
Masters Project Report: Second Stage
Design, Implementation And Evaluation of Multi-Hop Wireless

TDMA System

Nirav Uchat

Guide. Prof. Kameswari Chebrolu and Prof. Bhaskaran Raman

Computer Science And Engineering Department
IIT Bombay, Mumbai

Abstract

Providing WiFi connectivity to remote isolated villages
is a challenging task. It is well-known that 802.11 is not
suitable for long distance links due to inefficient carrier
sensing and link layer recovery. We therefore propose
a TDMA-based MAC protocol which performs better
in such situations due to its tight control over packet
transmission timing. As a first step, we have developed
a framework which will facilitate the implementation
of TDMA-based MAC protocol. In this report, we de-
scribe the challenges faced in preparing this test-bed
for TDMA implementation.

1 Introduction

Our objective is to give access to World Wide Web to
the people living in remote villages using off the shelf
cheap hardware while maintaining high data rate. This
motivated us to use unlicensed frequency band and
standard 802.11 protocol. However, 802.11 protocol
was designed to work over a small distance (generally
50-100 meters) due to which there is a severe drop in
the performance when it is used over longer ranges. In
particular, it has been shown that carrier sensing in
presence of external interference over longer ranges re-
sults in unpredictable protocol behavior [7]. In such
situations, TDMA-based MAC proves to be a reliable
alternative [1]. Existing TDMA implementations are
limited to a single hop and in most cases between two
devices. Our aim is to design multi-hop TDMA with
precise time synchronization to cater to a large user
base.

The remainder of the report is organized as follows.
In section 2 we define the problem statement. In sec-
tion 3 we give a brief overview of the work done during

stage one of the project. In section 4 we explain the
fundamental TDMA design. We also explain the basic
modules which build up the proposed TDMA system.
The proposed design may change as per the require-
ments during third stage of the project. In section
5 we will look at implementation done in the second
stage of the project. Finally, the future work is listed
in section 7 followed by conclusion.

2 Problem Statement

The aim of this project is to design, implement and
evaluate a multi-hop wireless TDMA system in place
of standard 802.11 CSMA/CA protocol. The proposed
system should work for both long distance and local
networks and it should support voice, video and www
traffic. The intended end users are devices having eth-
ernet port or wireless devices capable of running mod-
ified TDMA protocol.

3 Stage One Overview

3.1 Introduction

A large portion of the MAC protocol is implemented in
software which makes it possible to design and develop
alternate MAC protocols. In particular, it is possible to
change the software to replace the CSMA-based MAC
in 802.11 with TDMA-based MAC. In the next sec-
tion, we will look at some such TDMA type extensions
of 802.11 protocol. We also discuss an overlay imple-
mentation, wherein the MAC layer is left unchanged
and an abstraction layer is built on top of it.

1



Figure 1: FRACTEL Architecture

3.2 Related Work

softMAC[2] proposed by Neufeld et al. gives us generic
platform to experiment with MAC protocol. It disables
CSMA/CA by switching device in monitor mode. Au-
thor lists six basic steps to disable CSMA/CA. As an
example author has given sample TDMA system be-
tween two device. Though we are not going to use soft-
MAC framework, we do require to disable CSMA/CA
and softMAC gives steps to achieve it.

MadMAC[3] proposed by Sharma et al. extends
softMAC and implements TDMA system between
two node with tight time synchronization. It claims
to give 20% throughput improvement then standard
CSMA/CA system. It uses custom frame format,
which includes guard time between transmission slot
for synchronization. Our proposed TDMA system will
require tight time synchronization and MadMAC pro-
vides some initial pointers for it.

On other hand, MultiMAC[4] , which also extends
softMAC but handles multiple MAC protocol. A spe-
cial marker in each packet identifies the protocol to use
to decode the packet and passes to the network stack.
These might incur packet processing delay. MultiMAC
can be useful in situation where one wants to switch to
CSMA for short distance and TDMA for long distance
Link.

