
Clustering

M. Tech. Project Stage I Report

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Rose Catherine K.

Roll No: 07305010

under the guidance of

Prof. S. Sudarshan

a
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai

Acknowledgements

I would like to express my sincere thanks and gratitude to my guide, Prof. S. Sudarshan,

for the constant motivation and guidance he gave me through out the project work, and for

having patience to clarify my doubts and for bringing into perspective, the different aspects of

the project topic. Working with him was a great learning experience.

I would also like to thank Prof. Soumen Chakrabarti, for the clarifications regarding ran-

dom walks, thereby giving me a good insight into how they are employed in finding communities.

Rose Catherine K.

MTech. 1

CSE, IIT Bombay.

i

Abstract

Clustering is the process of finding out a grouping of the given set of objects, such that

those in the same collection are similar to each other. This is important because, it reveals the

high level organization of the data.

It is also important from the point of view of keyword searching in databases. Identifying

nodes that are highly related to each other, and grouping them together, can localize the

computing required to answer a particular keyword query, to a single or a few clusters. Thus,

creating good quality clustering of the graph representation of the database can bring down the

keyword query answer time, considerably.

Clustering has different aspects, like the objective function to be optimized, the method used

to achieve this optimum, and measuring the goodness of a particular clustering on a graph. A

large number of algorithms have been proposed for optimizing different objective functions.

This report discusses a few clustering techniques, their advantages and shortcomings, and also

studies a particular algorithm called Nibble, in detail. The latter was implemented and tested,

to gain insight into its performance and how it can be adapted for the particular domain of

keyword searching.

ii

Contents

1 Introduction 1

2 Overview of Clustering Techniques 2

3 Quantifying the strength of community structure 5

3.1 Graph Conductance . 5

3.2 Modularity . 5

4 Clustering to Minimize Cut Size using Graph Partitioning 7

5 Clustering for Finding Communities 11

5.1 Divisive Method using Edge Betweenness . 11

5.2 Clustering using Minimum Weighted Cut . 12

5.3 Extremal Optimization . 14

5.4 Modularity-Weight Prioritised BFS . 16

6 Finding Communities using Random Walk based Methods 18

6.1 Clustering using Nibble Algorithm . 18

6.2 Clustering using Seed Sets . 21

7 Experiments and Analysis 23

8 Conclusions and Future Work 27

iii

1 Introduction

Keyword searching is an important paradigm of searching, which is receiving considerable

interest during the past few years. Keyword search in databases is becoming increasingly

important.

In general, a keyword search system, for example, the BANKS System ([BHN+02]), begins

by identifying nodes that are relevant to the keywords. It then proceeds to connect these nodes

according to the search algorithm. This involves moving along the edges of the graph, to the

neighbors of the nodes. Now, consider databases that have millions of nodes and edges. For

example, DBLP has 1,771,381 nodes and 2,124,938 edges, in the equivalent graph representation.

This entire data will not fit in the main memory of the search system and hence, will be stored

in external memory. This increases the time required to access the data graph, and hence affects

the query answer time.

As mentioned in [Upa08], the external memory BANKS could perform better if the nodes

that are connected to each other are retrieved together - either by storing them in the same

block of memory, or, by storing them in the same machine, if the data is distributed across

machines. This can be done by first clustering the nodes, and then assigning each cluster to a

machine. Hence, by creating good quality clustering of the graph representation of the database,

the keyword query answer time can be brought down considerably.

Figure 1: Example of clustering on a simple graph

A cluster can be defined as a collection of objects that are similar to each other. Clustering

is the process of finding out the clusters in the given set of objects. The similarity measure has

to be given; i.e., there should be a method to find the degree of similarity or distance between

any two objects.

Consider a graph consisting of vertices/nodes and edges connecting them. Let the edges

represent some similarity between the incident nodes. Then a cluster can be considered as a

set of nodes such that, edges connecting nodes within the cluster are more than those linking

to nodes outside the cluster. i.e., connections within it is dense and inter-cluster edges are

comparatively low. A simple example is shown in Figure 1.

Clustering can be done on any data, by representing it as a graph. For a relational database,

the commonly used construction of data graph, is as follows: the tuples of the database form the

1

nodes and the cross references between them, like foreign key references, inclusion dependencies,

etc., form the edges of the graph. The nodes may also be a cell in the table, according as the

granularity required. Similar techniques can be used to convert XML data and the web corpus

into graph representations.

Overview

This report is organized as follows: Section 2 gives an overview of different aspects of

clustering, followed by a discussion on quantifying the strength of community structure in

Section 3. Section 4 discusses an approach to clustering, using graph partitioning technique.

In Section 5, a few methods for finding communities are discussed, followed by a discussion

of using the idea of random walks in determining the same, in Section 6. Section 7 explains

some of the experiments conducted and its analysis, followed by conclusions and future work in

Section 8.

2 Overview of Clustering Techniques

In this Section, we discuss some of the aspects of clustering, such as objective functions and

methods of clustering.

All clustering techniques are based on optimizing an objective function. Following are some

of the commonly used objective functions:

• Distance based measures: The objective function is based on the geometry of points in

some D-dimensional space. Here, the dissimilarity of any two points is usually taken as

the Euclidean distance between them. Hence, it is necessary that the data must have a

D-dimensional representation. K-means (discussed in this Section) is an example for a

clustering technique that uses a distance based function as its objective.

• Cut Size: Cut size is given by the number of edges that connect nodes which are in

different clusters. The goal is to minimize cut size. The METIS Algorithm (discussed in

Section 4), is an example for an algorithm whose objective is to minimize cut size.

• Community related measures: These are used for measuring the quality of the communi-

tites found. Examples of these include Conductance and Modularity (discussed in Section

3.1 and Section 3.2 respectively). Examples for algorithms that optimize these measures

include Modularity Weight Prioritized BFS (Section 5.4) and Clustering using Seed Sets

(Section 6.2).

There are many methods of clustering, that optimize different objective functions. Some of

these are listed below:

Hierarchical Clustering Methods:

Hierarchical methods are of two types - agglomerative and divisive ([HK06]). Agglomerative

methods proceed by adding edges to the set of nodes, to identify the clusters. They begin with

2

a graph that has all the nodes of the original graph, and no edges. Then starting with the

vertex pairs with highest similarity, edges are added. Divisive methods work on the original

graph. Here, in every step of the clustering process, least similar vertices are found out and

the edge between them is removed. In both the techniques, the clustering procedure can be

stopped at any step, and the resulting components in the network give the clusters. Example

for hierarchical clustering method, is the divisive method using Edge Betweenness ([NG04]),

discussed in Section 5.1.

