
Clustering

Rose Catherine K.
Roll no: 07305010

M. Tech. Project Stage I

under the guidance of

Prof. S. Sudarshan

Computer Science and Engineering
Indian Institute of Technology Bombay

Introduction

Keyword searching -important paradigm of searching.

External memory BANKS could perform better if the nodes that are
connected to each other are retrieved together.

Cluster: a collection of objects that are similar to each other

Clustering: process of finding
out clusters in the given set of
objects

Community: set of real-world
entities that form a closely knit
group

Fig. 1

Aspects of Clustering

Objective Function:
Cut Set Size:

Objective: minimize cut set
size

Fig. 2

Constraint on k or size of
clusters.

No intuition for having a
fixed number or size of
communities.

Fig. 3

Community Related Measures:
Graph Conductance

Objective: Minimize Conductance
For S ⊆ V :

Vol(S) =
∑

v∈S d(v)

∂(S): Cut Set

Fig. 4

Φ(S) =
|∂(S)|

min(Vol(S),Vol(S̄))

Example: Conductance for Fig. 4 = 3
19 = 0.15, for Fig. 3 = 4

22 = 0.18

Modularity

Objective: Maximize Modularity
Clusters: V1, ... Vk (k is not input parameter). Fig. 5

E (Vi): edges with both
endpoints in Vi

Ex(Vi ,G): expected number of
such edges in a random graph
from a given G, with a vertex
set Vi .

Q =
1

m

k∑
i=1

(|E (Vi)| − Ex(Vi ,G))

Example: (with Erdös-Rényi Random Graph Model), Q for Fig.5 = 9.075
23 ,

for Fig. 3 = 8.267
23

Methods:

Hierarchical Clustering Methods: Agglomerative and Divisive

Partition Refinement Method: Given n objects and a number k:

Create an initial partitioning of the data into k clusters
Improve the partitioning by moving objects from one group to another

Random Walk based Techniques:

Find the cluster to which a particular node belongs, or
Find the enclosing cluster for the given seed set

Clustering for Finding Communities - Partition Refinement
Methods

Extremal Optimization

Objective: Maximize Modularity Fig. 6

Q =
∑

r

(err − a2
r)

where, err = fraction of edges with both end points in cluster r ,
ar = fraction of edges with atleast one end point in cluster r .
Example:(for Fig.6) eR1R1 = 12

23 , aR1 = 15
23 , Q = 0.22

for Fig.3, Q = 0.14

Extremal Optimization

Idea: To optimize a global variable (Q) by improving extremal local
variables (contribution of individual nodes) Fig. 7

fitness of a node i

λi =
κr(i)

ki
− ar(i)

κr(i) = number of links that i has to nodes in its community
ki = degree of i
ar(i) = fraction of links with atleast one endpoint in the community of i .

Move the node with Least fitness, to the other partition

Example: (Fig. 7) κr(n1) = 1, kn1 = 3, ar(n1) = 13
23 , λn1 = −0.23,

λn2 = −0.07, λn3 = 0.06.

Extremal Optimization - Algorithm

1 Create two random partitions of equal size

2 Calculate fitness of all nodes.
3 Self Organization step:

1 Rank the nodes according to increasing value of fitness
2 Choose a node of rank q, with P(q) ∝ q−τ for some τ > 0
3 Move the chosen node to other partition

4 Recalculate fitness values of nodes.

5 Repeat from step (iii) until an “optimal state” with a maximum value
of Q is reached.

6 Delete all links between both partitions and recurse on each of the
resulting components.

7 The algorithm stops when the value of modularity cannot be further
improved.

Complexity: O(N2ln2(N))

Advantages:

Final result is independent of initialization, due to probabilistic
selection method

Limitations:

All nodes must be examined in every round, for selecting the next node.

Improvement: Modularity-Weight Prioritised BFS algorithm by Prasang
Upadhyaya.