FreeMAC[5] goes one step ahead and provide multi-
channel communication. It uses hardware beacon in-
terrupt timer in place of software kernel timer for fine
control over packet transmission. It also characterizes
delays involved in channel switching. It uses monitor
mode with custom frame format. In first stage we are
not looking for multi-channel TDMA system but we do

require more precise timer than software kernel timer.
In our implementation, we might use something similar
to beacon timer proposed by FreeMAC.

WiLDNet[7], implements TDMA system with bulk
ACK and FEC type loss recovery mechanism. Unlike
softMAC, the WiLDNet uses 802.11 frame format. It
uses click[8] module on top of MAC layer to implement
bulk ACK and FEC mechanism and does some MAC
layer modification. Our proposed system is fundamet-
ally different from WiLDNet. One of the key contribu-
tion of WiLDNet is it gives insight in to understanding
of 802.11 poor performance in long distance link.

Overlay Layer[6] proposed by Rao at el. builds on
top of MAC layer to achieve fairness issue related to
802.11. It is some what different approach than chang-
ing MAC itself. It runs on top of MAC layer and
uses functionality provided by MAC layer. In general
it can control packet queue buffer but has no control
over packet transmission timing. Our proposed system
requires precise control over packet transmission and
overlay layer is not capable of it.

Table 1 shows the comparison between different
MAC protocol that we have discussed with our pro-
posed system(FRACTEL).

Taking a birds eye view, the overlay layer sits above
MAC layer and thus provide loose control over underly-
ing hardware. While implementing at MAC layer gives
direct access to hardware and provides tighter control
over it. After considering both methods, we decided
to implement TDMA at MAC layer for better control
over time critical function in TDMA. In next section
we will look at work done in first stage of the project.

3.3 Work Done

We are using Soekris board [10], which runs voyage
linux, a strip down version of debian distribution.
Soekris board has 266MHz CPU with 128 MB RAM
and 256 MB hard drive. It also has provision of at-
taching minipci WiFi card. On software side we are
using madwifi driver [9], an open source WiFi device
driver for Atheros wireless chipset in Linux. Shown in
Fig 1, is our envisioned architecture of proposed sys-
tem.

Implementation of TDMA protocol at MAC layer
requires disabling default CSMA protocol itself. Dis-
abling CSMA in madwifi was not a trivial task. Be-
fore disabling CSMA, we had to first understand the
complete transmit and receive path in madwifi driver
and going through minute detail of interrupt handler,
tasklets and different data structures. Our first task in
stage one was to setup Soekris board with voyage linux
and installing madwifi driver on it. Once done, we

2



softMAC MADMac MultiMac FreeMac Overlay FRACTEL
Works At Mac Mac Mac Mac Above Mac Mac
Timer Type Hardware Software Software Hardware Software Software
Multi Channel No No No Yes No Yes
Time Sync. loose loose loose Better loose Custom Protocol
Multi-Hop TDMA No No No No No Yes
TDMA Schedule Static Static Static Static Static Dynamic
Pkt. Gen. At MAC No No No No No Yes
Schedule Generation No No No No No Yes

Table 1: Protocol Comparison

looked at various commands such as wlanconfig, iwlist
and iwconfig to create and configure wireless adapter.
We then tried to disable CSMA as explained by [2]
and [5]. Author lists the following six tasks in order to
disable CSMA :

1. Disabling MAC level ACK

2. Disabling RTS/CTS exchange

3. Override 802.11 frame format with custom TDMA
frame

4. Disable virtual carrier sensing

5. Disable Transmission backoff

6. Disable CCA (clear channel assessment)

The madwifi driver allows WiFi adapter to run in mon-
itor mode, which when set allows us to sniff traffic.
Apart from sniffing, it also achieves first three tasks
required for disabling CSMA. However, there was one
major drawback in using it. By default, it is not possi-
ble to do communication in monitor mode. (Section 5.1
explains it in more detail). We also disabled CCA [2]
mechanism by setting noise floor to high value. Though
we have followed required steps for disabling it, we have
not yet verified it.