Partition Refinement Method:

Given n objects and a number k, a partitioning method constructs k partitions of the data,

where each partition represents a cluster. In general, these methods proceed by first creating

an initial partitioning of the data into k clusters. It then attempts to improve the partitioning

by moving objects from one group to another (more details can be found in [HK06]). Examples

include K-means (discussed in this Section) and Extremal Optimization (discussed in Section

5.3).

Random Walk based Techniques:

Random walk based methods are used to discover communitites in a network graph. The

goal of these methods is usually to find the cluster to which a particular node belongs, or the

enclosing cluster of a set of nodes, called the seed set. The objective function is usually one of

the community goodness measures. Random walk based techniques are discussed in detail in

Section 6.

Geometric Clustering Methods:

Geometric clustering methods try to optimize a distance based measure, such as a monotone

function of the diameters or the radii of the clusters, and finds clustering based on the geometry

of points in some D-dimensional space ([CRW90]). Below, we discuss the K-means clustering

algorithm which tries to minimize a distortion function.

K-means Clustering

K-means clustering takes as input, N points in some D-dimensional space, and a number

K, which is the number of clusters required. The goal is to find K points (in the D-dimensional

space), called mean, that represent the K clusters, and an assignment of the N input points to

one of the clusters, such that, the sum of the squares of the distances of each data point to the

mean of its cluster, is a minimum.

The objective can be formally stated as given in [Bis06]: Let the data points be x1, ...,xN .

Consider the 1 − of − K coding scheme for representing the assignment of a data point xi,

where a set of binary variables rik ∈ {0, 1}, k = 1, ...,K are associated with it, such that, if xi

is assigned to cluster k, then, rik = 1 and rij = 0 for all j 6= k. Let the mean of cluster k be

3

µk. Then, the objective function, (also called as distortion measure) is given by:

J =

N
∑

i=1

K
∑

k=1

rik ‖ xi − µk ‖2

Algorithm:

The goal is to minimize the objective function stated above. The algorithm proceeds in the

following steps:

(i) Choose some initial values for µk for all k = 1, ...,K.

Then, the algorithm proceeds in two half steps:

(ii) In the first half-step, assign each of the data points to its closest mean. i.e., assign xi to

that µk that minimizes ‖ xi − µk ‖2.

(iii) In the second half-step, set µk to the mean of all the data points assigned to cluster k.

The algorithm is assured to converge, since each step reduces the value of the objective function.

Limitations:

• The direct implementation of K −means algorithm can be slow, since in the first half-

step of each iteration, it is necessary to compute the distance between every data point

and every mean. Improvements have been suggested that take advantage of the triangle

inequality for distances.

• The dissimilarity between a data point and a mean point, is taken as square of the

Euclidean distance between them. Hence, it is necessary that, the data being clustered

must be points in some D-dimensional space - this is not true always. K − medoids

algorithm is an improvement over this, where the dissimilarity between every pair of

points is specified beforehand, and the mean points, called medoids in this case, are

constrained to be chosen from the data points.

4

3 Quantifying the strength of community structure

A community is a set of real-world entities that form a closely knit group. The community

structure in networks gives natural divisions of network nodes into densely connected subgroups.

(This is discussed in detail in Section 5 and Section 6)

All clustering algorithms produce a grouping of the nodes of the graph. And usually, the

community structure may not be known ahead of time. Measuring the goodness of the clusters

found is hence important. But, a minimum value of cut size doesn’t reveal much about the

structure, since mostly, a small number of nodes will be surrounded by a smaller cut, than

a large number of nodes. Also, there is no reason for the communitites to be of same size.

Therefore, these cannot be used to quantify the strength of the clustering found. Goodness of

a community structure is measured using the following quantities:

3.1 Graph Conductance

Graph conductance (as given in [AL06]), also known as the normalized cut metric, is defined

as given below:

Let G = (V,E) be a graph. Now, define the following:

• d(v) is the degree of vertex v.

• For S ⊆ V , V ol(S) =
∑

v∈S d(v)

• Let S̄ = V − S. Then, S defines a cut and (S, S̄) defines a partition of G.

• The cutset is given by ∂(S) = {{u, v} | {u, v} ∈ E, u ∈ S, v /∈ S}, which is the set of edges

that connect nodes in S with those in S̄. The cutsize is denoted by |∂(S)|.

Then, the conductance of the set S is defined as:

Φ(S) =
|∂(S)|

min(V ol(S), V ol(S̄))
(3.1)

3.2 Modularity

The definition of modularity given in [Dji06], measures the difference between the number of

in-cluster edges and the expected value of that number in a random graph on the same vertex

set.

Specifying formally, let V1, ... Vk be the node subsets induced by the clustering. Then,

modularity can be expressed as:

Q =
1

m

k
∑

i=1

(|E(Vi)| − Ex(Vi,G)) (3.2)

where, E(Vi) is the set of all edges of G with both endpoints in Vi and Ex(Vi,G) is the expected

number of such edges in a random graph from a given random graph distribution G, with a

vertex set Vi.

5

Expected number of edges in Erdös-Rényi Random Graph Model

In the random graph model G(n, p) of Erdös and Rényi, each edge out of the
(

n
2

)

edges

(between every pair of nodes) is materialized with a fixed probability p. Hence, the expected

number of edges is
(n

p

)

p (as mentioned in [Upa08]).

If the expected number of edges in the graph is m, then

p =
m
(n
2

)

The expected number of edges in a partition Vi is given by
(|Vi|

2

)

p.

Expected number of edges in Chung-Lu Random Graph Model

In the paper [CL02], the authors suggest a model for random graphs with a given expected

degree sequence. Here, the probability that a particular edge exists, is proportional to the

product of the expected degree of its end points. i.e., for a given expected degree sequence

w = (w1, w2, ..., wn), the probability pij that there is an edge between vi and vj is given by:

pij =
wiwj

∑

k wk

assuming that maxi w
2
i <

∑

k wk.

The expected number of edges in a partition can be found by the following method, as given

in [Upa08]: Let Vd be a partition of the graph, and ET
d represent all the possible edges in the

subgraph generated by Vd. Also, let Xd be a random variable that represents the number of

edges in Vd. For the edges e ∈ ET
d , if Ie is the indicator random variable that e exists, then,

X =
∑

e∈ET
d
Ie. Hence, expected number of edges in the partition can be expressed as:

E(X) =
∑

e∈ET
d

E(Ie)

=
1

∑

k wk

∑

(i,j)∈ET
d

wiwj

Modularity can also be measured in the following manner, as given in [NG04]: Consider

a particular division of a network into k clusters. Now, define a k × k symmetric matrix e

such that, the element eij gives the fraction of all edges in the network that link vertices in

cluster i to vertices in cluster j. Hence, the quantity, Tr e =
∑

i eii, which is the trace of this

matrix, gives the fraction of edges in the network that connect vertices in the same cluster. A

good division into clusters should have a high value of this trace. Now, define the row sums

ai =
∑

j eij , which represents the fraction of edges that connect to vertices in cluster i. In a

random graph, where edges connect vertices without regard for the communities they belong

to, eij = aiaj. Then, modularity measure can be defined as:

Q =
∑

i

(eii − a2
i) = Tr e− ‖ e2 ‖ (3.3)

Values of Q approaching 0, indicate that the clustering is no better than random and values

closer to 1, indicate strong community structure.

