
P (G2) ⊇ P (G1) ∪

{ρ σ | ρ ∈ P (G1,M), σ ∈ P (S)}

σ represents remainder

72/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

73/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

73/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

73/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

73/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

(g3, {l1})# {rg1}= g4
(g3, {x , l1})# {rg1, rg2}= g6

(g2, {r2})# {ǫRG}= g2
(g2, {r2})# ∅= EG

73/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Access Graph Operations: Examples

Program Access Graphs Remainder
Graphs

1 x = x .l 1

2 y = x .r .d 2

g1
x

g2
x r2

g3
x l1

g4
x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2
l1 r2

Union Path Removal Factorisation Extension

g3 ⊎ g4 = g4
g2 ⊎ g4 = g5
g5 ⊎ g4 = g5
g5 ⊎ g6 = g6

g6 ⊖ {x l}= g2
g5 ⊖ {x}= EG

g4 ⊖ {x r}= g4
g4 ⊖ {x l}= g1

g2/x = {rg1}
g5/x = {rg1, rg2}

g5/x r = {ǫRG}
g4/x r = ∅

(g3, {l1})# {rg1}= g4
(g3, {x , l1})# {rg1, rg2}= g6

(g2, {r2})# {ǫRG}= g2
(g2, {r2})# ∅= EG

Remainder is empty Quotient is empty

73/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Data Flow Equations for Explicit Liveness Analysis: Access
Graphs Version

Inn =
(
Outn ⊖ Killn(Outn)

)
⊎ Genn(Outn)

Outn =




BI n is End⊎
s∈succ(n)

Ins otherwise

• Inn, Outn, and Genn are access graphs

• Killn is a set of access paths

74/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

75/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

May link aliasing for soundness

75/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis: Access Paths
Version

Let A denote May Aliases at the exit of node n

Statement n Genn(X) Killn(X)

x = y {y σ | x σ ∈ X} x ∗

x = y .f {y f σ | x σ ∈ X} x ∗

x .f = y
{
y σ

∣∣∣ z f σ ∈ X , z ∈ A(x)
} ⋃

z∈Must(A)(x)

z f ∗

x = new ∅ x ∗

x = null ∅ x ∗

other ∅ ∅

May link aliasing for soundness Must link aliasing for precision

75/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Flow Functions for Explicit Liveness Analysis: Access Graphs
Version

• A denotes May Aliases at the exit of node n

• mkGraph(ρ) creates an access graph for access path ρ

Statement n Genn(X) Killn(X)

x = y mkGraph(y)#(X/x) {x}

x = y .f mkGraph(y f)#(X/x) {x}

x .f = y mkGraph(y)#

(⋃
z∈A(x)

(X/(z f))

)
{z f | z ∈ Must(A)(x)}

x = new ∅ {x}

x = null ∅ {x}

other ∅ ∅

76/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Liveness Analysis of Example Program: Ist Iteration

1 w = x 1

x l4 l6

x l4 l6

2 while (x.data < max) 2

x l4 l6

3 x = x.rptr 3

EG

EG

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z

77/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Liveness Analysis of Example Program: 2nd Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z

78/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Liveness Analysis of Example Program: 3rd Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z

79/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Liveness Analysis of Example Program: 4th Iteration

1 w = x 1

x r3 l4 l6

x r3 l4 l6

2 while (x.data < max) 2

x r3 l4 l6

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

4 y = x.lptr 4

x l4 l6

5 z = New class of z 5

x y l6

6 y = y.lptr 6

x y l6 z

7 z.sum = x.data + y.data 7

x y z

80/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

81/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

Why are the access
graphs for programs
B and D identical?

81/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

The final magic!!

Rotate each picture
anti-clockwise by 90o and
compare it with its access graph

81/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Tutorial Problem for Explicit Liveness (1)

Construct access graphs at the entry of block 1 for the following programs

A B C

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

D E F

1 x = x .n 1

2 x = x .n 1

3 Use x .r .d 1

4 y = x .r 4

x = x .n1

x = x .n2 x = x .l 3

Use x .r .d4

x = x .n1

x = x .n2 x = x .l 3

y = x .r4

5 Use x .r .d 5

The final magic!!

