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Abstract

Clustering is the process of finding out a grouping of the given set of objects, such that those

in the same collection are similar to each other. This is important because, it reveals the high level

organization of the data.

It is also important from the point of view of keyword searching in databases. Identifying nodes

that are highly related to each other, and grouping them together, can localize the computing required

to answer a particular keyword query, to a single or a few clusters. Thus, creating good quality

clustering of the graph representation of the database can bring down the keyword query answer

time, considerably.

This report discusses a particular method of clustering, called Nibble Algorithm, which uses ran-

dom walks over the graph representation of data. It was implemented and tested, to gain insight into

its performance, advantages and shortcomings. This led us to propose a modified algorithm, which we

call Modified-Nibble Algorithm that improves upon the former one. This algorithm was implemented

and tested on the dblp3 database and the wikipedia dataset, the results of which are also discussed.
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1 Introduction

Keyword searching is an important paradigm of searching, which is receiving considerable attention

during the past few years. Keyword search in databases is becoming increasingly important.

In general, a keyword search system, for example, the BANKS System ([BHN+02]), begins by

identifying nodes that are relevant to the keywords. It then proceeds to connect these nodes according

to the search algorithm. This involves moving along the edges of the graph, to the neighbors of the

nodes. Now, consider databases that have millions of nodes and edges, such that the equivalent graph

representation does not fit in the main memory of the search system and hence, will have to be stored

in external memory. This increases the time required to access the data graph, and hence affects the

query answer time.

As mentioned in [Upa08], the external memory BANKS could perform better if the nodes that are

connected to each other are retrieved together - either by storing them in the same block of memory,

or, by storing them in the same machine, if the data is distributed across machines. This can be done

by first clustering the nodes, and then assigning each cluster to a machine. Hence, by creating good

quality clustering of the graph representation of the database, the keyword query answer time can be

brought down considerably.

Cluster

A cluster can be defined as a collection of objects

that are similar to each other. Clustering is the

process of finding out the clusters in the given set

of objects. Consider a graph consisting of ver-

tices/nodes and edges connecting them. Let the

edges represent some similarity between the inci-

dent nodes. Then a cluster can be considered as

a set of nodes such that, edges connecting nodes

within the cluster are more than those linking to

nodes outside the cluster. i.e., connections within

it is dense and inter-cluster edges are comparatively

low. A simple example is shown in Figure 1.

Figure 1: Example of clustering on a sim-

ple graph

Community

A community is a set of real-world entities that form a closely knit group. As mentioned in [NG04],

community structure in networks gives natural divisions of network nodes into densely connected

subgroups. Example for a community in social network analysis could be a set of people such that,

they interact with each other more often than with those outside the group. A web community

could be a set of web pages that link more to pages within the group. Determining communities has

become a topic of great interest. As mentioned in [Dji06], it is a way to analyze and understand the

information contained in the huge amount of data available on the world wide web. Communities also

correspond to entities such as collaboration networks, online social networks, scientific publications or

news stories on a given topic, related commercial items, etc. Finding communities can be modeled as a

1



graph clustering problem, where vertices of the graph represent entities and edges denote relationships

between them. Hence, community-finding and clustering have become synonymous.

Objective function for clustering

All clustering techniques are based on optimizing an objective function. Some commonly used

objective functions are distance-based measures, cut-size and community-related measures. We are

particularly interested in the latter one, which is used for measuring the quality of the communitites

found. Examples of these include Conductance (discussed in Section 2) and Modularity. A discussion

on different methods that optimize the above objective functions can be found in [Cat08].

Graph representation of data

Clustering can be done on any data, by representing it as a graph. For a relational database,

the commonly used construction of data graph, is as follows: the tuples of the database form the

nodes and the cross references between them, like foreign key references, inclusion dependencies, etc.,

form the edges of the graph. The nodes may also be a cell in the table, according as the granularity

required. Another graph that is receiving considerable amount of attention is the wiki-graph. Here,

nodes of the graph are the articles / web pages in the Wikipedia website [wik]. An edge is added

between two nodes if there is a hyperlink between the corresponding articles. Similar technique can

also be used to convert the web corpus into graph representation.