Though monitor mode was good fit for implementing
TDMA, there were few task that we still needed to
achieve for completely turning off CSMA mechanism.
They were,

• Disabling virtual carrier sensing

• Disabling transmission backoff

• Enabling communication between two nodes in
monitor mode (such as working of ping and ssh)

It was observed that when the adapter is set in monitor
mode; the hardware was changing certain bits of the
packets put in hardware queue for transmission. Due to

which actual data was getting corrupted at the receiver
end.

After spending good amount of time in figuring out
changes required for monitor mode, we decided to im-
plement initial prototype TDMA system in Ad-hoc
mode. It was kind of TDMA on top of CSMA with
MAC-ACK disabled. It had very loose time synchro-
nization.

At the end of stage one, we were able to accomplish
the following tasks :

• Installation of voyage on Soekris board with mad-
wifi driver

• Understanding madwifi driver basics

• Disabling MAC layer ACK

• Disabling beacons in Station-AP mode

• Understanding transmit and receive path for Mon-
itor and Adhoc mode

• Using RAW packet of monitor mode and changing
its content

• prototype TDMA system in Ad-hoc mode

3.4 Timeline For Stage Two

Our first priority was to enable monitor mode commu-
nication with complete removal of CSMA. We had set
following action items for stage two of the project

• Monitor mode communication

• Deciding TDMA frame structure

• Implementation of TDMA in monitor mode

• TDMA schedule dissemination

In next section we will look at the working of the
proposed TDMA system.

3



4 TDMA MAC Protocol

During the initial stages of stage two we had discussions
on MAC protocol and simultaneously started work on
monitor mode communication. After detail discussion
we came up with three basic operations to be imple-
mented for TDMA MAC. As of now we are not com-
mitting on final TDMA MAC protocol. It is important
to note that, the proposed design will keep on evolving
during the course of the project.

As mentioned earlier, we are implementing TDMA
on Soekris platform which is running madwifi driver,
hence the proposed TDMA MAC will be running in
madwifi driver. Section 5 explains the details of plug-
ging various functionality into madwifi driver. Before
we go in to details of working of TDMA protocol, we
need to clarify some terminology that we will be using
in further discussion.

The schedule consists of schedule header fol-
lowed by number of scheduling elements. Each
scheduling element consists of start time and dura-
tion of the event. It also contains information about
transmitter and intended receiver for current slot. The
scheduling header and scheduling element frame are
shown in Fig 5. Each data frame will have data
header as shown in Fig 5. The data header filters the
packets at every node as explained in section 5.6. The
contention slots can be used by any node for sending
information. Each schedule will have number of such
slots. Also note that we are working in monitor mode
and we are using custom frame format i.e. there are no
802.11 frames in our implementation.

Now, we will look at basic modules which constitute
the proposed TDMA system.

Figure 2: Topology

The system comprises of (as of now) four differrent
task. For ease of understanding we will consider
topology as shown in Fig 2. The routing and flow
request mechanism for multihop TDMA is still under
discussion.

Schedule Dissemination:

• Root creates and broadcasts schedule header along

with scheduling element. Both A and B receives
it.

• A and B are synchronized using the time stamp
and offset.

• A and B independently look inside the schedul-
ing elements and schedule their own send/receive
time.

• Suppose A’s schedule transmit time arrives. A
transmits the entire schedule as a broadcast and
the process continued thereafter. Scheduler will
not schedule any slot for schedule broadcast for
leaf node.

• Suppose A had another scheduling element for
sending data from A to C. When A receives the
original schedule it creates a queue of it’s own
event and switches to proper channel for trans-
mission at correct time i.e. using the information
send by root node in scheduling element.

• After one schedule ends, all nodes listen on chan-
nel 1 (which is, as of now, the default channel for
schedule transmission by root node) for the next
schedule.

In current implementation, we have limited function-
ality for schedule dissemination. As of now we are not
sending schedule in multiple hop.

Node Join Operation:

• Node P joins the existing network.

• P listens on channel 1 for broadcast schedule.

