
Clustering the Graph Representation of Data

Rose Catherine K.
Roll no: 07305010

M. Tech. Project Stage 2

under the guidance of

Prof. S. Sudarshan

Computer Science and Engineering
Indian Institute of Technology Bombay

Introduction

Keyword searching -important paradigm of searching.

External memory BANKS could perform better if the nodes that are
connected to each other are retrieved together.

Cluster: set of nodes such that, connections within it is dense;
inter-cluster edges are low.

Community: set of real-world entities that form a closely knit group

Objective function: distance-based measures, cut-size,
community-related measures: modularity, conductance

Graph Conductance:

For S ⊆ V :

* Vol(S) =
∑

v∈S d(v)

* ∂(S): Cut Set
Φ(S) =

|∂(S)|
min(Vol(S),Vol(S̄))

Finding Communities using Random Walks on Graphs

Random walks:

a graph traversal technique.

Probability distribution of a walk: probability of a random walk of k
steps, started at a particular startNode, to be at a particular node at
the instant/step of inspection (nodeProbability).

Clustering using Random walks:

Objective: find the cluster to which a particular node belongs, or the
enclosing cluster of a seed set.

Intuition:

Walk started from a node in the cluster will remain within it, with a
large probability.
Probability distribution of the random walk gives a rough ranking of the
nodes of the graph.
A good cluster can be obtained by considering the highest ranking
nodes, and by using conductance to choose the best.

Clustering using Nibble Algorithm [ST04]

Objective: find the cluster to which the seed node belongs

Nibble Algorithm:
input: Start node v , Graph G , Max Conductance θ0

1 Compute the bound on maxIterations, t0, and threshold, ε.
2 Start spreading probabilities from v .
3 Truncate the walk by setting nodeProbability to 0 where it is < ε
4 Sort the nodes in the decreasing order of their degree normalized

probabilities.
5 Check if a j exists such that:

Conductance of the first j nodes ≤ θ0
The above set of nodes satisfy predefined requirements on its volume.

6 If a j was found, then return the first j nodes of the sorted set.
7 Otherwise, do the next step of spreading probabilities and repeat from

Step (3).

Random Nibble Algorithm:

1 Choose v randomly with probability
proportional to its degree

2 Call Nibble(G , v , θ0)

Partition Algorithm:

1 Compute the bound on maxIterations, t
2 Call RandomNibble with current graph and θ0.
3 Keep the cluster returned by RandomNibble on hold. If there is

already a cluster on hold, then merge them.
4 If on merging in step (3), the volume exceeds a predetermined fraction

of G , then stop and return the merged cluster.
5 Else, remove these nodes from the graph and repeat.

Multiway Partition Algorithm:

Call Partition recursively on the graph, for a predetermined number
of iterations.

Shortcomings of the Nibble algorithm

Specify the conductance of the clusters, apriori.
May terminate at larger conductance, before finding the best.
User cannot control the cluster size.
No control over the spread of the walk.
Couldn’t find the intuitive clustering, based on Department on etd2.

Shortcoming of the overall algorithm

Processes the entire graph in a top-down manner - difficult for large
graphs.

Clustering using Seed Sets [AL06]

Objective: find the enclosing community of a “seed set” of nodes

Algorithm:

1 Assign equal probabilities to all nodes in the seed set, and start
spreading probabilities.

2 Sort the vertices in descending order of their degree-normalized
probabilities.

3 Truncate the walk for nodes with probabilites lesser than a predefined
threshold.

4 Find a j such that the set of first j nodes, C , satisfy the test for a
good community: the probability outside C is lesser than a
predetermined fraction of Φ(C) × #numSteps

5 If a j is found, stop and return that set as the community.
6 Else, continue the random walk from step (2) onwards.

Shortcoming:
The seed set is chosen manually.

Clustering using Modified-Nibble algorithm : Outline

Clustering Algorithm

1 Choose a start node.

2 Nibble out a cluster for the start node, and remove it from the graph.

3 Repeat from step (1), until the entire graph is processed.

Proceed by removing one cluster at a time, rather than processing the
entire graph at once.

Modified-Nibble Algorithm

1 Set the initial probability of the start node to 1 and start spreading
probability from it, for a specific number of steps (batch).

