
Incremental Machine Descriptions for GCC

Sameera Deshpande Uday P. Khedker
Indian Institute of Technology, Bombay
{sameera,uday}@cse.iitb.ac.in

Abstract
The mechanism of providing machine descriptions to the GCC
framework has been quite successful as demonstrated by a wide
variety of the targets for which a GCC port exists. However, this
mechanism is quite ad hoc and the machine descriptions are dif-
ficult to construct, understand, maintain, and enhance because of
the verbosity, the amount of details, and the repetitiveness. The
publicly available material fails to bring out the exact abstractions
captured by the machine descriptions. There is no systematic way
of constructing machine descriptions and there are no clearguide-
lines on where to begin developing machine description and how to
construct them systematically. This paper proposes a methodology
based on incremental construction of machine descriptionsstarting
from a well defined minimal machine description. We illustrate the
process by constructing machine descriptions with thespim simu-
lator for MIPS architecture as the target.

1. Introduction
The GCC framework generates a compiler for a given architecture
by reading the machine descriptions for that architecture.Although
the mechanism of GCC machine descriptions seems to be practi-
cally useful, it is less than satisfactory primarily because it is quite
ad hoc. As a consequence, the machine descriptions are difficult to
construct, understand, maintain, and enhance because of the ver-
bosity, the amount of details, and the repetitiveness. The sheer size
of machine descriptions is formidable. For example, the directory
gcc/config/i386 in gcc-4.1.1 contains 63103 lines. Further, a
simple comparison of macros defined in various machine descrip-
tions reveals the fact that among the descriptions available in any
distribution, there are more variations than similarities(63 macros
are common to all machine descriptions ingcc-4.1.1 whereas,
together, they define close to 769 distinct macros).

Unfortunately, not much discussion seems to be centered around
these concerns. Most explanations of GCC which are publicly
available (including those presented through special workshops and
tutorials) describe the build and install process of GCC, the GCC
front end, the IRs used by GCC and their manipulations by the opti-
mization phases in GCC, and the structure of machine descriptions
required by GCC. Although several dozen actual machine descrip-
tions are readily available, one does not come across much infor-
mation on the insights behind machine descriptions. As a conse-
quence, rather than developing a new port from scratch, in practice,

[Copyright notice will appear here once ’preprint’ option is removed.]

a new port is started with an existing machine description for an
architecture of a machine that is close to the new target. This is a
tedious and error-prone process resulting in machine descriptions
are not easy to understand or modify.

Thus it become important to address the following questions:

• Is there a systematic way of developing GCC machine descrip-
tions? Can one define the notion of theminimal machine de-
scriptions for a given target to which features can be added in
small well-defined steps?

• Can one create more easily understandable abstractions of GCC
machine descriptions?

• Can the GCC machine descriptions be any simpler?

As a part of our long term investigations aimed at answering
the above questions, this paper attempts to answer the first question
above. At the moment, the proposed methodology does not address
the issue of the quality of generated code and restricts itself to
understanding the abstractions in the machine descriptions. More
details of the proposed methodology are available the web page of
the GCC workshop [1].

For simplicity, we restrict the notion of compilation to thepro-
cess of generating assembly code and ignore the subsequent steps.

2. Incremental Construction of Machine
Descriptions

The process of compilation and its implications on retargetability
are influenced by the following three factors:

1. The phase and pass structure of a compiler.

This comprises of various transformations that the source pro-
gram undergoes as illustrated in standard textbooks [2]. These
transformations can be either

(a) transformations within the same intermediate representation
(IR), or

(b) transformations to convert the program from one IR to an-
other.

2. The features of the source language.

These include the primitive operators supported by language,
control structures, calling conventions, scope rules, data types
supported by the language etc.

3. The features of the target architecture.

These include the instruction set, registers, addressing modes,
data and memory layout etc.

These factors are heavily dependent on each other and their influ-
ence on machine descriptions cannot be studied in isolationfrom
each other. Even if other factors are abstracted out, the influence of
a given factor is not easy to understand because:

1 2007/8/7

• Compilation phases may be independent in principle, but in
practice, they are related by IRs which are quite complex and
heavily dependent on the needs of different phases.

• Translation of many source features depend upon other source
features.

• Many target architecture features are dependent on each other.

As a consequence, it does not seem possible to systematically
classify the information present in machine descriptions in order
to discover the abstractions present in them.

Instead of the “declarative” approach of explicitly defining ab-
stractions present in machine descriptions, we present an “oper-
ational” approach of systematically constructing machinedescrip-
tions such that the process uncovers the abstractions. Thisapproach
is based on the following two crucial observations:

• Unless optimization is the main concern, source language fea-
tures influence the machine descriptions more than the target
language features or the phase structure of a compiler.