Modularity-Weight Prioritised BFS

Modification of Extremal Optimization algorithm

Algorithm:

1 Initially, all nodes are in partition 1; initialize fringeNodeVector
with lowest degree vertex; set maxIters = n

2 Move the top element of fringeNodeVector to partition 0; Add
neighbors of the top element, which are in partition 1, to
fringeNodeVector

3 Choose a fixed number of elements, randomly, from
fringeNodeVector. From these, move all nodes whose every
neighbor is in the other partition, to partition 0.

4 For other nodes, calculate the increase in modularity on moving it to
partition 0. Make that node with the highest increase, the top
element of the fringeNodeVector.

5 Repeat steps from (2) onwards.

6 If highest increase in modularity obtained in step (4) is less than zero,
then, this iteration is called as an iteration-without-improvement. If
the number of such iterations exceed a particular number, then, stop
iterating.

7 Once the iteration is stopped, then, undo all node exchanges done
after the one which gave the maximum value of modularity over all the
iterations, which gives two partitions. Recursively call
Modularity-Weight Prioritised BFS on these two partitions.

8 If the size of a partition goes below a minimum value, it is not
partitioned further.

Time Complexity: O((n + m) ln(k))
n = number of nodes; m = number of edges; k = number of clusters
approximately desired (k ∼ 2n

size , where size is the user-specified lower
bound on the cluster size).

Advantages:

The time complexity of O(n ln(k)) is one of the best achieved upper
bounds.

Limitations:

Probability of getting stuck at a local optimum is higher

The solution obtained could be an approximate one.

Random Walk based Methods

Objective: find the cluster to which a particular node belongs, or the
enclosing cluster of a seed set.

Start random walk from the specified node.

Intuition: walk will remain within the cluster, with a large probability.

Truncated walk: if probability is below a certain threshold, set to 0

Computation will be more local.

Sudden drop in
probability, outside the
cluster boundary

——————————————————————————–

Φ(S) = 2
22 = 0.09

Cut 1: Φ(S−n1) = 4
22−2 = 0.2

Cut 2: Φ(S + n2) = 3
22+3 =

0.12

Dip in conductance at
cluster boundary

Clustering using Nibble Algorithm

Objective: find the cluster to which seed node belongs

Nibble Algorithm:
input: Start Vertex v , Graph G , Conductance θ0, a positive integer b

1 Compute t0 (∝ ln(m)/θ2
0), γ (∝ θ0/ln(m)), εb (∝ θ0/ln(m)t02

b)
2 Start a lazy random walk from v
3 At each step: (until t0)

Do the Truncation Operation with threshold = εb
Sort the nodes in the decreasing order of their probabilities
Check if a j̃ exists such that:

Φ({1, ..., j̃}) ≤ θ0

Pr (̃j) ≥ γ/Vol({1, ..., j̃})
Vol({1, ..., j̃}) ≤ 5

6
Vol(V), then, output C = {1, ..., j̃}

4 Do the next step of random walk and repeat from Step (3)

Random Nibble Algorithm:
input: G , θ0

1 Set v to be the largest degree vertex of G
2 Choose b in 1, ..., dlog(m)e according to

Pr [b = i] ∝ 2−i

3 Call Nibble(G , v , θ0, b)

Partition Algorithm:
input: G , θ0, p ∈ (0, 1)

1 Compute number of iterations j (∝ mdlg(1/p)e
2 Start with the entire graph, i.e., set W to V
3 Call RandomNibble(G (W), θ0)
4 Add the cluster nodes returned by RandomNibble to the answer
5 Now, remove these nodes from W
6 If Vol(W) ≤ 5

6Vol(V), then stop
7 Else, repeat from Step (3)

Multiway Partition Algorithm:
input: G , θ, p

1 Set θ0 to (5/36)θ
2 Compute number of iterations t (∝ (lg m)2)
3 Start with the entire vertex set, i.e, set C1 to V
4 In each step: For each component C ∈ Ct ,

Call Partition(G (C), θ0, p/m)
5 Add the two partitions returned to Ct+1 and repeat from Step 4
6 Final clustering is given by Ct+1

Running Time:
Nibble : O(2bln4(m)/θ5

0

Multiway Partition : O(m (lg(1/p) lgO(1)(m))/θ5)

Experiments and Analysis

Nibble was implemented in
Java
Executed on etd2 database
4329 nodes and 21432 edges

Observations:

Nodes grouped together were related to the start node.