2 Find the best cluster for the currently active nodes, using
FindBestCluster algorithm.

3 If the cluster obtained has same or higher conductance than the best
cluster of the previous iteration, make a greedy decision to stop,
assuming that further processing may not give any better results.

4 Else, if the conductance has reduced, we assume that doing more
walks may improve the results. Hence, continue spreading of
probabilities from all the active nodes, again for a specific number of
steps, and repeat from step (2).

The conductance of clusters are not taken as input from the user.

The algorithm finds the cluster of best conductance.

FindBestCluster Algorithm

1 Consider the nodes in the decreasing order of probabilities.

2 The candidate clusters Ci contain nodes from 1 to i of the sorted set,
i = 1, 2, ...

3 Compute the conductance of all the candidate clusters.

4 Choose the one with smallest conductance as the best cluster.

The algorithm always finds a cluster, unlike the Nibble algorithm,
which will return a cluster only if it satisfies some specific requirements.

Sample execution of the Modified-Nibble algorithm

Fig: Prob. distrn. after 1 step

Batch 1
Φ(best cluster) = 4

12 = 0.33
Preferred cluster S, not found
yet.

Batch 2
Φ(S) = 2

22 = 0.09
Φ(Cut1) = 4

22−2 = 0.2

Φ(Cut2) = 3
22+3 = 0.12

Best Cluster = S

Fig: Prob. distrn. after 3 steps

——————————————————————————–
Fig: Prob. distrn. after 5 steps

Batch 3
Φ(Cut3) = 4

28 = 0.14
Φ(Cut4) = 6

32 = 0.18
Best Cluster = S

Terms

maxClusterSize: Upper bounds number of nodes in a cluster.

maxActiveNodeBound: Upper bounds the number of nodes that can
be active, at any time, thus controlling the spread of the walk.

maxActiveNodeBound = f x maxClusterSize

where f is called the ‘factor’.

Arithmetic plus Geometric Progression (APGP):
Sorting after each step of walk is costly.
Invoke FindBestCluster only at regular intervals.
Arithmetic Progression (AP) and Geometric Progression (GP) did not
perform well.

tapgp
i = (a + id) + (a r i), i = 0, 1, 2, ...

Random walk considered:

self-transition probability = 0.5.

edge-weights are not considered while spreading probability.

no truncation of probabilities.

ModifiedNibble procedure

1 Set the nodeProbability of s to 1, and that of all other nodes to 0. Set
totalWalkSteps to 0.

2 For i th iteration, get ti in the APGP series; perform a batch of random
walks for (ti − totalWalkSteps) steps. But, if ti > maxClusterSize, the
batch is of (maxClusterSize − totalWalkSteps) steps.

3 If at any time in step (2), the number of active nodes exceed
maxActiveNodeBound , then directly proceed to step (4).

4 Invoke FindBestCluster to get the best cluster.

5 If conductance of the best cluster returned ≥ conductance of previous
best cluster, return the latter.

6 Else if the conductance has decreased:

If ti ≥ maxClusterSize, or, if the number of active nodes
= maxActiveNodeBound , stop and return the best out of the current
and previous clusters.
Otherwise, set totalWalkSteps to ti and repeat from step (2).

FindBestCluster procedure

1 Find the degree-normalized probabilities of all nodes.

2 Sort the nodes in the decreasing order of their degree-normalized
probabilities.

3 Find a j s.t. the first j entries of the sorted set have the smallest
conductance. 1 ≤ j ≤ min(numActiveNodes, maxClusterSize).

4 Return the first j entries of the sorted set as the best cluster.

Heuristics

Using APGP to invoke FindBestCluster procedure atmost
log(maxClusterSize) times.

Compaction procedure: merge clusters of small size

Different flavors to the algorithm

Choosing startNode: largest degree vs smallest degree.

Proceeding when maxActiveNodeBound is reached: continue the
execution, but move only to neighbors which are already explored.

Remove the hub nodes before starting the clustering procedure.

Advantages of clustering using Modified-Nibble

algorithm

Can find good communities by touching only a small neighborhood of
the startNode, without exploring the entire graph.

Doesn’t require the user to input any bounds on the conductance of
clusters. The algorithm figures out the best available cluster on its
own.

