A Framework for GPU Accelerated GIMP
Plugins

Ajitav Sahoo (08305011)
Prashant Borole (08305022)
Sriram Kashyap (08305028)

November 12, 2008

Contents

1 Introduction 2
1.1 Motivation e e e 2

1.2 Problem Statement 2

2 System Implementation 4
2.0.1 WorkDone 4

2.1 Design Overview 5
2.2 Detailed Design L o 6
2.2.1 GIMP Shader Interface 6

2.2.2 GPU GIMP Utilities 7

2.2.3 Shader Modules 8

2.3 Dependencies 9

3 Results 10
3.1 Testing 10
3.2 Correctness i e e 10
3.3 Performance. 11

3.4 CodeProfiling o 12

4 Analysis and Future Work 13

1 Introduction

1.1 Motivation

Existing GIMP filters are driven by Scheme scripts/C programs which perform
image processing on the CPU. Each filter is started as a separate process by
GIMP. Therefore, although GIMP itself supports multiprocessors (for its inbuilt
tools), the plugins use a single CPU core.

Most mid-range desktop machines nowadays have a decent graphics card.
Graphics cards are built for inherently parallel tasks like image processing, and
this gives us an edge in terms of processing speed. Proprietary solutions like
Adobe Photoshop already have plugins that use the graphics hardware. Even
though GIMP is the most popular open source image processing solution, it
does not have a GPU based processing solution.

1.2 Problem Statement

We propose a framework that will allow users to write GIMP Plugins that
perform processing on a Graphics Card (GPU). The plugins developed using our
framework will run on a machine with graphics card (OpenGL 1.2+ compliant)
with Pixel shader v2.0 support.

This framework has the following components:

e A gimp plug-in which acts as an abstraction between GIMP and the graph-
ics card. This plugin will dynamically load compiled GPU shader modules,
and execute them on images provided by GIMP

A library of utilities that each shader module will be linked against

A repository of shader modules that can be loaded by the plugin to perform
image processing

e A UI framework to enable users to configure various shader parameters

2

System Implementation

2.0.1 Work Done

Developed a plugin interface to interact with the GIMP core

Developed a program to transfer buffers between the system memory and
GPU memory, i.e. loading a texture to the graphics card

Developed pixel shaders to be applied on the image

Building Shader Modules to load these pixel shaders and run them on
GIMP images

We didn’t modify any existing GIMP code, but implemented parts of it
(using plugins) to run it on parallel hardware

Total Time Spent: 50 hours
The main framework consists of about 600 lines of code
Each shader module is in itself about 150 - 250 lines of code

We have implemented brighten, gaussian blur, emboss and whirl shaders

2.1 Design Overview

GPU Shader
Interface

GPU Gimp
Utils

H
Figure 1: System overview

The system consists of 3 main parts:

e The GIMP Shader Interface

e The GPU GIMP Utilities
e Shader Modules

The GIMP Shader interface interacts with GIMP as well as the shader mod-

ules to provide an abstraction between them.

The GPU GIMP Utilities are compiled as a single library which provides

useful OpenGL functionality to the Shader Modules.

The Shader Modules execute programs on a graphics card. These programs
operate on the image data provided by the GIMP Shader Interface, thus per-

forming image processing on the graphics card.

2.2

Detailed Design

2.2.1 GIMP Shader Interface

The GIMP Shader Interface is a layer of abstraction that is present between the
Shader Modules and GIMP. It provides a way for shader modules to seamlessly
interact with GIMP. This includes obtaining input images, shader program pa-
rameters, and displaying the final result on screen.

The GIMP Shader interface performs the following functions:

Identify the various Shader Modules that are available

Register these Shader Modules with GIMP. This means that each module
will appear as a Menu Item in GIMP

Dynamically load the required Shader Module when the user clicks on the
corresponding GIMP Menu item

Query the Shader Module to find out what parameters it requires
Dynamically construct a GUI to read these parameters from the user
Return these parameters to the Shader Module

Convert the drawable(image) provided by GIMP into a format viable for
processing on the graphics card

Call routines from the GPU Gimp Utilities module, which will initialise
OpenGL and load the texture into GPU memory

Call the ‘run’ routine of the Shader Module to initiate processing

Once the Shader Module returns, convert the resultant data into a format
readable by GIMP

Refresh GIMP image buffers to display the result

Notes: The Shader Interface is the program that is recognised by GIMP as
a Plugin. The Shader Interface is compiled with GIMP headers (gimptool) and
placed in the plug-ins directory of GIMP. This means that the Shader Modules
are not directly seen by GIMP. The Shader Interface is responsible for telling
GIMP about the various Modules available and loading the Shader Modules
when required.

2.2.2 GPU GIMP Utilities

The GPU GIMP utilities are a set of functions compiled into a library that is
used by both the GIMP Shader Interface, and by the Shader Modules. These
utilities handle OpenGL initialisation and loading and storing textures(images)
to and from graphics memory. These utilities also contain definitions common
to the Shader Interface and the Shader Modules.