Rotate each picture
anti-clockwise by 90o and
compare it with its access graph

The structure of access graph of
variable x is identical to the
control flow structure between
pointer assignments of x

81/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Tutorial Problem for Explicit Liveness (2)

• Unfortunately the student who constructed these access graphs forgot to
attach statement numbers as subscripts to node labels and has misplaced the
programs which gave rise to these graphs

• Please help her by constructing CFGs for which these access graphs represent
explicit liveness at some program point in the CFGs

x l l r

r

y
l l

r

r l

82/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Tutorial Problem for Explicit Liveness (3)

• Compute explicit liveness for the program.

• Are the following access paths live at node 1?
Show the corresponding execution sequence
of statements

P1 : y m l
P2 : y l n m
P3 : y l n l
P4 : y n l n

x = z1

x=y .l2

x .n=y .m3

y=x .n4

use x .d5

83/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

84/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely
dereferenced

84/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely
dereferenced

Consider link
aliases at p

84/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Which Access Paths Can be Nullified?

• Consider extensions of accessible paths for nullification.

Let ρ be accessible at p (i.e. available or anticipable)

for each reference field f of the object pointed to by ρ

if ρ f is not live at p then

Insert ρ f = null at p subject to profitability

• For simple access paths, ρ is empty and f is the root variable name.

Can be safely
dereferenced

Consider link
aliases at p

Cannot be hoisted and is
not redefined at p

84/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Availability and Anticipability Analyses

• ρ is available at program point p if the target of each prefix of ρ is guaranteed
to be created along every control flow path reaching p.

• ρ is anticipable at program point p if the target of each prefix of ρ is
guaranteed to be dereferenced along every control flow path starting at p.

85/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Availability and Anticipability Analyses

• ρ is available at program point p if the target of each prefix of ρ is guaranteed
to be created along every control flow path reaching p.

• ρ is anticipable at program point p if the target of each prefix of ρ is
guaranteed to be dereferenced along every control flow path starting at p.

• Finiteness.

◦ An anticipable (available) access path must be anticipable (available)
along every paths. Thus unbounded paths arising out of loops cannot be
anticipable (available).

◦ Due to “every control flow path nature”, computation of anticipable and
available access paths uses ∩ as the confluence. Thus the sets are
bounded.

⇒ No need of access graphs.

85/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Transfer in Availability and Anticipability Analysis

The essential idea of the transfer of access paths remains same

• Transfer in Availability Analysis is from the RHS to the LHS

ρl = ρr

ρr → σ available here

ρl → σ available here

• Transfer in Anticipability Analysis is from the LHS to the RHS

ρl = ρr

ρr → σ anticipable here

ρl → σ anticipable here

86/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Availability Analysis of Example Program

1 w = x 1

∅

∅

2 while (x.data < max) 2

{x}

3 x = x.rptr 3

{x}

∅

4 y = x.lptr 4

{x}

5 z = New class of z 5

{x}

6 y = y.lptr 6

{x , z}

7 z.sum = x.data + y.data 7

{x , z}

{x , y , z}
87/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Anticipability Analysis of Example Program

1 w = x 1

{x}

{x}

2 while (x.data < max) 2

{x}

3 x = x.rptr 3

{x , x rptr }

{x}

4 y = x.lptr 4

{x , x lptr, x lptr lptr }

5 z = New class of z 5

{x , y , y lptr }

6 y = y.lptr 6

{x , y , y lptr, z}

7 z.sum = x.data + y.data 7

{x , y , z}

∅
88/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Live and Accessible Paths

1 w = x 1

x r3 l4 l6

x r3 l4 l6 {x}

{x}

2 while (x.data < max) 2

x r3 l4 l6

{x}

3 x = x.rptr 3

x r3 l4 l6

x r3 l4 l6

{x , x rptr }

{x}

4 y = x.lptr 4

x l4 l6

{x , x lptr, x lptr lptr }

5 z = New class of z 5

x y l6 {x , y , y lptr }

6 y = y.lptr 6

x y l6 z{x , y , y lptr, z}

7 z.sum = x.data + y.data 7

x y z {x , y , z}

{x , y , z}
89/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Creating null Assignments from Live and Accessible Paths

1 w = x 1

y = z = null

2 while (x.data < max) 2

w = null

3 x = x.rptr 3

x.lptr = null

4 y = x.lptr 4

x.rptr = x.lptr.rptr = null
x.lptr.lptr.lptr = null
x.lptr.lptr.rptr = null

5 z = New class of z 5

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

6 y = y.lptr 6

z.lptr = z.rptr = null

7 z.sum = x.data + y.data 7

y.lptr = y.rptr = null

x = y = z = null 90/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

The Resulting Program

y = z = null

1 w = x

w = null

2 while (x.data < max)