• It is not the partitioning of the source language features but
their incremental accumulation which influences the machine
descriptions systematically. In particular, if the increments are
identified properly, the corresponding increments in machine
description are monotonic in that no feature described earlier
needs to change (unless a dummy value had to be defined for
it.)

In this method, we identify theminimal machine description as
the specification of target architecture features that are absolutely
necessary to build the compiler. The compiler built might not com-
pile even a single program, but the executablexgcc is generated. It
is minimal because no redundant or extra information is provided
to GCC in this level and even if single macro definition or RTL
pattern is removed from the description, compiler fails to build. We
call this minimal machine description asLevel 0 machine descrip-
tion.

The subsequent levels are defined as follows and have been
illustrated in Figure 1:

• Level 1: Assignment statements involving on integer constants
and variables.

• Level 2: Arithmetic operations on integer data type.

• Level 3: Function handling and calling conventions.

• Level 4: Control structures.

We illustrate this process for thespim simulator of MIPS [3].
We identify the minimum information required in machine de-

scriptions to support each level. The machine description for a
given level is said to support that level if

• The compiler for that level gets built successfully.

• Any program written using source language features supported
by corresponding level can be successfully compiled.

• Generated assembly program is executed correctly inspim.

Once the basic machine description with all language features
is written, the advanced target features can be added on top of the
machine description incrementally.

3. spim Machine Description for Level 0
The goal of level 0 is to build the minimal machine description
successfully. We further divide the level 0 machine descriptions
such that

• Level 0.0 merely builds GCC successfully forspim. Thexgcc
built does not compile even a single program.

Other data types

Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving Integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5

Figure 1. Systematic Development of Machine Description

• Level 0.1 adds small increment to level 0.0 so as to build GCC
successfully such that the generatedxgcc compiles empty void
functions of the form:

void fun(int param1, int param2,...,int paramN)
{
int var1,var2,..,varM;
}

As long as parameters and local variables are not referred, the
xgcc built for level 0.1 can compile the program successfully.
As level 0 does not support any high level language statement,
the program containing statement list are bound to fail for level
0.1. When return type is changed from void to int, GCC tries
to generate RTL to move dummy return value into return value
register$v0, for which assignment statement is required, which
is not supported in this level. Hence, only empty void functions
can be compiled.

• Level 0.2 machine description incorporates complete activation
record structure. Although it is irrelevant for compiling empty
void functions, it sets stage for level 1 compiler for which
knowledge of location of variables being used in assignment
operation is necessary, to generate semantically correct code.

Although level 0 supports minimal functions, the retargetability
mechanism in GCC still requires plenty of details to be supplied to
the compiler generation framework. This information is divided in
the following categories:

1. Memory Layout

2. Supported Instructions

3. Registers

4. Addressing Modes

5. Activation Record Conventions

We describe them in the following subsections.

3.1 Memory layout issues

In memory layout related issues, following details are needed:

Bit, byte and word endianness:Thespim simulator assumes the
endianness of the underlying architecture on which the simula-
tor is being executed. For our experiments, the underlying ar-

2 2007/8/7

chitecture isi*86 and all entities are ordered in little endian
manner.

Alignment boundaries: Alignment is not enforced strictly by the
spim simulator. We have chosen to align stack data at 64 bits
whereas words are aligned to 32 bits.

3.2 Supported Instructions

Level 0.0 does not support any high level language statement. Yet
some details are required because of the following two reasons:

• Since no operation needs to be supported, in principle, the
.md can be empty. However, this results in the declaration of
initialized empty arrayinsn conditions1 in the generated
source. As a result, the build for level 0.0 compiler crashes
due to-pedantic option supplied by the build process to the
native C compiler. We overcome this problem by including the
following dummy pattern in the.md file.

(define_insn "dummy_pattern"
[(reg:SI 0)]
"1"
"This stmnt should not be emitted!"

)
There is nothing else in the.md file.

• Since the compiler adds a common exit to each function, it
expects the presence of direct and indirect jump instructions.
Since our programs are empty programs, the jump to common
exit gets optimized away in later RTL passes. Therefore, jump
and indirect jump patterns need not exist in the.md file. How-
ever, we have to make GCC believe that the jump instructions
have been provided. We do so by providing dummy defini-
tions of macros and functions for which build process crashes.
Though the macroCODE FOR indirect jump and functions
gen jump andgen indirect jump have their own semantics
in GCC, for level 0.0 we write dummy definitions for the macro
CODE FOR indirect jump as

#define CODE_FOR_indirect_jump 8

GCC generates functionsgen jump andgen indirect jump
from the patterns in the.md file associated with the standard
pattern namesindirect jump andjump. Since we do not have
these patterns, we include dummy definitions shown below in
the.c file.

rtx gen_jump
(rtx operand0 ATTRIBUTE_UNUSED)
{

return 0;
}

rtx gen_indirect_jump
(rtx operand0 ATTRIBUTE_UNUSED)
{

return 0;
}

Our.md file continues to have only the dummy pattern in level
0.0.

