KNOWLEDGE GRAPH AND CORPUS DRIVEN SEGMENTATION AND ANSWER INFERENCE FOR TELEGRAPHIC ENTITY-SEEKING QUERIES

EMNLP 2014

Mandar Joshi

UMA SAWANT

SOUMEN CHAKRABARTI

IBM RESEARCH

IIT BOMBAY, YAHOO LABS

IIT BOMBAY

mandarj90@in.ibm.com

uma@cse.iitb.ac.in

soumen@cse.iitb.ac.in

ENTITY-SEEKING TELEGRAPHIC QUERIES

- Short
- Unstructured (like natural language questions)
- Expect entities as answers

CHALLENGES

- No reliable syntax clues
 - Free word order
 - No or rare capitalization, quoted phrases
- Ambiguous
 - Multiple interpretations
 - aamir khan films
 - Aamir Khan the Indian actor or British boxer
 - Films appeared in, directed by, or about
- Previous QA work
 - Convert to structured query
 - Execute on knowledge graph (KG)

WHY DO WE NEED THE CORPUS?

- KG is high precision but incomplete
 - Work in progress
 - Triples can not represent all information
 - Structured unstructured gap
- Corpus provides recall
- fastest odi century batsman

... Corey Anderson hits **fastest ODI century**. This was the first time two **batsmen** have hit hundreds in under **50** balls in the same **ODI**.

WHY DO WE NEED THE CORPUS?

- KG is high precision but incomplete
 - Work in progress
 - Triples can not represent all information
 - Structured unstructured gap
- Corpus provides recall
- fastest odi century batsman

... Corey Anderson hits **fastest ODI century**. This was the first time two **batsmen** have hit hundreds in under **50** balls in the same **ODI**.

ANNOTATED WEB WITH KNOWLEDGE GRAPH

ANNOTATED WEB WITH KNOWLEDGE GRAPH

INTERPRETATION VIA SEGMENTATION

SIGNALS FROM THE QUERY

- Queries seek answer entities (e₂)
- Contain (query) *entities* (e₁), *target types* (t₂), *relations* (r), and *selectors* (s).

query	e ₁	r	t ₂	S
washington first governor	washington	governor	governor	first
	washington	-	governor	first
spider automobile company	spider	-	automobile company	-
	automobile	company	company	spider

Assignment of tokens to columns for illustration only; not necessarily optimal

- Interpretation = Segmentation + Annotation
- Segmentation of query tokens into 3 partitions
 - Query entity (E₁)
 - Relation and Type (T₂/R)
 - Selectors (S)
- Multiple ways to annotate each partition

- Interpretation = Segmentation + Annotation
- Segmentation of query tokens into 3 partitions
 - Query entity (E₁)
 - Relation and Type (T₂/R)
 - Selectors (S)
- Multiple ways to annotate each partition
 washington first governor

- Interpretation = Segmentation + Annotation
- Segmentation of query tokens into 3 partitions
 - Query entity (E₁)
 - Relation and Type (T₂/R)
 - Selectors (S)
- Multiple ways to annotate each partition
 washington
 first
 governor

 E_1 partition

S partition

 T_2/R partition

- Interpretation = Segmentation + Annotation
- Segmentation of query tokens into 3 partitions
 - Query entity (E₁)
 - Relation and Type (T₂/R)
 - Selectors (S)
- Multiple ways to annotate each partition
 washington
 first
 governor

 E_1 partition

S partition

 T_{2}/R partition

- 1. Washington (State)
- 2. Washington_D.C. (City)

- Interpretation = Segmentation + Annotation
- Segmentation of query tokens into 3 partitions
 - Query entity (E₁)
 - Relation and Type (T₂/R)
 - Selectors (S)
- Multiple ways to annotate each partition

washington	first	governor	
E ₁ partition	S partition	T_2/R partition	
\checkmark		\bigvee	
 1. Washington (State) 2. Washington_D.C. (City) 	r: governorOf r: null	t2: us_state_governor t2: us_state_governor	

Segmentation Z

Segmentation Z

Washington | first | governor
washington first | governor

Segmentation Z

Washington | first | governor
washington first | governor

Washington (State) null

Segmentation Z

Washington | first | governor
washington first | governor

us_state_governor governor_general

Washington (State) null

Segmentation Z

Washington | first | governor
washington first | governor

Segmentation Z

Washington | first | governor
washington first | governor

- Generate interpretations
- Retrieve snippets for each interpretation
- Construct candidate answer entities (e₂) set
 - Top *k* from corpus based on snippet frequency
 - By KG links that are in interpretations set
- Inference