{ x.lptr = null

3 x = x.rptr }

x.rptr = x.lptr.rptr = null

x.lptr.lptr.lptr = null

x.lptr.lptr.rptr = null

4 y = x.lptr

x.lptr = y.rptr = null

y.lptr.lptr = y.lptr.rptr = null

5 z = New class of z

z.lptr = z.rptr = null

6 y = y.lptr

y.lptr = y.rptr = null

7 z.sum = x.data + y.data

x = y = z = null
91/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x 4

x

p1

p3

x p3 t

x p3

x

• The program allocates x p in one
iteration and uses it in the next

92/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x 4

x

p1

p3

x p3 t

x p3
p1

p3

x

p1

p3

• The program allocates x p in one
iteration and uses it in the next

92/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

92/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

x

t

p p p

Out1

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

92/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

x

t

p
p

Out2

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

• x p p is live at Out2

x p p p is dead at Out2

• First p used in statement 3

Second p used in statement 4

• Third p is reallocated

92/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Overapproximation Caused by Our Summarization

1 t = x .p 1

2 t.p = new 2

3 x = x .p 3

4 x 4

x

p1

p3

x p3 t

x p3 p1

x

p1

p3

Second occurrence of a dereference

does not necessarily mean an

unbounded number of repetitions!

x

t

p
p

Out2

• The program allocates x p in one
iteration and uses it in the next

• Only x p p is live at Out2

• x p p is live at Out2

x p p p is dead at Out2

• First p used in statement 3

Second p used in statement 4

• Third p is reallocated

92/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8
93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

f1(In2) ⊎ f1(In4)

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

x r4
n6 n7

n5

f1(In2) ⊎ f1(In4)

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

f1
(
In2 ⊎ In4

)

remove x n ∗ due to
the assignment in node 1

x r4
n6 n7

n5

f1(In2) ⊎ f1(In4)

f1
(
In2 ⊎ In4

)
⊏ f1

(
In2

)
⊎ f1

(
In4

)

Access path x r n r (shown in red color) is
a spurious access path that arises due to ⊎ and
is not removed by the assignment in node 1

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Non-Distributivity of Explicit Liveness Analysis

1 x .n = null 1

2 x = x .n 2 4 x = x .r 4

3 x .n.n = null 3 5 x .n.r = null 5

6 x = x .n 6

7 use x .n.d 7 8 use x .r .d 8

x n7 x r8

x n6
r8

n7

x
n6 r8

n3
x

n6 n7

n5

x n2
n6 r8

n3
x r4

n6 n7

n5 x
n2

n3

r4
n5

n6
n7

r8

Out1

x r4
n5

n6
n7

r8

x r4
n6 n7

n5

f1
(
In2 ⊎ In4

)
⊏ f1

(
In2

)
⊎ f1

(
In4

)

Access path x r n r (shown in red color) is
a spurious access path that arises due to ⊎ and
is not removed by the assignment in node 1

Node n6 that comes after r4 and node n6 that
comes after n2 are different memory locations

93/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Issues Not Covered

• Precision of information

◦ Cyclic Data Structures
◦ Eliminating Redundant null Assignments

• Properties of Data Flow Analysis:

Monotonicity, Boundedness, Complexity

• Interprocedural Analysis

• Extensions for C/C++

• Formulation for functional languages

• Issues that need to be researched: Good alias analysis of heap

94/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

BTW, What is Static Analysis of Heap?

Static Dynamic

95/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

95/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

95/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

95/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Profiling

95/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

BTW, What is Static Analysis of Heap?

Abstract, Bounded,
Single Instance

Concrete, Unbounded,
Infinitely Many

Static Dynamic

Program Code
Program ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram ExecutionProgram Execution

Summary
Heap Data

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory
Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

Heap MemoryHeap MemoryHeap MemoryHeap MemoryHeap MemoryHeap Memory

?

Static
Analysis

95/96

IIT Bombay

cs618: Program Analysis

Topic:

General Frameworks

Section:

Precise Modelling of
General Flows

Constant Propagation

Strongly Live
Variables Analysis

Pointer Analysis

Heap Reference
Analysis

Conclusions

• Unbounded information can be summarized using interesting insights

◦ Contrary to popular perception, heap structure is not arbitrary

Heap manipulations consist of repeating patterns which bear a close
resemblance to program structure

Analysis of heap data is possible despite the fact that the mappings
between access expressions and l-values keep changing

96/96

	Optimizing Heap Memory Usage