Sizes of the clusters differ drastically - 2189, 226, 62 and 39

Effect of Start Node: clustering on program basis - MTech., PhD.,
MDes., MPhil. etc. which were the starting nodes.

Effect of conductance: conductance seems to be affecting the cluster
size inversely.

Effect of maxClusterSize:
The clustering on the basis of department - School of Management,
Humanities and Social Science Department.
The effect of start node is no more visible and it itself was not added
to both of the clusters.
Varying the value of maxClusterSize did not affect the clustering.

Conclusions:

The first implementation of Nibble not very successful in finding the
more intuitive clustering - based on Department.

The modified version of Nibble with the bound maxClusterSize
could find clusters on the basis of Department, but unable to find all
the clusters.

Seed vertex not in the cluster

Conclusions and Future Work I

Clustering: technique of finding the underlying structure of a graph.

Different aspects: objective functions, methods.

Studied few objectives and clustering techniques.

Nibble - community finding method based on random walks,
implemented and executed on the etd2 database

identified few shortcomings

Conclusions and Future Work II

Proposed direction of future work:

Improve upon the Nibble algorithm: new method for choosing the
seed vertex, finding all the clusters and handling the case of the seed
not being included in the cluster.

When some information is known in addition to just the graph
structure, the clustering algorithm must do better. e.g. the basis of
clustering is intuitive and known beforehand

Given a small graph and a mapping of the nodes of a larger graph to
nodes in the former, find a good clustering for the latter, by finding a
good clustering for the smaller graph.

Obtain high node and edge compression for the supernode graph.

Formulate an objective of clustering, which reduces the query answer
time of BANKS system

Test Modularity-Weight Prioritised BFS Algorithm.

Extra Slides

Clustering using Seed Sets I

Objective: discover the enclosing community of a given cohesive “seed set”
of nodes, that has small conductance

Extended Nibble algorithm for a set of start nodes

Examines only a small portion of the entire graph

Intuition: for a random walk that begins from the seed nodes, much of
the walk will be contained in the cluster. As soon as we move outside
the cluster, the probability will fall, revealing the cluster boundary.

Define:
The initial probability distribution p0 is set to ψS :

ψS =

{
d(x)/Vol(S) if x ∈ S
0 otherwise

Random walk transition matrix, M as 1/2(I + AD−1)

Clustering using Seed Sets II

Algorithm:

1 Simulate the next step of the random walk to obtain the probability
distribution, pt+1 = Mpt .

2 Sort the vertices in descending order of their degree-normalized
probabilities: rt(v) = pt(v)/d(v).

3 For the truncated walk, set the probability on any vertex for which
rt(v) ≤ ε to 0, where ε is a constant, called the threshold.

4 Let v t
i be the i th vertex after sorting, such that r(v t

i) ≥ r(v t
i+1). Then,

this ordering defines a collection of sets S t
0, ...,S

t
J , where

S t
j = {v t

i |1 ≤ i ≤ j}, and J is the number of vertices with nonzero
values of p(u)/d(u).

5 Each of the sets S t
j , are tested for a good community.

6 If none of the sets qualify as a good community, then the random walk
is continued, from step 1 onwards.

Clustering using Seed Sets III

Good seed sets:

Seed set S for a community C which has a small conductance, if the
amount of probability that has escaped from C after T steps, is not
much larger than φ(C) T .

Any set that is fairly large and nearly contained in the target
community.

Sets chosen randomly from within a target community.

Advantages:

Explores only local locality.

Can find nested clusters that enclose the seed set.