• P gets multiple such packets, determines best
strength possible parent. Synchronization is done
with this parent and it also finds contention slot
for sending node JOIN request.(contention slot in-
formation is in schedule packet that it receives).

• P sends node join request in the next contention
slot. P sends a fixed (or variable) number of
parent-RSSI pairs in the node JOIN packet.

• The Node JOIN may propagate towards the root
in contention slot only. [Piggybacking on working
flow might be an optimization]. Intermediate node
changes the destination field to it parents.

• When root node receives the NODE JOIN request,
it determines which of the parents in the parent-
rssi list can be denoted as P’s parent

4



• If P is an intermediate (non-leaf) node, the root
puts a scheduling element for P to forward (broad-
cast) the schedule. This element contains trans-
mitter = P, receiver = assigned parent and ap-
propriate start at and duration field with type =
schedule dissemination

• If p is an leaf node, similar element is put except
that it has startat=0 and duration=0.

This ensures that p knows about its parent and if it is
a leaf, it does not broadcast the schedule.

Flow Request: When node wants to send the
data it will send flow request message destined for root
node. It’s up to the root node to allocate transmission
slot for requesting node in next schedule. As of now
we have not come up with exact mechanism for this.
At implementation front, we have allocated slot for
every node in the network such that every node has at
least one slot for transmission in given schedule.

Routing : Design and Implementation of multi-
hop routing will be done in third stage of the project.

The next section explains the work done during
second stage to achieve some of the above design
specifications.

5 Work Done

In stage two we have looked at several issues in prepar-
ing base for TDMA implementation. We started with
enabling communication in monitor mode which took
considerable time as it required us to look at bit
level information in packets. Once monitor mode
changes were done, we prepared skeleton of structures
required for TDMA implementation. It includes sched-
ule header, scheduling elements and data header. Once
scheduling structures were ready, we were looking for a
way to send such custom packets from MAC layer itself
as sending it from upper layer would incur additional
delay. Section 5.5 explains how we achieve generation
of custom packets form MAC layer. Apart from these,
there were other issues such as filtering packets at each
node such that every node processes it’s own packets
and discards others. We also place a check on receiving
side such that packets with CRC and PHY error will
never reach network layer. Subsection 5.1 to 5.8 list the
work done during second stage of the project. Fig 3 is
a state diagram of currently implemented system. The
different sub-components of the system are explained
in the sub-sections below.

Figure 3: TDMA State Diagram

5.1 Monitor Mode Changes

At the end of first stage we were struggling to enable
communication in monitor mode. As explained earlier,
when adapter is set in monitor mode, the hardware
was changing few bytes before sending packets on air.
These changes were different for different type of pack-
ets as shown in Fig 4. In case of normal packets, the
hardware was changing byte 23 and 24 before sending
it on air. To fix it we replicated 2 bytes at position 23
and 24 at position 25 and 26 and on receiving side, we
replaced those two changed bytes with replicated bytes.
For ARP packets, the hardware was changing bytes 31
and 32. To fix it, we replicated byte 31 and 32 at po-
sition 33 and 34. When packet is received, the receiver
removes byte 31 and 32 and shrinks the packet. Thus,
on receiving side we get the original packet. In case of
normal packets, above behavior was due to retry flag
i.e hardware was printing sequence number at position
23 and 24. For ARP packets we still don’t know the
reason for such behavior.

When packet is received at MAC layer, it goes
through various checks and headers are added or re-
moved until it is handed over to network layer. Fig 6
shows the partial flow of packet on sending and receiv-
ing side. We also changed few elements of skb struc-
ture before sending packets to network layer. The skb
structure is a single entity that flows across MAC and
network layer.

After doing above changes, we were able to ping two
nodes running in monitor mode. Now, the next step
was to design and implement TDMA frame structure
for scheduling and data frame.

5



Figure 4: Monitor Mode TX/RX

5.2 TDMA Frame Format

Our implementation consists of schedule header, data
header and many scheduling elements. After every
schedule header there will be number of scheduling
elements. This number is specified in schedule header.