Space requirements to find a community for a particular node can be
made independent of the graph size, by bounding the number of active
nodes.

Can proceed by removing one cluster at a time, rather than processing
the entire graph at once.

Experiments and Analysis

Data Sets
Digital Bibliography Library Project (dblp) (2003 version)

Tables: author, cites, paper,
writes
Number of nodes: 1,771,381
Number of edges: 2,124,938
max degree = 784

——————————————————————————–
Wikipedia (2008 version)

Tables: document, links
Number of nodes: 2,648,581
Number of undirected edges: 39,864,569
max degree = 267,884

Results on dblp3 for Flavor1

Flavor1: MaxDegree startNode, terminate on maxActiveNodeBound

Edge compression and avg conductance

max Cluster
Size

#
clusters

#
inter-cluster

edges

edge com-
pression

avg con-
ductance

100 24,113 206,040 10.31 0.0838
200 12,698 166,219 12.78 0.0689
400 6,709 136,784 15.53 0.0579
800 3,505 114,536 18.55 0.0499
1500 1,909 90,574 23.46 0.0401

(a = 2, d = 7, r = 1.5, f = 500 and with compaction)

With increasing maxClusterSize:

Compression improves by 2 times and conductance becomes half.

Chart of cluster size vs. frequency of dblp3

Indicates that the inherent clusters of dblp3, are mostly of size 100 to
400.

Effect of f on compression & conductance

f
#

clusters

#
inter-cluster

edges

edge
compression

avg con-
ductance

Time
(approxi-
mate)

100 1,965 105,290 20.18 0.0474 1.5 hrs
150 1,946 103,603 20.51 0.0467 2 hrs
200 1,945 102,080 20.82 0.0458 3 hrs
300 1,934 97,529 21.79 0.0436 9.5 hrs
400 1,921 94,872 22.39 0.0423 15 hrs
500 1,909 90,574 23.46 0.0401 1 day
no

bounds
1,862 78,973 26.91 0.0344 2.5 days

(maxClusterSize = 1500, dataset = dblp3)

Better compression and conductance for larger values of f.

Values comparable for f ranging from 100 to 500.

Lower values may suffice, also considering the cost.

Sharp improvement for ’no bounds’.

Terminating when maxActiveNodeBound is reached, may be affecting
cluster quality.

Effect of compaction on compression

Different cluster sizes (a = 2, d = 5, r = 1.5, f = 100)

Edge compression
Cluster Size Without compaction With compaction

200 12.71 12.78
400 14.46 14.65
800 16.68 17.18

Different f (a = 2, d = 5, r = 1.5, maxClusterSize = 1500)

Edge compression
f Without compaction With compaction

100 18.98 20.18
150 19.24 20.51
200 19.53 20.82

Improvement due to compaction is negligible.
Indicates that the clustering found by the algorithm is good.

Comparison with EBFS clusters for dblp3

Better compression and conductance for Modified-Nibble.

Decrease in conductance accompanied by better edge compression -
indicates: objective of minimizing the former, can give better values for
the latter.

Performance improvement in BANKS

% reduction
Cluster Size 100 200 400 800
CPU + IO time taken 43.6 36.62 45.27 41.04
Number of nodes explored -0.23 16.22 57.25 49.41
Number of nodes touched 22.85 26.49 59.09 60.47
Number of cache misses 48.71 36.41 39.74 17.53

Modified-Nibble clusters are outperforming EBFS clusters, by a
large margin.

Clusters with better compression and conductance values, also perform
well in the actual search system.

(Details in [Sav09, Agr09])

Results for Flavor2 on dblp3

Flavor2: MinDegree startNode, continue on maxActiveNodeBound

Comparison between the two flavors

MaxStart & terminate
on bound (flavor1)

MinStart & continue
on bound (flavor2)

clusters 6,709 6,709
inter-cluster edges 136,784 125,651

edge compression 15.53 16.91
avg conductance 0.0579 0.0549

maxClusterSize = 400, a = 2, d = 7, r = 1.5, f = 500 and with compaction

Improvement is not significant, possibly because the basic algorithm is
robust to the actual choice of start node, behaviour when the
maxActiveNodeBound is reached.

Correlation between conductance and compression.