1 This array holds condition codes for various patterns defined in the.md
file.

For level 0.1, the compiler requires following additional informa-
tion in order to compile an empty function to a valid assemblypro-
gram accepted byspim simulator:

• Assembly formats

• Jump instructions.

The dummy definitions for macroCODE FOR indirect jump
and functionsgen jump andgen indirect jump provided in
level 0.0 are not sufficient for compiling void empty programs
and generating the corresponding assembly program. Hence,
we define the patterns forjump andindirect jump in the.md
file as shown below:

(define_insn "jump"
[(set (pc)

(label_ref
(match_operand 0 "" "")))]

""
"j \\t%l0"

)

(define_insn "indirect_jump"
[(set (pc)

(match_operand:SI 0
"register_operand" ""))]

""
"jr \\t%0"

)

• Return instruction.

The GCC standard patternreturn is to be used only if the tar-
get has a single assembly instruction that is sufficient for all the
work of returning from a function. In particular, the instruction
must destroy the activation record. However, inspim, the return
is effected through an indirect jump to the return address regis-
ter$ra. This does not destroy the activation record. Therefore,
instead of using the GCC standard patternreturn, we use the
epilogue standard pattern which emits thespim indirect jump
instruction as a part of dismantling the activation and returning
to the caller.

The full epilogue is required when function calls are fully
supported. Until that stage, the epilogue is gradually built across
levels.

For the present level, we generate the return through standard
patternepilogue as shown below.

(define_expand "epilogue"
[(clobber (const_int 0))]
""
{

spim_epilogue();
DONE;

}
)

void spim_epilogue()
{

emit_jump_insn(gen_IITB_return());
}

(define_insn "IITB_return"
[(return)]
""
"jr \\t\\$ra"

)

3 2007/8/7

All Registers

Available
to compiler

Not available
to compiler

General Floating point

GPR Fixed

Caller
Saved

Callee
saved

Address
registers

data
registers

Figure 2. Register Class Hierarchy

Note that in this level, there is no activation record to be de-
stroyed.

As a side effect of inclusion of jump instruction, the compiler so
generated can also compile the program

void foo()
{

L: goto L;
}

Level 0.2 does not support any additional instruction.

3.3 Addressing Mode Issues

In level 0, onlyjump andindirect jump have been supported.
Hence, the only addressing modes supported in level 0 are

• For address of data: absolute addressing.

• For address of code: absolute and register indirect addressing as
shown below.

- Register indirect addressing, e.g.jr $ra

- Absolute addressing, e.g.j L2

Macro GO IF LEGITIMATE ADDRESS is used for data addresses
and is defined in such a way that no address other than constant
addresses is considered legitimate.

3.4 Register Specific Information

spim contains 32 32-bit general purpose registers[4].

• Register 0 contains value 0.

• Registers$at and$k0, $k1 are reserved as assembler and ker-
nel registers respectively, and hence are not available to com-
piler. We can either remove them completely from specification
or mark them asFIXED REGISTERS.

• Registers$a0 to $a3 an be used to pass arguments to the
function. This is irrelevant till level 0.1 as activation record
related issues are not handled in these levels. For level 0.2, as
all arguments are passed on stack, these registers are used as
other general purpose registers only.

• Registers$t0 to $t9 are caller saved registers. i.e. it is caller’s
responsibility to save these registers, and callee can use these
registers freely. Hence, these registers must be marked as call
clobbered.

Figure 3. Activation Record Design forspim

• Registers$s0 to $s7 are callee saved registers, and they must
be saved by callee’s prologue, and restored back by callee’s
epilogue. As in level 0, no register will be used, prologue and
epilogue need not store any of the registers.

• Registers$gp, $sp and$fp are global pointer registers, stack
pointer and frame pointer respectively.

• $ra is return address register, which is used in function epi-
logue, to return to caller.

These registers can be classified in different groups as per require-
ment. The classification of registers is shown in Figure 2.

3.5 Activation Record Specific Information

Though activation record is not required in level 0, activation record
design is completely orthogonal issue. Hence, we can designactiva-
tion record in level 0.2 which can be used in level 1. The activation
record designed forspim is shown in Figure 3. While describing
activation record to GCC, following information must be provided
through macro definitions:

• Direction of growth of stack frame: pushing a word onto the
stack moves the stack pointer to a smaller address.