 $score(e_{2}) = \max_{z,t_{2},r,e_{1}} \quad \Psi_{T_{2}}(q, z, t_{2}) \ \Psi_{R}(q, z, r) \ \Psi_{E_{1}}(q, z, e_{1}) \\ \Psi_{E_{2},T_{2}}(e_{2}, t_{2}) \\ \Psi_{E_{1},R,E_{2},S}(e_{1}, r, e_{2}, s) \ \Psi_{E_{1},R,E_{2}}(e_{1}, r, e_{2})$

- Generate interpretations
- Retrieve snippets for each interpretation
- Construct candidate answer entities (e₂) set
 - Top *k* from corpus based on snippet frequency
 - By KG links that are in interpretations set
- Inference

query – signals compatibility

 $score(e_{2}) = \max_{z,t_{2},r,e_{1}} \quad \Psi_{T_{2}}(q, z, t_{2}) \ \Psi_{R}(q, z, r) \ \Psi_{E_{1}}(q, z, e_{1})$ $\Psi_{E_{2},T_{2}}(e_{2}, t_{2})$ $\Psi_{E_{1},R,E_{2},S}(e_{1}, r, e_{2}, s) \ \Psi_{E_{1},R,E_{2}}(e_{1}, r, e_{2})$

- Generate interpretations
- Retrieve snippets for each interpretation
- Construct candidate answer entities (e₂) set
 - Top *k* from corpus based on snippet frequency
 - By KG links that are in interpretations set
- Inference

query – signals compatibility

 $score(e_{2}) = \max_{z,t_{2},r,e_{1}} \quad \Psi_{T_{2}}(q, z, t_{2}) \ \Psi_{R}(q, z, r) \ \Psi_{E_{1}}(q, z, e_{1})$ $\Psi_{E_{2},T_{2}}(e_{2}, t_{2}) \quad e_{2}\text{-t2 compatibility}$ $\Psi_{E_{1},R,E_{2},S}(e_{1}, r, e_{2}, s) \ \Psi_{E_{1},R,E_{2}}(e_{1}, r, e_{2})$

- Generate interpretations
- Retrieve snippets for each interpretation
- Construct candidate answer entities (e₂) set
 - Top *k* from corpus based on snippet frequency
 - By KG links that are in interpretations set
- Inference

query – signals compatibility

 $score(e_{2}) = \max_{z,t_{2},r,e_{1}} \quad \Psi_{T_{2}}(q, z, t_{2}) \ \Psi_{R}(q, z, r) \ \Psi_{E_{1}}(q, z, e_{1}) \\ \Psi_{E_{2},T_{2}}(e_{2}, t_{2}) \quad e_{2}\text{-t2 compatibility} \\ \Psi_{E_{1},R,E_{2},S}(e_{1}, r, e_{2}, s) \ \Psi_{E_{1},R,E_{2}}(e_{1}, r, e_{2})$

evidence from KG and corpus

Relation and Type Models

- Objective: To map relation (or type) mentions in query to Freebase relation (or types)
- Relation Language Model (Ψ_R)
 - Use annotated ClueWebo9 + Freebase triples
 - Locate Freebase relation endpoints in corpus
 - Extract dependency path words between entities
 - Maintain co-occurrence counts of <words, rel>
 - Assumption: Co-occurrence implies relation
- Type Language Model (Ψ_{T2})
 - Smoothed Dirichlet language model using Freebase type names

CORPUS POTENTIAL

- Estimates support to e₁-r-e₂-s in corpus
- Snippet retrieval and scoring
- Snippets scored using RankSVM
- Partial list of features
 - #snippets with distance(e_2 , e_1) < k (k = 5, 10)
 - #snippets with distance(e_2 , r) < k (k = 3, 6)
 - #snippets with relation $r = \bot$
 - #snippets with relation phrases as prepositions
 - #snippets covering fraction of query IDF > k (k = 0.2, 0.4, 0.6, 0.8)

LATENT VARIABLE DISCRIMINATIVE TRAINING (LVDT)