6

4 Clustering to Minimize Cut Size using Graph Partitioning

The graph partitioning problem is defined as follows([KK98]): Given a graph G = (V,E)

and an integer k, partition the set of nodes of the graph into k subsets V1, V2, ..., Vk, such that:

(i) The subsets are pairwise disjoint. i.e., Vi ∩ Vj = ∅ for i 6= j

(ii) The union of all the subsets give the entire node-set. i.e.,
⋃

Vi = V

(iii) The number of nodes in each of the subsets is the same, and is equal to |V |/k

(iv) The number of edges of E whose incident vertices belong to different subsets is minimized.

This quantity is called the cut-size.

To motivate this, consider the example given in [NG04], that arises in parallel computing.

Suppose there are n intercommunicating computer processes, which should be distributed over

g computer processors. The pattern of communications between processes can be represented

by a graph or network in which the vertices represent processes and edges join process pairs that

need to communicate. The problem is to allocate the processes to processors in such a way as

roughly to balance the load on each processor, while at the same, time minimizing the number

of edges that run between processors, so that the amount of inter-processor communication is

minimized.

In general, finding an exact solution to graph partitioning problem is NP-complete. Also, the

graphs tend to be very large and even an O(E2) algorithm is too expensive. Below, we discuss

an algorithm which can find k-way partitioning of a graph in O(E) time. It is also capable of

processing very large graphs.

METIS:

The paper by Karypis and Kumar, [KK98], presents an algorithm for k-way partitioning

of graphs, minimizing the cut size. The overall idea of the algorithm is as follows: The graph

is first coarsened down to a small number of vertices by collapsing vertices and edges. Now,

a k-way partitioning is found on this smaller graph. This partitioning is projected back onto

the original graph, by refining it at the intermediate levels, to get a k-way partitioning of the

original graph. For the graph G = (V,E), the algorithm runs in O(|E|) time. The paper

proposes a computationally inexpensive refinement algorithm, which can be used to project the

initial partitioning to increasingly uncoarsened version of the graph. This enables the entire

partitioning procedure to run in a time, which is faster by a factor of O(log(k)) than previously

proposed multilevel recursive bisection algorithms.

Coarsening Phase:

In this phase, a sequence of smaller graphs Gi = (Vi, Ei), is constructed from the original

graph G = (V,E), by collapsing vertices and edges. When a set of vertices in Gi is combined

to form a single vertex in Gi+1, weight of the new vertex is set to the sum of the weights of the

vertices combined. And, all the edges incident on the combined vertices are made incident on

the new vertex, in order to preserve the connectivity information in the coarser graph. When

7

more than one of the combined vertices have edges to the same vertex u, the weight of the edge

connecting the new vertex to u is set to the sum of the weights of these edges.

Coarsening the graph by collapsing edges can be defined in terms of matchings. A matching

of a graph is defined as a set of edges such that, the edges don’t share any vertices. A matching

of G = (V,E) can be found in time O(|E|). If a matching is found on a graph, then the next

coarsened graph can be found by combining the incident vertices of the edges in the matching,

into a single vertex. Coarsening is stopped when the number of vertices in the coarsest graph

becomes less than ck for some constant c, or if the reduction in the size of successively coarser

graphs becomes less than a certain constant factor.

Figure 2: Various phases of the METIS algorithm

Methods used to find matching:

Following methods can be used to find a matching of a graph:

• Random Matching (RM): Visit the vertices in random order. If a vertex has not been

matched yet, then select one of its unmatched adjacent vertices, randomly. The edge

connecting them, is then included in the matching.

• Heavy Edge Matching (HEM): Visit the vertices in random order, as in the case of RM.

But, if a vertex is found to be unmatched yet, match it with that adjacent vertex for

which, the weight of the edge connecting them is the maximum over all valid incident

edges.

8

• Modified Heavy Edge Matching (HEM*): Suppose if v is an unmatched vertex. Let H

denote the set of its adjacent vertices which are unmatched and are connected to it by an

edge of maximum weight. For each vertex u in H, find the sum of the weights of edges

that connect u to vertices adjacent to v. Then, v is matched with that u for which is sum

is the maximum. This is similar to HEM, but this scheme gives a smaller average degree

for the coarser graph.

Initial Partitioning Phase:

A k-way partitioning is computed on this smaller graph using a multilevel bisection algo-

rithm, such that, it is balanced and satisfies the minimum edge-cut requirements. A multilevel

recursive bisection (MLRB) algorithm works by first coarsening the graph to get a smaller

graph. A bisection of this graph is computed, and the partitioning is projected back to the

original graph by refining the partitioning. A recursive bisection method can be used for com-

puting k-way partition, by first obtaining a 2-way partitioning of graph, and then recursively

obtaining a 2-way partitioning of each partition. Repeating this for logk times, the graph will

be partitioned into k partitions.

Uncoarsening Phase:

In this phase, the partitioning of the coarsest graph Gm is projected back to the original

graph, by going through the sequence of graphs Gm−1, Gm−2, . . . , G1, G. The main idea

employed during the uncoarsening phase is refinement. Since Gi−1 is finer than Gi and has more

degrees of freedom, the partitioning projected onto it can be refined to further decrease the edge-

cut. The paper describes a new k-way refinement algorithm, whose complexity is independent

of the number of partitions being refined. Consider the partitioning of an intermediate graph.

For each vertex v in its nodeset, define N(v) as the neighborhood of v, which is the union of the

partitions to which its adjacent vertices belong. During the refinement process, v can move to

any of its neighboring partitions. For each partition in N(v), compute the gain of moving v into

it. For each partition b in N(v), define ED[v]b, which is the external degree of v to partition

b, as the sum of the weights of the edges connecting v to nodes in b. Also, define ID[v], the

internal degree of v as the sum of the weights of the edges that connect v to nodes in its own

partition. Now the gain of moving vertex v to partition b is defined as ED[v]b − ID[v]. The

partitioning refinement algorithm will move a vertex only if it satisfies the following

Balancing Condition: Suppose that a and b are two partitions of a graph G = (V,E). Let

W (i) denote the weight of the partition i, let w(v) denote the weight of the node v. Define

Wmin = 0.9|V |/k and Wmax = C|V |/k, where C is a positive real number, which can be used

to vary the degree of imbalance among partitions. Now, a vertex v, can be moved from a to b

only if the following conditions are satisfied:

• W (b) + w(v) ≤Wmax

• W (a) − w(v) ≥Wmin

9

Greedy Refinement (GR):

Consider a graph and its partitioning. The vertices are visited in random order. Let v be a

vertex and N(v), its neighborhood. Let N ′(v) be the subset of N(v) such that, the movement

of vertex v to any partition in N ′(v) satisfies the Balancing Condition. Now vertex v is moved

to one of the partitions b in N ′(v), if either one of the following conditions is satisfied:

• ED[v]b > ID[v] and ED[v]b is maximum among all b in N ′(v).