• Direction of growth of local variable frame: Local variable
frame grows in same direction of stack.

• Direction of growth of Parameter frame: Parameter frame grows
in opposite direction of growth of stack.

• Position where current stack pointer$sp points: It is assumed
in spim that the stack pointer always points to first empty slot
on the stack.

• Position where current frame pointer$fp points: Because of de-
sign of activation record, the callee saved registers lie between
parameters and local variable frame. As argument pointer and
frame pointer inspim are same, the offset calculation of both,
parameters and local variables is done with reference to the
frame pointer register. However, the variables as well as param-
eters are referred well before register allocation phase. Hence

4 2007/8/7

the computed offsets before register allocation might be differ-
ent from actual offsets after register allocation. In such situa-
tions, we have to make use of dummy frame pointer initially,
which gets eliminated to final frame pointer after register allo-
cation is done. As shown in Figure 3, the dummy frame pointer
points to the location where first local variable is saved.

• Position where current arguments pointer AP points: The argu-
ment pointer points to the location from where first parameter
can be obtained.

• Relative offsets of fields from address registers in activation
record:

- Parameters passed to the function: The first argument’s lo-
cation from argument pointer is specified using the macro
FIRST PARM OFFSET. As shown in the figure, this offset is
0 for spim.

#define FIRST_PARM_OFFSET(FUN) 0

The offset at which outgoing parameters are to be placed
is given by macroSTACK POINTER OFFSET which gives
offset of first parameter to be passed from stack pointer.

#define STACK_POINTER_OFFSET 0

- Callee saved registers: This is callee’s responsibility,and is
handled by function prologue. Even though, this informa-
tion will not be needed until function calls are incorporated
in the language features (which is actually done in level
3), the number of registers stored by callee is required for
proper offset computation of other fields. Hence total num-
ber of registers stored is computed as follows:

int
registers_to_be_saved
(void)
{
int i,num;
for(i=0,num=0;

i<FIRST_PSEUDO_REGISTER;
i++)

{
if(regs_ever_live[i]

&& !call_used_regs[i]
&& !fixed_regs[i])

num++;
}
return num;

}

- Return address: Inspim, return address is passed in register
$ra. Hence it becomes callee’s responsibility to store return
address register on stack, if required. However, for accurate
offset computations, knowing number of words reserved for
return address is necessary.

- Previous activation’s pointer: Previous activation record’s
pointers can be obtained from stack pointer, frame pointer
and argument pointer registers. Inspim, frame pointer and
argument pointer registers are same. Hence, we store stack
pointer and frame pointer in activation record. However,
since it is callee’s responsibility, we just compute the num-
ber of bytes to be allocated on stack for proper offset com-
putation of other fields.

- Return value: The register in which the value to be returned
is stored is given by macroFUNCTION VALUE. In spim reg-
ister number 2 serves this purpose. Hence, this can be spec-
ified as:

#define FUNCTION_VALUE(valtype, func)\
function_value()
rtx
function_value
(void)
{
/* Return register is register 2
* when value is of type SImode.*/
return (gen_rtx_REG(SImode,2));

}

- Local frame: The location of first local variable allocatedon
stack from dummy frame pointer can be specified by macro
STARTING FRAME OFFSET.

#define STARTING_FRAME_OFFSET \
starting_frame_offset ()

int
starting_frame_offset
(void)
{
return 0;

}

• Relative offsets of frame pointer and argument pointer regis-
ters from stack pointer: This information can be specified by
defining the macrosELIMINABLE REGS, CAN ELIMINATE and
INITIAL ELIMINATION OFFSET as follows:

#define ELIMINABLE_REGS\
{\
{FRAME_POINTER_REGNUM,

STACK_POINTER_REGNUM},\
{FRAME_POINTER_REGNUM,

HARD_FRAME_POINTER_REGNUM},\
{ARG_POINTER_REGNUM,

STACK_POINTER_REGNUM},\
{HARD_FRAME_POINTER_REGNUM,

STACK_POINTER_REGNUM}\
}

#define CAN_ELIMINATE(FROM, TO) \
((FROM == FRAME_POINTER_REGNUM
&& (TO == STACK_POINTER_REGNUM

|| TO == HARD_FRAME_POINTER_REGNUM)) \
|| (FROM == ARG_POINTER_REGNUM

&& TO == STACK_POINTER_REGNUM) \
|| (FROM == HARD_FRAME_POINTER_REGNUM

&& TO == STACK_POINTER_REGNUM))

#define INITIAL_ELIMINATION_OFFSET(FROM,TO,V)\
(V) = initial_elimination_offset(FROM,TO)

4. Machine Description for Level 1 ofspim
Level 1 supports assignment operation involving integer constants
or integer variables. Level 1 machine description is built on top of
level 0.2 machine description, hence no macro is required tobe
added in level 1. However,

• Some dummy definitions of macros are replaced by meaning-
ful definitions. These include the macros related to addressing
modes and assembly format.