Schedule Header consists of special marker 0xFF
indicating itself as a FRACTEL frame followed by
packet type i.e indicating whether it is a schedule
or data packet. The three timestamp field are used
for synchronization purpose. The last entry gives
information about number of scheduling elements
following the current schedule header. The use of 2
byte reserved filed in both schedule and data frame is
explained in section 5.6.

Scheduling Elements contains the information
about transmitter and receiver for given slot. Start
at field gives information about when to start and
duration field gives duration of current transfer. Every
schedule frame will consists of one scheduling header
and number of scheduling elements. On receiving the
schedule frame, each node will create its own event
queue. The creation and working of event queue is
explained in section 5.3. Every node can either be
transmitter or receiver in a given scheduling element
but can’t be both. The Flow ID and channel field are
reserved and will be use during third stage of project.

Data Header is attached to every data frame.
It consists of special marker 0xFF to indicate it
as Fractel frame followed by packet type as 0xOC
indicating it as data frame. It consists of transmitter
and receiver IP address. The receiver IP field if used

Figure 5: FRACTEL Frames

on client side to filter out non-destined packet for
that node. Filtering based on MAC address will be
discussed in section 5.6. The flow ID field will be
used during third stage of our project. Data header is
attached to every incoming packet at MAC layer.

5.3 Event Queue Creation

The event queue is used by each node to keep track
of its transmitting/receiving slot. Initially client nodes
will listen for schedule frame. Once the schedule frame
along with scheduling elements is received by client
node, it will create schedule queue. This schedule
queue will be used during third stage of our project
when intermediate client node will be required to send
scheduling frame. After creating scheduling queue,
client node will create node specific queue by looking
at TX and RX field in each scheduling elements. This
queue is called event queue and will consists of only
node specific scheduling elements. During event queue
creation, we also perform node synchronization and
discard events that are old. We update start at field
of every scheduling element during queue creation (in
accordance with synchronization). Every scheduling el-
ement is encapsulated in fractel event list queue, which
consists of next at timer value set to start time of next
element in queue. This helps us in setting next timer
for upcoming event. We will be using fractel event list
queue for getting scheduling element along with the
next at timer.

Upon firing of timer, fractel event handler is
called, which is a state machine for our TDMA system.
Depending on state of the node it will either prepare
schedule, send schedule or initiate transmit event or
start receiving event. The state diagram is explained

6



in Fig 3. Once the fractel event list queue is empty, the
node will wait for next schedule and process repeats.

It is the responsibility of the root node to pre-
pare valid schedule along with scheduling elements and
transmit across the network. Both root node and client
node will be in FRACTEL NONE STATE when they
boot up. After specified time, root node will prepare
first schedule and send it on air. As soon as root sends
the schedule, it will start creating fractel schedule list
queue and then fractel event list queue. On the other
hand, when client receives the schedule it will first do
synchronization and then create same queues as cre-
ated by root node. Once fractel event list queue is
ready node can set initial timer and process events in
this queue one by one(at specific time).

5.4 TDMA Implementation

For working of TDMA we needed a way to buffer all
out going traffic and transmit packets such that cu-
mulative sum of total bytes transfered in a slot does
not over shoot the (slot size ∗ data rate) prod-
uct. Fig 6 shows working of prototype TDMA sys-
tem. The final call in madwifi for tansmitting packet
on air is ath hal txstart(). Initially, we had plug-in
TDMA queuing mechanism between ath txqaddbuff()
and ath hal txstart(). As explained in section 6, this
was not the proper place to do so. Right now we are
working on changing TDMA queuing module as shown
in Fig 6. The goal is to buffer all incoming traffic and
on arrival of interrupt (i.e. send slot for given node -
set from even queue list()) it will send slot size ∗ data
rate number of bytes on air. However, there is small
problem with large MTU with small data rate. Section
5.7 addresses this issue.