• ED[v]b = ID(v) and W (a) −W (b) > w(v).

That is, move v to a partition that gives the largest reduction in the edge-cut, or if no reduction

in the edge-cut is possible, then move v to the partition that doesn’t increase the edge-cut but

improves the balance.

10

5 Clustering for Finding Communities

A community is a set of real-world entities that form a closely knit group. As mentioned in

[NG04], community structure in networks gives natural divisions of network nodes into densely

connected subgroups. Example for a community in social network analysis could be a set of

people such that, they interact amongst themselves more when compared to others outside the

group. A web community could be a set of web pages that link more to pages within the group.

The ability to find and analyze such groups can provide invaluable help in understanding and

visualizing the structure of networks.

Determining communities is a topic of great interest. A few examples are mentioned in

[Dji06]. It is a way to analyze and understand the information contained in the huge amount of

data available on the WWW and the relationships between the individual items. Communities

also correspond to entities such as collaboration networks, online social networks, scientific

publications or news stories on a given topic, related commercial items, etc. They also arise

in other types of networks such as biological networks (protein interaction networks, genetic

networks).

Finding communities can be modeled as a graph clustering problem, where vertices of the

graph represent entities and edges describe relationships between them. Finding communitites

and clustering have become synonymous.

In this section, we discuss four approaches for finding communitites, and in Section 6, we

discuss another class of approaches based on random walks.

5.1 Divisive Method using Edge Betweenness

In the paper [NG04], Newman and Girvan describe an algorithm which is divisive in na-

ture, but is different from the conventional hierarchical clustering techniques by two features

- firstly, the edges to be removed are identified using a “betweenness” measure, and secondly,

this measure is recalculated after each removal.

Approach:

Divisive clustering methods, as described in Section 2 proceed by removing iteratively, the

edge connecting the least similar vertices. Here, the algorithm proceeds by finding edges in the

network that are most “between” other vertices.

Betweenness is some measure that favors edges that lie between communities and disfavors

those that lie inside communities. Hence, they are responsible for connecting many pairs of

vertices. The main intuition is that, if the number of times, a set of paths traverse an edge can

be counted, then, this number would be higher for edges that connect communitites, and hence,

can be used to identify them.

The idea behind recalculation of the measure after every removal is that, once an edge is

removed, the betweenness values for the remaining edges will no longer reflect the situation

in the new graph. Thus without recalculating the measure, any divisive algorithm will fail to

recover the cluster structure, in the simplest of the cases.

11

Different Betweenness measures:

• Shortest-Path Betweenness of an edge is the number of shortest paths between all pairs

of nodes, that traverse that edge. It can be calculated for all edges in time O(mn), where

m is the number of edges in the graph and n is the number of vertices.

• Random-Walk Betweenness of an edge is the sum of the expected number of times, a

random walk between a particular pair of nodes traverses that edge, over all node pairs.

• Current-Flow Betweenness: Consider a circuit that is obtained by placing a unit resistance

on all the edges of the graph, and a unit current source and sink at a pair of nodes. The

current-flow betweenness for an edge can then be defined as the absolute value of the

current flowing through that edge, summed over all source-sink pairs.

Algorithm:

The algorithm for finding community structure is as follows:

(i) Calculate the betweenness scores for all edges in the graph.

(ii) Find the edge with the highest betweenness score and remove it from the graph.

(iii) Recalculate betweenness for all remaining edges.

(iv) Repeat from step (ii).

Shortest-path betweenness for all edges can be calculated in time O(mn). But, since this

has to be repeated in every iteration of the algorithm, which can go upto m, the overall time

complexity (worst-case) of the algorithm is O(m2n), or O(n3) on a sparse graph.

Limitations:

• The input graph is assumed to have undirected and unweighted edges.

• The fastest of the implementations, which is based on shortest-path betweenness, takes

O(n3) time on a sparse graph, which is intractable for large graphs with millions of nodes

and edges.

5.2 Clustering using Minimum Weighted Cut

In the paper [Dji06], Djidjev shows that the problem of finding a graph clustering which

maximizes the modularity, can be converted into the problem of finding a minimum weighted

cut (MWC) on a complete graph with the same vertices as the original graph. The intuition

behind this mapping is that, for any good clustering of a graph, the cut set, which consists of

edges that connect nodes present in different partitions, should be small. A major difficulty in

using the MWC for clustering is that, it does not consider the sizes of the subgraphs induced by

the cut. Also, the MWC problem is known to be NP-hard, in case of real valued weights. Hence,

the resulting minimum cut problem is solved by a modified algorithm for graph partitioning.

12

Reducing clustering to a minimum cut problem:

The minimum weighted cut (MWC) problem can be defined formally as follows: Given a

graph G = (V,E) with real valued weights on its edges, find a partition of V such that the cut

set is of minimum weight.

In Section 3.2, modularity was expressed as:

Q =
1

m

k
∑

i=1

(|E(Vi)| − Ex(Vi,G))

The clustering task is to find out a partition P = {V1 ∩ ... ∩ Vk} such that modularity of the

resulting cluster is maximized. i.e.,

maxP

{

k
∑

i=1

(|E(Vi)| − Ex(Vi,G))

}

= −minP

{

−
k

∑

i=1

(|E(Vi)| − Ex(Vi,G))

}

= −minP

{

(|E(G)| −
k

∑

i=1

|E(Vi)|) − (|E(G)| −
k

∑

i=1

Ex(Vi,G))

}

= −minP {|Cut(P)| − ExCut(P,G)}

where Cut(P) is the cut of P and ExCut(P,G) is the expected value of Cut(P) for a random

graph from G.

Now, consider a complete graph G′, with the same vertex set as G. The edges of G′, given

by (i, j) are assigned weights as below:

weight(i, j) =

{

1 − pij if(i, j) ∈ G

−pij if(i, j) /∈ G

where pij is the probability that there is an edge between vertices i and j in a random graph

from the class G.

From the above, it can be shown that the problem of maximizing modularity can be equivalently

posed as the problem of finding a partition P ′ of G′ such that the size of the cut induced by P ′

on G′ is minimized.