• RTL patterns for newly added operations are included in the
.md file.

5 2007/8/7

HLL Primitive Implementation
Operation Variants
Dest← Src Ri ← Rj move rj, ri

R←M lw r, m
R← C li r, c
M ← R sw r, m

RETURNSrc RETURN $v0← Src
j $ra

Dest← Src1 + Src2 Ri ← Rj + Rk add ri, rj, rk
Ri ← Rj + C addi ri, rj, c

Table 1. Instructions supported in Level 1.

4.1 Supported Instructions

Level 1 primarily supports assignment operations whose destina-
tion can be a register or a memory location; the source can be a
register, a memory location or a constant value. Depending upon
whether the variable is defined globally or locally, addressing mode
for the memory operand varies. The memory location can be ad-
dressed using symbol associated with name of variable or location
of the variable in activation record. The instructions supported in
level 1 are listed in Table 1.

Inclusion of RETURN instruction is to ensure correctness ofthe
assembly code generated. The implementation of return instruction
as shown in Table 1 says that while executing the high language
return instruction, compiler first moves the value to be returned into
return value register$v0, using one of the move instructions given
in same table, followed by jump to return address, given in register
$ra.

The inclusion of addition operation is necessitated for emitting
prologue as explained in the following. Though we have designed
activation record in level 0, we haven’t constructed the activation
record in that level as it was not needed. In level 1, we construct
activation record as shown in Figure 3 by defining RTL patterns for
function prologue and epilogue.

(define_expand "prologue"
[(clobber (const_int 0))]
""
{

spim_prologue();
DONE;

}
)
void
spim_prologue(void)
{
int i,j;
emit_move_insn(gen_rtx_MEM(SImode,

plus_constant(stack_pointer_rtx,0)),
return_addr_rtx);

emit_move_insn(gen_rtx_MEM(SImode,
plus_constant(stack_pointer_rtx,-4)),

stack_pointer_rtx);
emit_move_insn(gen_rtx_MEM(SImode,

plus_constant(stack_pointer_rtx,-8)),
hard_frame_pointer_rtx);

emit_move_insn(hard_frame_pointer_rtx,
stack_pointer_rtx);

for(i=0,j=3;i<FIRST_PSEUDO_REGISTER;i++){
if(regs_ever_live[i]

&& !call_used_regs[i]
&& !fixed_regs[i]){

emit_move_insn(gen_rtx_MEM(SImode,
plus_constant(hard_frame_pointer_rtx,

-4*j)),
gen_rtx_REG(SImode,i));

j++;
}}
emit_move_insn(stack_pointer_rtx,
plus_constant(hard_frame_pointer_rtx,

-((3+j)*4+get_frame_size())));
}
(define_expand "epilogue"

[(clobber (const_int 0))]
""
{

spim_epilogue();
DONE;

}
)
void
spim_epilogue(void)
{
int i,j;
for(i=0,j=3;i<FIRST_PSEUDO_REGISTER;i++){
if(regs_ever_live[i]

&& !call_used_regs[i]
&& !fixed_regs[i]){

emit_move_insn(gen_rtx_REG(SImode,i),
gen_rtx_MEM(SImode,

plus_constant(hard_frame_pointer_rtx,
-4*j)));

j++;
}}
emit_move_insn(stack_pointer_rtx,
hard_frame_pointer_rtx);

emit_move_insn(hard_frame_pointer_rtx,
gen_rtx_MEM(SImode,

plus_constant(stack_pointer_rtx,-8)));
emit_move_insn(return_addr_rtx,
gen_rtx_MEM(SImode,

plus_constant(stack_pointer_rtx,0)));
emit_jump_insn(gen_IITB_return());
}

It can be seen from the code snippet given above, that to move stack
pointer in activation record for memory allocation, addition oper-
ation is required. Hence,as a side-effect of prologue and epilogue
definition, add instruction is added in level 1.

4.2 Addressing Mode Issues

Though only assignment operation is supported in level 1, itis
evident from Table 1 that the operands of move instruction can be
registers, constants along with local and global memory. Hence,
we must support all addressing modes in this level. The addressing
modes that are supported inspim are as follows:

• Absolute addressing:

- Labels which give absolute address of code memory, for
examplejal fun.