The GPU GIMP Utilities provide the following functionality:

Initialise OpenGL

Create an off-screen rendering framebuffer object (we do not render to a
window, unlike most other OpenGL applications)

Set up a floating point texture in video memory
Write data from main memory to video memory
Read data from video memory to main memory
Check for any errors in the OpenGL state

Provide error checking functionality for GLSL (GL Shader Language) pro-
grams and shaders

Clean up after the Shader Module has completed processing

Defines the PluginParam structure that is used to exchange parameters
between the GIMP Shader Interface and the Shader Modules

Notes: The GPU GIMP utilities are compiled into a library and placed in
the /usr/lib (default) directory. Thus, developers writing a Shader Module have
to link their program with this library (GPUGimpUtils). This library is also
critical to the functioning of the Shader Interface. When GIMP invokes the
Shader Interface, it should be able to locate this library using the standard
library paths.

2.2.3 Shader Modules

A shader module is a program which processes textures(images) on the graphics
card. Each shader module contains set of shader programs (fragment shaders).
These fragments are GPU instructions written in a language like GLSL (GL
Shading Language). Fragment shaders are programs that operate like kernels
on each pixel of a texture. This means that the instructions in the shader are
executed for each pixel in the texture. A graphics card executes such fragment
shaders in parallel on multiple pixels. This is where we obtain the speedup in
comparision with CPU based image processing.

Our framework does not overly restrict the structure of a Shader Module. It
only requires that each Shader Module implement a set of well defined interfaces.
These interfaces are described below:

e A function to exchange shader parameter information with the GIMP
Shader Interface

e A function to initiate processing of the texture passed to the Shader Mod-
ule

In addition to these functions, the shader designer will have to write code
to perform these general tasks:

e Management of read and write buffers in graphics memory

e Attaching textures to frame buffer objects

Loading (or defining inline), the GLSL program to be executed

Compiling and linking the GLSL program

e Passing parameters to the GLSL program

Rendering a quad using the texture and the GLSL program

2.3 Dependencies

We have developed the framework using;:
e C programming for interface and communicating with GIMP core
e OpenGL1.2 ARB extensions for image processing on the GPU
e GLSL programming for implementing pixel shaders
Our application has the following code dependencies:
e GIMP Headers: The developer libraries & headers for GIMP
e GL: The OpenGL Libraries
e GLUT: OpenGL Utility Toolkit
e GLEW: OpenGL Extension Wrangler Library

libdl: Dynamic Linking Library

Hardware dependency:
We assume that the user has a Graphics Card with OpenGL support and Pixel
Shader 2.0 Support.

3 Results

3.1 Testing

e To check the correctness of the output, we compare the outputs of the
existing GIMP filters and the output of our filter

e We also compare the performance of our filters with the the original filters
e CPU: Pentium D 2.8 GHz (Family 9 Model 4 Step 7)

e GPU: NVidia 8800 GS (Mem: 128 bit DDR3@1048MHz, GPUQ699MHz
(G92 A2), Pixel Shader@1728 MHz)

3.2 Correctness

GPU Gaussian Blur CPU Gaussian Blur

Figure 2: Comparision of GPU and CPU blur output

10

3.3 Performance

Time (in secs)

a0

80 |

70

B0

50

40

30

Gaussian Blur on a 3500 X 2625 Image

B Time Taken on CPU B Time Taken on GPU

4 2 16 32 64 128
Gaussian Size

Figure 3: Time comparision for various blur filter sizes

11

1024

3.4 Code Profiling

We have performed profiling on our code to identify regions of bottleneck

Process: Emboss | Brighten:0 | Blur:3 | Blur:500 | Blur:1000
GIMP Initialisation 252 235 253 251 237
Data Conversionl 614 613 617 614 615
GL Initialisation 313 1057 299 328 312
Plugin Run 176 185 195 206 206
Transfer from Texture 701 550 593 4739 9052
Data Conversion2 238 238 236 238 233
GIMP Refresh 690 740 684 689 662

Code Profile

12

Figure 4: Code Profile for Blur-radius 3

I GIMP Initialisation
[l Data Conversionl

B GL Initialisation
Il Plugin Run

Il Transfer from
Texture

[Data Conversion2
[]1GIMP Refresh

4 Analysis and Future Work

To the best of our knowledge, this is the only framework that implements
GIMP filters on GPU

We have developed a flexible framework for executing shaders on GIMP

The Shader Module designer need not be concerned with GIMP internals,
or OpenGL initialisation

The framework can be easily extended to allow multiple shader modules
to be executed sequentially

The process of writing shaders for Graphics hardware is non-trivial, as
GPU has several code structure limitations. Thus a lot more work can be
done by professional shader designers, using our framework

We plan to upload this project on Source Forge after some code clean up

13