- Constraints are formulated using the best scoring interpretation
- Training

$$\max_{q,z,e_1,t_2,r} w \cdot \phi(q, z, e_1, t_2, r, e_2^+) + \xi$$

$$\geq 1 + \max_{q,z,e_1,t_2,r} w \cdot \phi(q, z, e_1, t_2, r, e_2^-)$$

• Inference

$$\max_{q,z,e_1,t_2,r} w \cdot \phi(q,z,e_1,t_2,r,e_2),$$

- q, e_2 are observed; e_1 , t_2 , r and z are latent
- Non-convex formulation

EXPERIMENTS

TEST BED

- Freebase entity, type and relation knowledge graph
 - ~29 million entities
 - 14000 types
 - 2000 selected relation
- Annotated corpus
 - Cluewebo9B Web corpus having 50 million pages
 - Google (FACC1), ~ 13 annotations per page
 - Text and Entity Index

TEST BED

- Query sets
 - TREC-INEX: 700 entity search queries
 - WQT: Subset of ~800 queries from WebQuestions (WQ) natural language query set [1], manually converted to telegraphic form
 - Available at http://bit.ly/Spva49

TREC-INEX	WQT
Has type and/or relation hints	Has mostly relation hints
Answers from KG and corpus collected by volunteers	Answers from KG only collected by turkers.
Answer evidence from corpus (+ KG)	Answer evidence from KG

[1] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on Freebase from questionanswer pairs. In Empirical Methods in Natural Language Processing (EMNLP).

SYNERGY BETWEEN KG AND CORPUS

QUERY TEMPLATE COMPARISON

[2] Uma Sawant and Soumen Chakrabarti. 2013. Learning joint query interpretation and response ranking. In WWW Conference, Brazil.

COMPARISON WITH SEMANTIC PARSERS

QUALITATIVE COMPARISON

- Benefits of collective inference
 - automobile company makes spider
 - Entity model fails to identify e₁ (Alfa Romeo Spider)
 - Recovery: automobile company makes spider
- Limitations
 - Sparse corpus annotations
 - south africa political system
 - Few corpus annotations for e₂: Constitutional Republic
 - Can't find appropriate t₂ (/../form_of_government) and r (/location/country/form_of_government)

QUALITATIVE COMPARISON

- Benefits of collective inference
 - automobile company makes spider
 - Entity model fails to identify e₁ (Alfa Romeo Spider)
 - Recovery: automobile company makes spider
 e₁: Automobile
- Limitations
 - Sparse corpus annotations
 - south africa political system
 - Few corpus annotations for e₂: Constitutional Republic
 - Can't find appropriate t₂ (/../form_of_government) and r (/location/country/form_of_government)

QUALITATIVE COMPARISON

- Benefits of collective inference
 - automobile company makes spider
 - Entity model fails to identify e₁ (Alfa Romeo Spider)
 - Recovery: automobile company makes spider

 e_1 : Automobile t_2 : /../organization r : /business/industry/companies

• Limitations

- Sparse corpus annotations
- south africa political system
- Few corpus annotations for e₂: Constitutional Republic
- Can't find appropriate t₂ (/../form_of_government) and r (/location/country/form_of_government)

SUMMARY

- Query interpretation is rewarding, but non-trivial
- Segmentation based models work well for telegraphic queries
- Entity-relation-type-selector template better than type-selector template
- Knowledge graph and corpus provide complementary benefits

References

- S&C: Uma Sawant and Soumen Chakrabarti. 2013. Learning joint query interpretation and response ranking. In WWW Conference, Brazil.
- Sempre: Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic parsing on Freebase from question-answer pairs. In Empirical Methods in Natural Language Processing (EMNLP).
- Jacana: Xuchen Yao and Benjamin Van Durme. 2014. Information extraction over structured data: Question answering with Freebase. In ACL Conference. ACL.

DATA

- TREC-INEX and WQT
 - Short URL <u>http://bit.ly/Spva49</u>
 - Long URL <u>https://docs.google.com/spreadsheets/d/1AbKBd</u> <u>FOIXum_NwXeWuboSdeG-</u> <u>y8Ub4_ub8qTjAw4Qug/edit#gid=0</u>
- Project page
 - <u>http://www.cse.iitb.ac.in/~soumen/doc/CSAW/</u>

THANK YOU! QUESTIONS?