Solving the Minimum Cut Problem:

Minimum cut problem can be solved by a modified graph partitioning algorithm. In the

implementation, the graph partitioning algorithm used was based on METIS [KK98]. Modifica-

tions like dropping the requirement for balance of the partition and determining the cardinality

of the partition that minimizes the cut size, must be done. But the main challenge was to bring

the complexity of the algorithm close to linear on the size of the original graph, rather than on

the size of the transformed one, since the latter graph is always dense. But, as mentioned in the

paper, it is possible to simulate the execution of the multilevel algorithm on the transformed

13

graph, by explicitly maintaining information only about the edges from the original graph and

implicitly taking into account the remaining edges by modifying the formulae for computing

weights and gains.

Complexity:

If d is the depth of the dendrogram describing the clustering hierarchy, then, finding an

optimal clustering which has k parts takes O((nlog(n) +m)d) time. Typically d is O(log(k))

5.3 Extremal Optimization

In the paper [DA05], Duch and Arenas propose a divisive algorithm to find the community

structure in complex networks using a heuristic search, which is based on extremal optimization

of the value of modularity.

Definitions:

In Section 3.2, Modularity, which is a measure of the goodness of clustering, was explained.

Consider the expression of Modularity given by Newman and Girvan ([NG04]):

Q =
∑

r

(err − a2
r)

• Contribution of an individual node i to the value of modularity, for a certain partitioning

of the graph, is defined as:

qi = κr(i) − ki ar(i)

where κr(i) is the number of links that i has to nodes which are in its community, and ki is

the degree of node i. The quantity ar(i) is the number of links whose atleast one incident

vertex is in the community of i.

From the above definition, it can be seen that,

Q =
1

2L

∑

i

qi

where L is the total number of links in the network.

• The fitness of a node i, given by λi, is defined as:

λi =
qi
ki

=
κr(i)

ki
− ar(i)

The above quantity is the degree normalized contribution of node i. λi can be used to

compare the relative contribution of individual nodes to the community structure.

14

Algorithm

Extremal Optimization (EO) algorithm optimizes a global variable by improving extremal

local variables. Here, modularity value, Q, is the global variable to be optimized.

As remarked in the paper, since the space of possible partitions grows faster than any power

of the system size, searching for the optimal modularity value seems to be a NP-hard problem.

Hence, heuristics must be used to restrict the search space while searching for a partitioning

that optimizes modularity.

The proposed heuristic search algorithm proceeds in the following steps:

(i) Split the nodes of the whole graph into two random partitions, having the same number

of nodes in each, so that an initial clustering is obtained.

(ii) Calculate the fitness of each of the nodes.

(iii) Self Organization step: Move a node with low value of fitness (extremal), from one

partition to the other. Specifically, the τ − EO probabilistic selection is used, where

initially, the nodes are ranked according to their fitness values, and then, a node of rank

q is selected according to the probability distribution:

P (q) ∝ q−τ

where, τ ∼ 1 + 1/ln(N) (N is the number of nodes).

(iv) Recalculate the fitness values of nodes.

(v) If the “optimal state” where Q has a maximum value, is not yet reached, then repeat the

process from step (iii) onwards.

(vi) Otherwise, this partitioning can be accepted. Therefore, delete all links between both the

partitions and recurse on each of the resulting components.

(vii) The algorithm stops when the value of modularity cannot be further improved.

Complexity:

In the implementation, at each self-organization step, the previously obtained maximum

value of Q is stored, and if this maximum is not improved in N steps, the search is stopped.

Also, ranking process has a cost of O(Nln(N)) associated with it. After every self-organization

step, fitness of nodes have to be calculated, thus giving an overall computational cost of

O(N2ln2(N)). However, using heap data structures can reduce the time for the ranking selection

process, to O(N). Then, total cost of the algorithm will be O(N2ln(N)).

Advantages:

• During the self-organization step, since the node to be moved across the partition is chosen

by probabilistic selection method, the final result will be independent of initialization and

can escape from local optima.

15

Limitations:

• As remarked in [Upa08], the biggest drawback is that shifting any vertex changes the con-

tribution of all the nodes, and hence, all of them needs to be examined in the next round,

for selecting the next node.Computation of the contribution thus can not be reduced

further.

• Also, a large number of communities of very small sizes get formed.

5.4 Modularity-Weight Prioritised BFS

In the paper [Upa08], Upadhyaya suggests an algorithm called Modularity-Weight Prioritised

BFS, which is based on the Modified Extremal Optimization algorithm suggested by Duch and

Arenas in [DA05], which was discussed in Section 5.3.

The proposed algorithm differs from the latter algorithm in the following:

• All nodes are put in partition 1 when the procedure begins, instead of randomly as-

signing to one of the partitions.

• Only those nodes in the boundary are considered for shifting to the other partition

(partition 0), unlike the Modified Extremal Optimization algorithm, where all nodes

are considered.

• All nodes whose every neighbor is in the other partition, is moved to that partition, with

out regard to whether they give the maximum increase in modularity.

Algorithm:

The proposed algorithm proceeds in the following steps:

(i) Initially, assign all nodes to partition 1 and initialize the fringeNodeVector with the

vertex with lowest degree.

(ii) Choose the top element of fringeNodeVector and move it to partition 0. Update the

fringeNodeVector by adding the neighboring nodes of the top element, which are in

partition 1.

(iii) Now, choose a fixed number of elements, randomly, from fringeNodeVector. From these,

move all nodes whose every neighbor is in the other partition, to partition 0.

(iv) For other nodes in the chosen set, calculate the increase in modularity on moving it to

partition 0. Select that node with the highest increase and make it the top element of

the fringeNodeVector.

(v) Repeat steps from (ii) onwards.

(vi) If highest increase in modularity obtained in step (iv) is less than zero, then, this iteration

is called as an iteration−without−improvement. If the number of such iterations exceed

a particular number, then, we stop iterating.

16

(vii) Once the iteration is stopped, then, undo all node exchanges done after the one which

gave the maximum value of modularity over all the iterations. This gives two partitions.

Now recursively call Modularity-Weight Prioritised BFS on these two partitions.

(viii) If the size of a partition goes below a minimum value, or if the minimum expected mod-

ularity change is lesser than a user-provided value, then it is not partitioned further.

Time Complexity:

Time complexity is O(n ln(k)), where n is the number of nodes and k is the number of

clusters approximately desired. In general, k ∼ 2n
size , where size is the user-specified lower

bound on the cluster size.

Advantages:

• The time complexity of O(n ln(k)) is one of the best achieved upper bounds.

Limitations:

• Since the next node to be shifted is chosen from the set of boundary nodes, it increases

the probability of getting stuck at a local optimum.

• To bring down the running time, not all nodes are tested for gain in modularity; only a

fixed number of them are chosen randomly from the set of boundary nodes and tested.