Results for Flavor1 on wiki graph

Edge compression and Avg conductance

max
Cluster
Size

f
#

clusters

#
inter-cluster

edges

edge com-
pression

avg con-
ductance

200 100 16,208 12,445,795 3.203 0.373

Possible reasons:

Almost all the inherent clusters in wikipedia have their size > 200.

The decision to stop as soon as the maxActiveNodeBound is reached
is hurting the clustering to a very large extent.

The community structure of wikipedia is different from that of dblp,
and we are missing out on some important aspect of the former, which
is absent in the latter.

Results for Flavor2 on wiki

Flavor2: MinDegree startNode, continue on maxActiveNodeBound

Edge compression and avg conductance

max
Cluster
Size

f
#

clusters

#
inter-cluster

edges

edge com-
pression

avg con-
ductance

200 100 17,713 11,485,314 3.471 0.350
200 500 17,413 10,670,635 3.736 0.328
1500 100 2,350 1,777,217 22.43 0.0803

Not much improvement for cluster size of 200, when compared to
Flavor1 - indicates the robustness of the basic algorithm.

f doesn’t seem to affect the clusters.

Edge compression improves by 6.5 times on changing cluster size.

Avg conductance becomes 1/4th.

Chart of cluster size vs. frequency of wiki

There are many communities in wikipedia of large size.

The last entry indicates that there are communities of even larger size.

Results on wiki for Flavor3

Flavor3: Remove hub nodes & execute Flavor2

Edge compression and Avg conductance

max
Cluster
Size

f
#

clusters

#
inter-cluster

edges

edge com-
pression

avg con-
ductance

1500 100 2,294 1,334,752 29.867 0.0604

Number of top indegree nodes removed = 1500.

Compression and conductance have improved.

This indicates that there are many articles in Wikipedia to which a
large number of articles link, even if they are not really related to it.

Summary of the experiment results I

Compression and conductance improve with increasing cluster size.
But, the improvement diminishes once maxClusterSize reaches the
average size of the inherent clusters of the graph.

The sizes of inherent clusters in dblp3 seem to be around 100 to 400,
whereas wiki seem to have many clusters of larger size.

Compression and conductance of clusters appear to be strongly
correlated.

Clusters produced by Modified-Nibble on dblp3, outperforms those
by EBFS, both in compression and conductance values, as well as, in
the search performance of the BANKS system.

All of the above require more experiments on different datasets and with
different parameter settings, for confirmation.

Summary of the experiment results II

Effect of heuristics:

The basic algorithm seems to be robust to the actual choice of start
node and the behaviour when maxActiveNodeBound is reached.

Effect of f and compaction on the cluster quality are negligible.

Future Work I

Test the performance of the BANKS system on Wikipedia graph for
different queries, using the clusters producted by the
Modified-Nibble algorithm.

Clustering on Wikipedia:

Large number of hub pages, and disambiguation pages, which connect
many unrelated concepts together, thus adding to the noise of the
structure.
Node-degrees in wiki-graph (maxDegree > 200,000) is much higher
when compared to that in dblp3 (maxDegree < 800).
The algorithm must be smart enough to deal with misbehaving nodes,
to discover the underlying community structure.

Intelligent compaction: Use the edges between clusters to judge their
similarity.

Future Work II

Improve the speed of clustering process by nibbling out many clusters
simultaneously.

Cluster the web graph with the help of wiki clusters:

For each webpage, find the wiki articles to which it is ‘most similar’
Cluster webpages based on the cluster to which their corresponding wiki
articles belong.

Generalizing: find a good clustering on a larger graph, given a good
clustering on a smaller graph, using a mapping from the former to the
latter.

References

[Agr09] Rakhi Agrawal. Keyword Search in Distributed Environment. MTech.
Project Stage 2 Report, Indian Institute of Technology, Bombay, 2009.

[AL06] Reid Andersen and Kevin J. Lang. Communities from Seed Sets. Pro-
ceedings of the 15th international conference on World Wide Web, pages
223-232, 2006.

[Sav09] Amita Savagaonkar. Keyword Search in Distributed Environment.
MTech. Project Stage 2 Report, Indian Institute of Technology, Bom-
bay, 2009.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-Linear Time Algo-
rithms for Graph Partitioning, Graph Sparsification, and Solving Linear
Systems. ACM STOC-04, pages 81-90, 2004.