Disadvantages: Selection of the seed set: identify the target cluster set
initially, and choose nodes randomly from it, to form the seed set.

Clustering using Nibble Algorithm I

Definitions and Mathematical Notations:

Define:

bal(S) =
VolV (S)

VolV (V)

For the subgraph of G induced by a subset of the vertices W ⊆ V ,
(S ⊆ W) define:

VolW (S) =
∑
v∈S

|w ∈ W : (v ,w) ∈ E |

∂W (S) =
∑
v∈S

|w ∈ W − S : (v ,w) ∈ E |

ΦW (S) =
|∂W (S)|

min(VolW (S),VolW S̄)

Clustering using Nibble Algorithm II

Also,

χS(x) =

{
1 for x ∈ S
0 otherwise

ψS(x) =

{
d(x)/VolV (S) for x ∈ S
0 otherwise

Walk Matrix , P = (AD−1 + I)/2

where, A: unweighted graph, D: diagonal matrix with (d(1), ..., d(n)) on
the diagonal
pv
t = Ptχv : Prob. Distrn with start vertex, v , after t steps

The truncation operation:

[p]ε(v) =

{
p(v) if p(v) ≥ 2εd(i)
0 otherwise

Nibble Algorithm

C = Nibble(G , v , θ0, b)
G a graph, v a vertex, θ0 ∈ (0, 1), b a positive integer.
(1) Set p̃0(x) = χv

(2) Set t0 = 49 ln(me4)/θ2
0, γ = 5θ0

7.7.8 ln(me4)
, and εb = θ0

7.8 ln(me4)t02b

(3) For t = 1 to t0
(a) Set p̃t = [P ˜pt−1]εb

(b) Compute a permutation π̃t such that
p̃t(π̃t(i)) ≥ p̃t(π̃t(i + 1)) for all i .

(c) If there exists a j̃ such that

(i) Φ(π̃t({1, ..., j̃}) ≤ θ0,

(ii) p̃t(π̃t (̃j)) ≥ γ/VolV (π̃t({1, ..., j̃}), and

(iii) 5 VolV (V)/6 ≥ Vol(π̃t({1, ..., j̃}) ≥ (5/7) 2b−1

then output C = π̃t({1, ..., j̃} and quit.
(4) Return ∅.

Table: Pseudocode for Nibble algorithm

C = RandomNibble(G , θ0)
(1) Choose a vertex v according to ψV

(2) Choose a b in 1, ..., dlog(m)e according to

Pr [b = i] = 2−i/(1− 2−dlog(m)e)
(3) C = Nibble(G , v , θ0, b)

Table: Pseudocode for Random Nibble algorithm

D = Partition(G , θ0, p)
where G is a graph, θ0, p ∈ (0, 1).
(0) Set W1 = V
(1) For j = 1 to 56m dlg(1/p)e

(a) Set Dj = RandomNibble(G (Wj), θ0)
(b) Set Wj+1 = Wj − Dj

(c) If VolWj+1
(Wj+1) ≤ (5/6) VolV (V), then go to

step (2)
(2) Set D = V −Wj+1

Table: Pseudocode for Partition algorithm

C = MultiwayPartition(G , θ, p)
(0) Set C1 = V and S = ∅
(1) For t = 1 to dlog17/16me . dlg(m)e . dlg(2/ε)e

(a) For each component C ∈ Ct ,
D = Partition(G (C), θ0, p/m)
Add D and C − D to Ct+1

(2) Return C = Ct+1

Table: Pseudocode for Multiway Partition algorithm

Running Time:
Nibble : O(2bln4(m)/θ5

0

RandomNibble : O(ln4(m)/θ5
0

Partition : O(mlg(1/p)ln4(m)/θ5
0

Multiway Partition : m (lg(1/p) lgO(1)(m))/θ5

If C is the set of components returned by Multiway Partition, with
probability at least (1− p),
cut − size(C) ≤ (θ log17/16m . lg m . lg(2/ε))(m/2), where
ε = min(1/16, 1/(4 dlg me))