As remarked in the paper, the solution given by this could be an approximate one.

17

6 Finding Communities using Random Walk based Methods

The objective of these methods is usually to find the cluster to which a particular node

belongs, or the enclosing cluster of a set of nodes, called the seed set.

In general, it functions by starting a random walk from the specified node. The intuition is

that, since the nodes within a cluster will be densely connected, with a large probability, the

walk will remain within the cluster.

Another version of random walk is the truncated walk. In this, probability is spread as

usual to neighboring vertices, but is then removed from any vertex whose probability is below a

certain threshold. Truncated walk allows the computation to be made more local. As mentioned

in [AL06], the main advantage of clustering techniques based on truncated random walks is that

its time and space requirements can be made independent of the graph size.

6.1 Clustering using Nibble Algorithm

In the paper [ST04], Spielman and Teng describes a nearly-linear time algorithm, Partition,

for computing crude partitions of a graph. The algorithm works by approximating the distri-

bution of random walks on the graph. It employes truncated random walks to speed up the

procedure.

Definitions:

The definition of V ol(S), ∂(S) and conductance, Φ(S), for a subset S ⊆ V of the graph

G = (V,E) is given in Section 3.1, except that here, conductance is referred to as sparsity.

In addition to this, the balance of a cut S is defined as

bal(S) =
V olV (S)

V olV (V)

These terms are defined for the subgraph of G induced by a subset of the vertices W ⊆ V ,

where S ⊆W , as below:

V olW (S) =
∑

v∈S

|w ∈W : (v,w) ∈ E|

∂W (S) =
∑

v∈S

|w ∈W − S : (v,w) ∈ E|

ΦW (S) =
|∂W (S)|

min(V olW (S), V olW S̄)

Nibble Algorithm:

Nibble (Table 1) is an intermediate algorithm that is called implicitly by Partition. Nibble

takes a vertex as input, which is called the seed vertex, and returns the enclosing cluster of that

node. The algorithm executes a few steps of a random walk starting at the seed vertex and

approximately computes the probability distribution. If this random walk does not mix rapidly,

then, from this probability distribution, a small cut can be found. The time and space required

18

to compute this approximation can be minimized by executing a truncated random walk, where,

after each step of the walk, those probabilities that are lower than a particular threshold are

set to 0.

C = Nibble(G, v, θ0, b)

G a graph, v a vertex, θ0 ∈ (0, 1), b a positive integer.

(1) Set p̃0(x) = χv

(2) Set t0 = 49 ln(me4)/θ2
0, γ = 5θ0

7.7.8 ln(me4) , and ǫb = θ0

7.8 ln(me4)t02b

(3) For t = 1 to t0

(a) Set p̃t = [P ˜pt−1]ǫb

(b) Compute a permutation π̃t such that p̃t(π̃t(i)) ≥ p̃t(π̃t(i+ 1)) for all i.

(c) If there exists a j̃ such that

(i) Φ(π̃t({1, ..., j̃}) ≤ θ0,

(ii) p̃t(π̃t(j̃)) ≥ γ/V olV (π̃t({1, ..., j̃}), and

(iii) 5 V olV (V)/6 ≥ V ol(π̃t({1, ..., j̃}) ≥ (5/7) 2b−1

then output C = π̃t({1, ..., j̃} and quit.

(4) Return ∅.

Table 1: Pseudocode for Nibble algorithm

Random Walk - mathematical notations

Define two vectors χ and ψ as below:

χS(x) =

{

1 for x ∈ S

0 otherwise

ψS(x) =

{

d(x)/V olV (S) for x ∈ S

0 otherwise

The walk that is considered here, is such that, at each step, it remains in the same vertex with

half the probability and otherwise, moves along one of the randomly chosen edges incident on

this vertex, to its neighbor. This can be represented in matrix form as P = (AD−1 + I)/2,

where, A is the unweighted graph, and D is the diagonal matrix with (d(1), ..., d(n)) on the

diagonal. The probability distribution of the random walk with start vertex v, obtained after t

steps, is given by pv
t = P tχv.

The truncation operation can be represented as:

[p]ǫ(v) =

{

p(v) if p(v) ≥ 2ǫd(i)

0 otherwise

Truncation operation is done after every step of the random walk, and for the nodes whose

probability, pt(i) is lesser than 2ǫd(i), is rounded off to 0.

19

C = RandomNibble(G, θ0)

(1) Choose a vertex v according to ψV

(2) Choose a b in 1, ..., ⌈log(m)⌉ accord-

ing to

Pr[b = i] = 2−i/(1 − 2−⌈log(m)⌉)

(3) C = Nibble(G, v, θ0, b)

Table 2: Pseudocode for Random Nibble

algorithm

D = Partition(G, θ0, p)

where G is a graph, θ0, p ∈ (0, 1).

(0) Set W1 = V

(1) For j = 1 to 56m ⌈lg(1/p)⌉

(a) Set Dj = RandomNibble(G(Wj), θ0)

(b) Set Wj+1 = Wj −Dj

(c) If V olWj+1
(Wj+1) ≤ (5/6) V olV (V), then go to

step (2)

(2) Set D = V −Wj+1

Table 3: Pseudocode for Partition algorithm

C = MultiwayPartition(G, θ, p)

(0) Set C1 = V and S = ∅

(1) For t = 1 to ⌈log17/16m⌉ . ⌈lg(m)⌉ . ⌈lg(2/ǫ)⌉

(a) For each component C ∈ Ct,

D = Partition(G(C), θ0, p/m)

Add D and C −D to Ct+1

(2) Return C = Ct+1

Table 4: Pseudocode for Multiway Partition algorithm

Random Nibble (Table 2) is an intermediate algorithm which calls Nibble on carefully cho-

sen random inputs.

Partition (Table 3) calls Nibble through the Random Nibble method, for atmost, a fixed

number of times. It then collects the clusters found by Nibble. As can be seen from the

Step (1)(c) of the algorithm, as soon as the volume of this collection exceeds 1
6

th
of the volume

of the entire graph, it returns the collection.

Multiway Partition (Table 4) uses Partition to get a partitioning of the graph. It then

invokes the latter again, on the two partitions thus obtained. This is repeated for a fixed number

of times.

Nibble can run in time O(2bln4(m)/θ5
0 . If Nibble returns a non-empty set C, then,

(i) ΦV (C) ≤ θ0

(ii) V olV (C) ≤ (5/6)V olV (V)

RandomNibble can run in time O(ln4(m)/θ5
0 , and the set output by it satisfies the same prop-

erties as that output by Nibble.

Partition can run in O(mlg(1/p)ln4(m)/θ5
0 . Let D be the output of Partition(G, θ0, p).