Figure 6: TDMA in Monitor Mode

5.5 Generation Of Packets At MAC
Layer

All custom packets explained in section 5.2 can be gen-
erated from application layer, but it imposes additional
overhead. In our case we were looking to generate
such packets from MAC layer itself, so that we incur
minimal overhead. We manage to achieve it through
ieee80211 getmgtframe() function which allocate and
setup a management frame of the specified size and
return the sk buff and a pointer to the start of the
contiguous data area that’s been reserved based on
the packet length. Once we get hold of sk buff we
can use sk buff’s data field to push our data. We
use skb push() and skb pop() function to manipulate
skb→data[] field.

5.6 MAC Filtering And NAV Field

After generating schedule frame, scheduling elements
and data frame, we were able to ping between two
nodes running on TDMA schedule. But sometimes
ping was giving weird reply. We found out that prob-
lem was with the way in which we allowed packet to
reach network layer on each node. The fact was, we
were passing all received packets to network layer even
if that packet was not destined for that node. To fix
this problem we created static map of IP and MAC
address of all nodes.

When packet comes to MAC layer it has MAC ad-
dress of destination machine. To find IP address we
refer to static map of MAC and IP addresses and place
corresponding IP address in RX field. When client re-
ceives the packet it first matches the RX field with it’s
own IP. If match is successful then we allow data packet
to reach to network layer else we discard the packet.

Now, we will look at purpose of keeping two byte
reserved field in both schedule and data frame. The
position of reserved field is second byte. In IEEE stan-
dard, that byte correspond to NAV field. Which when
set, tells hardware to defer transmission by correspond-
ing amount. We encountered this problem when we got
repeated no xmit buff error. The only explanation
for such behavior was hardware queue was completely
filled due to long delay in transmission. We fixed this
problem by setting it to zero.

5.7 MTU For Small Slot Size

In our implementation, we buffer the packet until trans-
mission slot occurs. Once transmission slot starts, we
check whether current packet at the head of the queue
is small enough to send in current slot. If it is not,
then we stop transmission. This was causing problem

7



at small data rate with small slot size. For example,
consider 1 Mbps data rate with 1 msec slot size. In
such setting maximum data that can be send in one
slot is 125 Bytes. In such situation if packet having
length more than 125 bytes comes into queue, then
TDMA system stops working i.e permanently stopped
at packet having size > 125 bytes. To fix this problem,
we set MTU such that MAC layer never gets larger
packets then what is possible to send in one slot at
given rate. Till now we have not automated this calcu-
lation. We will plug-in this mechanism in third stage
of the project.

5.8 Channel Switching

In TDMA system we need to maximize the available re-
sources. Enabling simultaneous transmission of nearby
node on different channel might help in increasing sys-
tem throughput. Linux inbuilt iwconfig command pro-
vides a way to switch channel from command prompt.
In order to achieve same functionality from driver code,
we traced the command in madwifi through IOCTL call
and found a way to switch channel from madwifi driver
without using IOCTL call. To achieve it, we need to
set ic→curchan structure with intended channel infor-
mation and then calling ic→ic set channel(ic), which
writes specific register and changes the operating fre-
quency. It is visible that channel switching will have
some overhead. As of now we haven’t characterized the
channel switching delay. In due course of project we
will do the required characterization and also integrate
channel switching functionality into madwifi code.

In next section, we will look at results obtained after
making above changes in madwifi.

6 Experiments And Results

We carried out experiments by varying slot size and
number of scheduling elements. Below table shows the
observation obtained in one such experiment. Note
that, throughput measurements are in Mbps.

Rate Slot Size SE UDP

One-Dir Bi-Dir

11 20msec 3 7.52 7.53
11 10msec 3 7.35 7.59
11 5msec 3 7.20 7.36

Table 2: UDP Experiment

We gave equal slot to three communicating nodes.
The root node was only sending scheduling informa-
tion. In theory, given equal chance for transmission

Rate Slot Size SE TCP

One-Dir Two-Flow

11 20msec 3 3.81 4.92
11 10msec 3 4.31 5.2
11 5msec 3 4.40 4.73

Table 3: TCP Experiment

to each nodes, the throughput should reduce by one
thired. But in contrast, we were getting much more
throughput than that. For example, in one direction
UDP test with slot size 20msec, we were getting around
7.43 Mbps, while by theory we should not cross more
than 2.98Mbps. This was a very surprising result for
us. We narrow down the reason for such behavior as
either transmission node was not obeying transmission
timing or packets were getting send without TDMA
queuing.