- Symbols which represent global data memory, for example
lw $v0, var.

Note that the symbol names are prefixed by an underscore ().
It is because assembler may give error because symbol/label
name and instruction mnemonics forspim might be the same.

• Register indirect addressing: The address of memory location
is stored in register, for examplejr $ra.

6 2007/8/7

HLL Operation Primitive Implementation
Variants

Dest← Src1 − Src2 Ri ← Rj −Rk sub ri, rj, rk
Dest← −Src Ri ← −Rj neg ri, rj
Dest← Src1/Src2 Ri ← Rj/Rk div rj, rk

mflo ri
Dest← Src1%Src2 Ri ← Rj%Rk div rj, rk

mfhi ri
Dest← Src1 ∗ Src2 Ri ← Rj ∗ Rk mul ri, rj, rk
Dest← Src1 ≪ Src2 Ri ← Rj ≪ Rk sllv ri, rj, rk

Ri ← Rj ≪ C5 sll ri, rj, c
Dest← Src1 ≫ Src2 Ri ← Rj ≫ Rk srav ri, rj, rk

Ri ← Rj ≫ C5 sra ri, rj, c
Dest← Src1&Src2 Ri ← Rj&Rk and ri, rj, rk

Ri ← Rj&C andi ri, rj, c
Dest← Src1|Src2 Ri ← Rj |Rk or ri, rj, rk

Ri ← Rj |C ori ri, rj, c
Dest← Src1 ˆ Src2 Ri ← Rj ˆ Rk xor ri, rj, rk

Ri ← Rj ˆ C xori ri, rj, c
Dest←∼ Src Ri ←∼ Rj not ri, rj

Table 2. Instructions supported in Level 2.

• Base offset addressing: The effective address of memory lo-
cation is offset plus contents of base register, for example
sw $v0, -20($fp).

5. Machine Description for Level 2 ofspim
Level 2 of machine description covers arithmetic and bitwise oper-
ations in the source language. The macro definitions remain same
as in level 1. New RTL patterns are added in.md file corresponding
to additional operations supported in this level. The register class
information is modified in order to let compiler know about internal
registers ofspim.

5.1 Supported Instructions

The instructions supported in level 2 are given in Table 2. Out of
these operations, the division (‘/’) and modulo (‘%’) require a spe-
cial treatment because of the implementation ofdiv instruction in
spim. This instruction internally stores the quotient of division in
registerlo and remainder in registerhi. Hence it becomes the com-
piler’s responsibility to ensure that the result is explicitly moved
to the destination registers by using special instructionsmfhi and
mflo. The former moves a value from thehi register to the speci-
fied destination while the latter moves a value from thelo register
to the specified destination. Thus division and modulo operations
in high level language can be seen as compound statements con-
sisting of div instruction followed by move instruction in assembly
language. This compound operation can be supported by the fol-
lowing pattern:

(define_insn "divsi3"
[(set (match_operand:SI 0 "register_operand" "=r")

(div:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))

)]
""
"div \\t%1, %2\\n\\tmflo \\t%0"
)
(define_insn "modsi3"
[(set (match_operand:SI 0 "register_operand" "=r")

(mod:SI
(match_operand:SI 1 "register_operand" "r")

(match_operand:SI 2 "register_operand" "r"))
)]
""
"div \\t%1, %2\\n\\tmfhi \\t%0"
)

Though it is very simple to add RTL pattern usingdefine insn,
and primitive language features are represented as single pattern in
the.md file, the drawback of this pattern definition mechanism is
that it suppresses instruction scheduling: Since the division and
modulo operations are expressed by single patterns in all RTL
passes and are split directly at assembly level, bothdiv andmflo
or mfhi instructions which are actually independent of each other,
are treated atomically thereby prohibiting the possibility of being
scheduled independently.

In order to enable this optimization, we split these instructions
into two independent instructions right from the first RTL IRin
the expander pass. Thedivsi3 pattern can be defined as follows,
which needs definition of named RTL patternsIITB divide and
IITB move from lo which are used at the time of assembly gen-
eration.

(define_expand "divsi3"
[(parallel[(set
(match_operand:SI 0 "register_operand" "")
(div:SI

(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))

(clobber (reg:SI 26))
(clobber (reg:SI 27))])]
""
{
emit_insn(gen_IITB_divide(gen_rtx_REG(SImode,26),

operands[1], operands[2]));
emit_insn(gen_IITB_move_from_lo(operands[0],

gen_rtx_REG(SImode,26)));
DONE;
}
)

(define_insn "IITB_divide"
[(parallel[(set
(match_operand:SI 0 "LO_register_operand" "=q")
(div:SI

(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r")))

(clobber (reg:SI 27))])]
""
"div \\t%1, %2"
)

(define_insn "IITB_move_from_lo"
[(set
(match_operand:SI 0 "register_operand" "=r")
(match_operand:SI 1 "LO_register_operand" "q")

)]
""
"mflo \\t%0"
)

Similarly, modsi3 pattern can be defined as follows which makes
use of named RTL patternsIITB mod andIITB move from hi for
expanding.