Then,

(i) V olD(D) ≤ (31/36)V olV (V)

(ii) ΦV (D) ≤ θ, where, θ0 = (5/36)θ.

The expected running time of Multiway Partition is m (lg(1/p) lgO(1)(m))/θ5.

20

6.2 Clustering using Seed Sets

In the paper [AL06], Andersen and Lang present an algorithm to discover the enclosing

community of a given cohesive set of nodes, called the “seed set”. They modify the algorithm

proposed by Spielman and Teng ([ST04]), which can find the enclosing cluster with a single

seed vertex. This algorithm is desirable since, it can expand the seed set to find a community,

that has small conductance, while examining only a small portion of the entire graph. They

also study the effects of the size and quality of the seed set on the results.

Seed set expansion is commonly done in the link-based analysis of the web. It first came into

prominence with the HITS algorithm, proposed by Jon Kleinberg where, a search engine was

used to retrieve a set of papes related to a particular input, which served as the seed set. A

fixed-depth neighborhood expansion was performed on this set, to get a larger set of pages upon

which the HITS algorithm was run.

The main intuition behind the algorithm can be explained as follows: Consider the random

walk which begins from the nodes in the seed set. Since, within a cluster, the nodes are expected

to link to each other more often, much of this walk will be contained in the cluster. As soon as

we move outside the cluster, the probability will fall, revealing the cluser boundary.

Algorithm:

The definition of V ol(S), ∂(S) and conductance, φ(S), for a subset S of the graph is given

in Section 3.1.

The algorithm proceeds in the following steps:

(i) The initial probability distribution p0 is set to ψS , where

ψS =

{

d(x)/V ol(S) if x ∈ S

0 otherwise

(ii) Define the random walk transition matrix, M as 1/2(I+AD−1). Here, A is the unweighted

graph, andD is the diagonal matrix with (d(1), ..., d(n)) on the diagonal (d(i) is the degree

of node i).

(iii) Simulate the next step of the random walk to obtain the probability distribution, pt+1 =

Mpt.

(iv) Sort the vertices in descending order of their degree-normalized probabilities: rt(v) =

pt(v)/d(v).

(v) For the truncated walk, set the probability on any vertex for which rt(v) ≤ ǫ to 0, where

ǫ is a constant, called the threshold.

(vi) Let vt
i be the ith vertex after sorting, such that r(vt

i) ≥ r(vt
i+1). Then, this ordering defines

a collection of sets St
0, ..., S

t
J , where St

j = {vt
i |1 ≤ i ≤ j}, and J is the number of vertices

with nonzero values of p(u)/d(u).

(vii) Each of the sets St
j, are tested for a good community.

21

(viii) If none of the sets qualify as a good community, then the random walk is continued, from

step (iii) onwards.

Good seed sets:

Consider the amount of probability that has escaped from a community C after T steps of

the random walk. This depends on both C and the seed set S. If C has a small conductance,

then a seed set is good, if the amount of probability that has escaped is not much larger than

φ(C) T .

Following are also good seed sets:

• Any set that is fairly large and nearly contained in the target community.

• Sets chosen randomly from within a target community.

Advantages:

• The major advantage of the algorithm is that it explores only local locality. This is

achieved by using truncated random walk instead of an exact walk.

• The algorithm is able find a small community enclosing the seed set, by touching only a

few number of nodes. This is accomplished by using truncated walk distributions in place

of exact walk distributions.

• The algorithm is capable of finding nested clusters that enclose the seed set. This is

achieved by simulating the walk for a larger number of steps.

Disadvantages:

The major disadvantage of the proposed algorithm is the method of selection of the seed set,

which should be cohesive. In the experiments done by the authors, the target cluster set was

initially identified and nodes were chosen from this set, randomly, to form the seed set. But,

this cannot be done, when the underlying clustering of the graph is not known beforehand.

22

7 Experiments and Analysis

The Nibble algorithm proposed in Section 6.1 was implemented in Java, with some minor

modifications that are given below:

• In the step 3(b) of the algorithm, Nibble computes a permutation of the nodes such that

the edges are ordered according to their probabilities. The method of computing the

permutation is not specified. Hence, in the implementation, a randomized QuickSort

procedure is used to sort the nodes in the decreasing order of their probabilities.

• In the step 3(c) of the algorithm, Nibble doesn’t specify how j̃ is chosen. In the imple-

mentation, the condition 3(c) is checked for all j starting from 0 till J , where J is the

index of the last node with non-zero probability. j̃ is then set to the first j for which the

condition is satisfied.

• For reducing the running-time, the sweep method of computing sparsity (or conductance)

as given in the paper [AL06], was implemented. This is not suggested in Nibble.

Details of the Experiments:

Nibblewas executed on IIT Bombay Electronic Submission of Theses and Dissertations

Database (etd2). etd2 contains tables for department, faculty, program, students and

thesis. It is comparitively small, with just 4329 nodes and 21432 edges, in the equivalent graph

representation. But, having a small database will enable us to manually check if the results

obtained are intuitive, and make changes accordingly, before proceeding on to larger ones, with

millions of nodes.

Result I:

Execution of Nibble for sparsity = 0.15, produced the result given below:

Cluster #1:

start node = 537

number of nodes in the cluster = 2189

sparsity = 0.14952751528627015

cut size = 269

subset vol = 8917

number of iterations = 32

Cluster #2:

start node = 538

number of nodes in the cluster = 226

sparsity = 0.1495798319327731

cut size = 89

subset vol = 595

number of iterations = 2

Cluster #3:

start node = 540

number of nodes in the cluster = 62

sparsity = 0.12547528517110265

cut size = 33

subset vol = 263

number of iterations = 2

Cluster #4:

start node = 542

number of nodes in the cluster = 39

sparsity = 0.14705882352941177

cut size = 20

subset vol = 136

number of iterations = 2

23

Result II:

Nibble was modified slightly to run with a manually chosen node. The cluster obtained for

startnode = 0 and sparsity = 0.15, is given below:

start node = 0

number of nodes in the cluster = 39

sparsity = 0.14979757085020243

cut size = 74

subset vol = 494

number of iterations = 31

Result III:

Nibble was executed for different values of sparsity. The details of the first cluster found,

are given below:
max sparsity = 0.70 :

start node = 537

number of Nodes = 330

sparsity = 0.6994061215166743

cut size = 1531

subset vol = 2189

number of iterations = 1

max sparsity = 0.50 :

start node = 537

number of Nodes = 767

sparsity = 0.49983676134508653

cut size = 1531

subset vol = 3063

number of iterations = 1

max sparsity = 0.30 :

start node = 537

number of Nodes = 1566

sparsity = 0.2995990070651136

cut size = 1569

subset vol = 5237

number of iterations = 2

max sparsity = 0.15 :

start node = 537

number of Nodes = 2189

sparsity = 0.14952751528627015

cut size = 269

subset vol = 8917

number of iterations = 32

max sparsity = 0.10:

start node = 537

no cluster was found even after 1000 iterations.