After detailed analysis of our TDMA code, we found
implementation bug in our system. To give clear pic-
ture, as explained in section 5.4, the TDMA queuing
was happening after calling ath txqaddbuff(). The pur-
pose of ath txqaddbuff() is to push packet on hardware
queue. It then calls ath hal txstart(). The purpose
of ath hal txstart() is to enable transmission on spec-
ified hardware queue. As we were queuing packet for
TDMA after it was added to hardware queue, all the
packets that a node got for transmission were in hard-
ware queue rather than in TDMA queue. So once we
call ath hal txstart(), it was sending all packets that
were on hadware queue on air. So effectively, TDMA
was not happening. This was a major bug in our code.
We are currently working on it and will fix the bug as
soon as possible. Once we are done with the fix, we will
do detail throughput measurements and will compare
it with CSMA protocol.

7 Stage 3 Timeline

In stage two, we tried to prepare base for implementa-
tion of TDMA protocol for stage three. We addressed
many issues as listed in section 5. In stage three, we
are looking at extending TDMA to multi-hop network.
Implementation of TDMA in Multihop setup has it’s
own set of issues. Following are the key issues that we
will address in stage 3

• Multihop routing

• Schedule dissemination across network

• Flow request mechanism

• Indoor and Outdoor benchmarking of Multihop
system

8



Apart from above objective, we might migrate to dif-
ferent hardware platform. The new platform has 680
MHz CPU compared to current 233 MHz CPU. It will
require us to cross compile madwifi driver, as it has
different processor architecture.

8 Conclusion

Challenges: One of the main challenges of the
work was understanding and changing device driver
code (particularly when no hardware specification is
available). For example, it took us almost one month
to figure out that a single flag needs to be set to
generate hardware-timestamped packet.

Milestones: A few milestones reached in the
second stage include:

• Enabling monitor mode communication

• Generating packets from MAC layer

• Designing a TDMA frame structure and imple-
menting it in madwifi driver code

Though TDMA queuing mechanism needs a major fix,
we are optimistic that we can implement multihop
TDMA system in third stage of the project.

References

[1] Kameswari Chebrolu and Bhaskaran Raman. FRAC-
TEL: A Fresh Perspective on (Rural) Mesh Networks,
ACM SIGCOMM Workshop on Networked Systems for
Developing Regions (NSDR’07), A Workshop in SIG-
COMM 2007, Aug 2007, Kyoto, Japan.

[2] Michale Neufeld, Jeff Fifield, Christian Doerr, Anmol
Sheth and Drik Grunwald. softMAC-Flexible Wireless
Research Platform, HotNets-IV, Nov 2005.

[3] Ashish Sharma, Mohit Tiwari, Haitao Zheng. Mad-
MAC: Building a Reconfigurable Radio Testbed Using
Commodity 802.11 Hardware, WSDR 2006.

[4] Christian Doerr, Michael Neufeld, Jeff Fifield, Troy
Weingart, DC Sicker, Dirk Grunwald. MultiMAC - An
Adaptive MAC Framework for Dynamic Radio Net-
working, DySPAN 2005.

[5] Ashish Sharma, Elizabeth M. Belding FreeMAC:
Framework for Multi-Channel MAC Development on
802.11 Hardware, PRESTO 2008

[6] Ananth Rao, Ion Stoica. An Overlay MAC Layer for
802.11 Networks, MobiSys 2005.

[7] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol
Sheth, Lakshminarayanan Subramanian, Eric Brewer.
WiLDNet: Design and Implementation of High Perfor-
manceWiFi Based Long Distance Networks, NSDI 2007

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. TOCS 2000.

[9] http://www.madwifi.org

[10] http://www.soekris.com/

9