(define_expand "modsi3"
[(parallel[
(set (match_operand:SI 0 "register_operand" "")

7 2007/8/7

(mod:SI
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")))

(clobber (reg:SI 26))
(clobber (reg:SI 27))])]
""
{
emit_insn(gen_IITB_mod(gen_rtx_REG(SImode,27),

operands[1], operands[2]));
emit_insn(gen_IITB_move_from_hi(operands[0],

gen_rtx_REG(SImode,27)));
DONE;
}
)

Although this enables instruction scheduling, this methodhas fol-
lowing drawbacks:

• C interface is needed in.md file.

• Compilation becomes slower and requires more space.

Hence, we usedefine split construct for these instructions.

(define_split
[(parallel
[(set

(match_operand:SI 0 "register_operand" "")
(div:SI

(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" ""))

)
(clobber (reg:SI 26))
(clobber (reg:SI 27))])]

""
[(parallel [(set (match_dup 3)

(div:SI (match_dup 1)
(match_dup 2)))

(clobber (reg:SI 27))])
(set (match_dup 0)

(match_dup 3))
]
"{operands[3]=gen_rtx_REG(SImode,26); }"
)

(define_split
[(parallel
[(set

(match_operand:SI 0 "register_operand" "")
(mod:SI

(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" ""))

)
(clobber (reg:SI 26))
(clobber (reg:SI 27))])]

""
[(parallel [(set (match_dup 3)

(mod:SI (match_dup 1)
(match_dup 2)))

(clobber (reg:SI 26))])
(set (match_dup 0)

(match_dup 3))
]
"{operands[3]=gen_rtx_REG(SImode,27); }"
)

HLL Primitive Implementation
Operation Variants
Dest ← fun(P1, . . . , Pn) lw ri, [SP]

sw ri, [SP]
:

call Lfun, n lw ri, [SP-n*4]
sw ri, [SP-n*4]
jal L
Dest ← $v0

fun(P1, P2, . . . , Pn) lw ri, [SP]
sw ri, [SP]

:
call Lfun, n lw ri, [SP-n*4]

sw ri, [SP-n*4]
jal L

Table 3. Instructions supported in Level 3

5.2 Register Specific Information

The registerslo andhi are internal registers inspim which are
not introduced to GCC as they were not being used in previous
levels. However, as ‘/’ and ‘%’ operations modify contents of these
registers by moving quotient in registerlo and remainder in register
hi, we introduce these registers to GCC by announcing them in
register set. Special register class is created for them as they are
not general purpose registers, and are used by specific instructions
only.

enum reg_class \
{\

NO_REGS, ZERO_REGS,\
CALLER_SAVED_REGS,\
CALLEE_SAVED_REGS,\
BASE_REGS, HI_REGS,\
LO_REGS, GENERAL_REGS,\
ALL_REGS, LIM_REG_CLASSES \

};

6. Machine Description for Level 3 ofspim
Level 3 of machine description adds function handling and calling
conventions. No new macro is defined in this level. New instruc-
tions are added in the.md file corresponding to instructions added
in this level. The activation record definition remains sameas in
level 0.2.

6.1 Supported Instructions

The sequence of operations performed when a function is called is
as follows:

• Operations performed by the caller

- Push parameters on the stack.

- Load the return address in the return address register.

- Transfer control to the callee.

• Operations performed by callee

- Push the return address register on the stack.

- Push the caller’s frame pointer register on the stack.

- Push the caller’s stack pointer on the stack.

- Save the callee saved registers, if used by callee on the stack.

- Create local variable frame on the stack.

- Start callee body execution.

8 2007/8/7

Operation Primitive Implementation
Variants

Src1 < Src2 ?
goto L : PC CC ← Ri < Rj

CC< 0 ? goto L : PC blt ri, rj ,L
Src1 > Src2 ?
goto L : PC CC ← Ri > Rj

CC> 0 ? goto L : PC bgt ri, rj ,L
Src1 ≤ Src2 ?
goto L : PC CC ← Ri ≤ Rj

CC≤ 0 ? goto L : PC ble ri, rj ,L
Src1 ≥ Src2 ?
goto L : PC CC ← Ri ≥ Rj

CC≥ 0 ? goto L : PC bge ri, rj ,L

Table 4. Instructions supported in Level 4

Out of these, the operations performed by callee are taken care
of by the prologue of the callee which has already been defined.
Hence, in this level, we cover tasks performed by the caller in a
call instruction. Depending upon whether the callee returns a value
or not, there are two variants of a call as shown in Table 3.