Result IV:

Nibble was modified to take as input, a value for maxClusterSize as well, and find clusters

such that, the number of nodes in them doesn’t exceed this value. Hence, when checking for

condition 3(c) of the algorithm, j̃ was constrained to be between 0 and maxClusterSize. The re-

sults of the execution for maxClusterSize = 500 and max sparsity = 0.15, are given below:

24

Cluster #1:

start node = 537

number of Nodes = 10

sparsity = 0.13043478260869565

cut size = 3

sub set vol = 23

number of iterations = 664

Cluster #2:

start node = 537

number of Nodes = 46

sparsity = 0.1320754716981132

cut size = 21

sub set vol = 159

number of iterations = 726

The next cluster could not be found even after 3000 iterations.

This modified Nibble was also executed for maxClusterSize set to 100, 200, 750, 1000 and

1500, and it gave the same two clusters every time.

node id database table entry

537 MTech. program

538 PhD. program

540 MDes. program

542 MPhil. program

0 Computer Center

Table 5: Nodeid to Database Entry mapping for a few nodes

Observations:

Following are the observations:

• For the clusters given in Result I, the nodes grouped together were related to the start

node. For example, the nodes added to Cluster #1 were MTech. students, MTech.

theses, professors who have guided many MTech. students etc., and nodes added to

Cluster #2 were PhD. students, PhD. dissertations etc. This is the same in the case of

manually chosen node (Result II) - 0 represents the Computer Center and nodes added

to the cluster were faculty closely related to it and the departments of CSE and IT.

• Sizes of the clusters differ drastically - 2189, 226, 62 and 39 in the order of discovery.

• Effect of Start Node: When there is no constraint on the maximum size of the cluster,

the clustering is on program basis - MTech., PhD., MDes., MPhil. etc. which were the

starting nodes.

• Effect of sparsity: From Result III, it seems that sparsity is affecting the cluster size

inversely - for higher sparsity, smaller is the cluster size and for lower sparsity, higher is

the cluster size. But, this could not be verified, since it could be because of the particular

database under consideration.

• Effect of maxClusterSize:

25

– The clusters given in Result IV are on the basis of department - the first cluster

is for School of Management and the second for Humanities and Social Science

Department.

– The effect of start node is no more visible and it itself was not added to both of

the clusters.

– Varying the value of maxClusterSize did not affect the clustering, indicating that

the clusters found are of good quality.

Conclusions:

• The first implementation of Nibble is not very successful in finding the clustering which

is more intuitive, ie. the one based on Department.

• The dependance on the starting node is not a desirable property.

• The modified version of Nibble with the bound maxClusterSize added, is also not very

successful; eventhough it could find clusters on the basis of Department, it was unable to

find all the clusters.

• When the start node or the seed vertex is itself not in the cluster, it seems to defeat the

entire logic applied in the algorithm, since it was supposed to find the enclosing cluster

for the start node.

26

8 Conclusions and Future Work

Clustering is the technique of finding the underlying structure of a graph and is a very

important area of research. It is employed in a wide variety of fields and each field uses a

particular objective function and a method for clustering, that is suited to its goal. A few of

such objectives and clustering techniques were studied. One of the proposed community finding

method, based on random walks, called the Nibble algorithm was implemented and executed on

the etd2 database, for understanding its functioning and performance. Through this exercise, a

few shortcomings of the algorithm were identified and it gave insight into how we must proceed

in the future.

Following is the proposed direction of future work:

• As seen from the analysis of the results of the experiments conducted on etd2 database, the

current implementation of the Nibble algorithm doesn’t perform well, on the clustering

task. Implementation of a new method for choosing the seed vertex, finding all the clusters

and handling the case of the seed not being included in the cluster, are some of the future

work in this direction.

• In many of the cases, the basis of clustering is intuitive and known beforehand. For

example, in the case of the Bibliography database, the clustering is expected to be on

the basis of the research area, which in turn is determined by the conference, and in the

case of etd database, the basis is expected to be department. When some information is

known in addition to just the graph structure, the clustering algorithm must be able to

take advantage of the situation, to produce good quality clusters.

• Wikipedia can be converted into a graph representation with vertices as the articles and

edges as the inter-Wiki links. Then, this graph can be clustered to get a higher level

organization of topics. Now, consider a mapping from the set of web pages in WWW to

the Wiki-pages, which is based on some similarity between the two. Once this mapping is

in place, then the entire web corpus can be clustered based on the clustering that has been

computed for their image in Wikipedia. In general, given a small graph and a mapping

of the nodes of a larger graph to nodes in the former, it will be possible to find a good

clustering for the latter, by finding a good clustering for the smaller graph.

• The long term goal is to reduce the query answer time for database keyword query systems,

by finding a good quality clustering on the database graph. The graph obtained after

clustering nodes, called the supernode graph, must be sufficiently small - with high node

and edge compression, so that, a large number of the queries can be processed locally.

This objective has to be formalized and a method of clustering for achieving the objective

has to be devised.

• Testing some of the methods and heuristics proposed in the papers discussed in this report,

to understand their functioning and performance.

27

References

[AL06] Reid Andersen and Kevin J. Lang. Communities from Seed Sets. Proceedings of the

15th international conference on World Wide Web, pages 223–232, 2006.

[BHN+02] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Su-

darshan. Keyword Searching and Browsing in Databases using BANKS. ICDE,

2002.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[CL02] Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given

Expected Degree Sequences. Annals of Combinatorics, 6:125–145, 2002.

[CRW90] Vasilis Capoyleas, Gunter Rote, and Gerhard Woeginger. Geometric Clusterings.

Journal of Algorithms, 1990.

[DA05] J. Duch and A. Arenas. Community detection in complex networks using extremal

optimization. Physical Review E, 72:027104, 2005.

[Dji06] Hristo N. Djidjev. A scalable multilevel algorithm for graph clustering and com-

munity structure detection. In Workshop on Algorithms and Models for the Web

Graph, 2006.

[HK06] Jiawei Han and Micheline Kamber. Data Mining - Concepts and Techniques. Else-

vier, 2006.

[KK98] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for Ir-

regular Graphs. Journal of Parallel and Distributed Computing 48, pages 96–129,

1998.

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Phys. Rev. E, 69(2):026113, 2004.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-Linear Time Algorithms for Graph

Partitioning, Graph Sparsification, and Solving Linear Systems. ACM STOC-04,

pages 81–90, 2004.

[Upa08] Prasang Upadhyaya. Clustering Techniques for Graph Representations of Data.

Technical report, Indian Institute of Technology, Bombay, 2008.

28