Extra Slides

Clustering using Seed Sets I

Objective: discover the enclosing community of a given cohesive “seed set”
of nodes, that has small conductance

Extended Nibble algorithm for a set of start nodes

Examines only a small portion of the entire graph

Intuition: for a random walk that begins from the seed nodes, much of
the walk will be contained in the cluster. As soon as we move outside
the cluster, the probability will fall, revealing the cluster boundary.

Define:
The initial probability distribution p0 is set to ψS :

ψS =

{
d(x)/Vol(S) if x ∈ S
0 otherwise

Random walk transition matrix, M as 1/2(I + AD−1)

Clustering using Seed Sets II

Algorithm:

1 Simulate the next step of the random walk to obtain the probability
distribution, pt+1 = Mpt .

2 Sort the vertices in descending order of their degree-normalized
probabilities: rt(v) = pt(v)/d(v).

3 For the truncated walk, set the probability on any vertex for which
rt(v) ≤ ε to 0, where ε is a constant, called the threshold.

4 Let v t
i be the i th vertex after sorting, such that r(v t

i) ≥ r(v t
i+1). Then,

this ordering defines a collection of sets S t
0, ...,S

t
J , where

S t
j = {v t

i |1 ≤ i ≤ j}, and J is the number of vertices with nonzero
values of p(u)/d(u).

5 Each of the sets S t
j , are tested for a good community.

6 If none of the sets qualify as a good community, then the random walk
is continued, from step 1 onwards.

Clustering using Seed Sets III

Good seed sets:

Seed set S for a community C which has a small conductance, if the
amount of probability that has escaped from C after T steps, is not
much larger than φ(C) T .

Any set that is fairly large and nearly contained in the target
community.

Sets chosen randomly from within a target community.

Advantages:

Explores only local locality.

Can find nested clusters that enclose the seed set.

Disadvantages: Selection of the seed set: identify the target cluster set
initially, and choose nodes randomly from it, to form the seed set.

Clustering using Nibble Algorithm

Objective: find the cluster to which the seed node belongs

Nibble Algorithm:
input: Start Vertex v , Graph G , Conductance θ0, a positive integer b

1 Compute t0 (∝ ln(m)/θ2
0), γ (∝ θ0/ln(m)), εb (∝ θ0/ln(m)t02

b)
2 Start a lazy random walk from v
3 At each step: (until t0)

Do the Truncation Operation with threshold = εb
Sort the nodes in the decreasing order of their probabilities
Check if a j̃ exists such that:

Φ({1, ..., j̃}) ≤ θ0

Pr (̃j) ≥ γ/Vol({1, ..., j̃})
Vol({1, ..., j̃}) ≤ 5

6
Vol(V), then, output C = {1, ..., j̃}

4 Do the next step of random walk and repeat from Step (3)

Random Nibble Algorithm:
input: G , θ0

1 Choose v according to the degree
2 Choose b in 1, ..., dlog(m)e according to

Pr [b = i] ∝ 2−i

3 Call Nibble(G , v , θ0, b)

Partition Algorithm:
input: G , θ0, p ∈ (0, 1)

1 Compute number of iterations j (∝ mdlg(1/p)e
2 Start with the entire graph, i.e., set W to V
3 Call RandomNibble(G (W), θ0)
4 Add the cluster nodes returned by RandomNibble to the answer
5 Now, remove these nodes from W
6 If Vol(W) ≤ 5

6Vol(V), then stop
7 Else, repeat from Step (3)

Multiway Partition Algorithm:
input: G , θ, p

1 Set θ0 to (5/36)θ
2 Compute number of iterations t (∝ (lg m)2)
3 Start with the entire vertex set, i.e, set C1 to V
4 In each step: For each component C ∈ Ct ,

Call Partition(G (C), θ0, p/m)
5 Add the two partitions returned to Ct+1 and repeat from Step 4
6 Final clustering is given by Ct+1

Sudden drop in
probability, outside the
cluster boundary

——————————————————————————–

Φ(S) = 2
22 = 0.09

Cut 1: Φ(S−n1) = 4
22−2 = 0.2

Cut 2: Φ(S + n2) = 3
22+3 =

0.12

Dip in conductance at
cluster boundary