The standard pattern namedcall is used to define pattern for
subroutine call instruction which does not return a value. It is
defined in.md file as follows:

(define_insn "call"
[(call (match_operand:SI 0 "memory_operand" "m")

(match_operand:SI 1 "immediate_operand" "i"))
(clobber (reg:SI 31))
]
""
"*

return emit_asm_call(operands,0);
"
)

The call instruction returning a value is defined using namedpattern
call value as follows:

(define_insn "call_value"
[(set (match_operand:SI 0 "register_operand" "=r")

(call (match_operand:SI 1 "memory_operand" "m")
(match_operand:SI 2 "immediate_operand" "i"))

)
(clobber (reg:SI 31))
]
""
"*

return emit_asm_call(operands,1);
"
)

7. Machine Description for Level 4 ofspim
Level 4 covers conditional control transfers and control structures
in higher level languages. The looping constructs likewhile, for
can be transformed into simple structure which is combination of
sequential operational instructions and branch and goto statements.
Hence, the only high level language construct we support in this
level isif-then-else.

7.1 Supported Instructions

The conditional constructs supported in this level are as given in
Table 4

We can defineif-then-else construct as a combination of
compare and conditional branch instructions. In this,cond pattern
sets conditional code, which is used by branch if condition pattern
that in turn checks the conditional code set bycond, and goto label
if condition is satisfied. There is single standard named pattern for
each conditional code to represent the branch condition. Hence,
instead of defining each pattern separately, we make use of code
macro and implement the conditional branch as follows:

(define_code_macro cond_code
[lt ltu eq ge geu gt gtu le leu ne])

(define_expand "cmpsi"
[(set (cc0)

(compare
(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonmemory_operand" "")

))]
""
{

compare_op0=operands[0];
compare_op1=operands[1];
DONE;

}
)

(define_expand "b<code>"
[(set (pc)

(if_then_else
(cond_code:SI (match_dup 1)

(match_dup 2))
(label_ref (match_operand 0 "" ""))
(pc)))]

""
{
operands[1]=compare_op0;
if(immediate_operand(compare_op1,SImode))
{

operands[2]=force_reg(SImode,compare_op1);
}
else
{

operands[2]=compare_op1;
}
}
)

Same effect of above define patterns can be obtained by defining a
single patterncbranchsi4, as shown below:

(define_insn "cbranchsi4"
[(set (pc)

(if_then_else
(match_operator:SI 0 "comparison_operator"

[(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")])
(label_ref (match_operand 3 "" ""))
(pc)))]

""
"*
return conditional_insn(GET_CODE(operands[0]),

operands,0);
"
)

9 2007/8/7

8. Conclusions and Future Work
Until now the techniques of writing GCC machine descriptions
have been ad hoc. We demonstrate that it is possible to construct
them systematically by identifying suitable language increments.
This allows us to define the minimal machine descriptions which
can then be systematically enhanced. The significance of this ap-
proach lies in the fact that it allows us to ask meaningful questions
on the need of various constructs in machine descriptions. We have
demonstrated this approach by generating compilers for different
levels of C for thespim simulator. The effectiveness of this ap-
proach became evident in the workshop we had conducted: Even
novices could start writing meaningful machine descriptions in a
span of just 3 days! The complete descriptions corresponding to
each level are available on the workshop page [1].

For the future work, we would like to extend the proposed ma-
chine descriptions to include various data types. Once a base ma-
chine description for the full language is ready, subsequent incre-
ments in the machine descriptions should be sought for improving
the quality of generated code.

Acknowledgement
We would like to thank Ramana Radhakrishnan and Abhijat
Vichare for their valuable suggestions from time to time.

References
[1] Workshop on GCC Internals. Centre for Formal Design and Verifica-

tion of Software and Dept. of Computer Science & Engg., IIT Bombay.,
June 2007.http://www.cse.iitb.ac.in/uday/gcc-workshop.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, August 2006.

[3] James Larus. Spim: A mips32 simulator.http://pages.cs.wisc.
edu/˜larus/spim.html.

[4] David A. Patterson and John L. Hennessy. Appendix A. InComputer
Organization and Design: The Hardware/Software Interface, Third
Edition. Morgan Kaufmann, August 2004.

10 2007/8/7