Overview

This report is organized as follows: Section 2 explains a method for quantifying the goodness of a

community structure. Section 3 gives an overview of random walks and how it is employed in finding

communities. It also discusses a particular technique for partitioning the graph using an algorithm

called Nibble. In Section 4, we detail the Modified Nibble algorithm proposed by us. Section 5

explains some of the experiments conducted and its analysis, followed by conclusions and future work

in Section 6.
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2 Quantifying the goodness of community structure

Almost always, the underlying community structure of a given graph is not known ahead of time.

In the absence of this information, we require a quantity that can measure the goodness of the

clustering produced by an algorithm.

It is quite obvious that, usually, the cut surrounding a small number of nodes will be smaller

than that of a large number of nodes. So, a minimum value of cut size doesn’t reveal much about

the structure, since it is biased towards clusters of smaller sizes. Similarly, there is no reason for

the communitites to be of same size. Hence, partition techniques that group nodes of the graph into

clusters of roughly the same size, cannot be applied for finding communitites. For measuring the

strength of a community structure, we use the notion of conductance, which is explained below.

Graph Conductance

Graph conductance (as given in [AL06]), also known as the normalized cut metric, is defined as

below:

Let G = (V,E) be a graph. Now, define the following:

• d(v) is the degree of vertex v.

• For S ⊆ V , V ol(S) =
∑

v∈S d(v)

• Let S̄ = V − S. Then, S defines a cut and (S, S̄) defines a partition of G.

• The cutset is given by ∂(S) = {{u, v} | {u, v} ∈ E, u ∈ S, v /∈ S}, which is the set of edges that

connect nodes in S with those in S̄. The cutsize is denoted by |∂(S)|.

Then, the conductance of the set S is defined as:

Φ(S) =
|∂(S)|

min(V ol(S), V ol(S̄))
(2.1)

3 Finding Communities using Random Walks on Graphs

Random walk can be considered as a graph traversal technique. The walk starts from a node

designated as the startNode; at each step of the walk, the node explored next is one of the neighbors

of the current node, chosen randomly with equal probability. Since this method of traversal doesn’t

distinguish between nodes already explored and those that are yet untouched, the walk may pass

through some nodes, multiple number of times.

There are many variations to the above basic form of random walk. A popular variant is where

the edges of the graph have weights associated with them, and the node explored next is chosen

with a probability that is proportional to the weight of the edge connecting the current node to the

neighbor [CS07]. Another variant of the walk allows self-transition: at each step, with certain amount

of predetermined probability, the walk may remain at the current node; otherwise, the next node is

chosen with equal probability, or with probability proportional to the edge-weights, as the case may

be, from the set of neighbors of the current node [ST04].
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Random walk analysis have been used in many fields to model the behaviour of many processes.

Some of the popular examples include the set of web pages visited by a surfer, the path traced by a

molecule in a medium, the price of stocks and the financial status of a gambler.

3.1 Probability distribution of a walk

In many applications, instead of performing discrete random walks, it is more interesting to find out

the probability of a random walk of k steps which started at a particular startNode, touching a partic-

ular node [CS07]. In this scenario, the nodes of the graph have a quantity called nodeProbability asso-

ciated with them, which gives the probability of the walk under consideration to be at that particular

node, at the instant/step of inspection. So, before the walk starts, the startNode has nodeProbability

of 1 and the rest have their probabilities set to 0. If the startNode has m neighbors, then, in the

first step, all the neighbors have their nodeProbability set to 1/m and that of the startNode is set to

0. In subsequent steps, each node which has a positive value for their nodeProbability will divide its

current value, equally between its neighbors - this is called spreading of probabilities. Nodes with pos-

itive values for nodeProbability are said to be active, and hence, the above process can also be called

Spreading Activation, though there are differences between the two concepts. If a node receives acti-

vation from multiple neighbors, they are accumulated. At any step of the walk, the node-probabilites

of the nodes of the graph add up to 1.

Many variants exist for the above method of finding the probability distribution over the nodes

of the graph, according as the variant of the underlying random walk that is used. A popular variant

is the one which uses a threshold for activation. Here, a node is considered to be active only if its

nodeProbability is greater than a predefined threshold value [ST04]. Yet another variant is based on

truncated random walks. Here, if the nodeProbability of a node falls below a predefined threshold

value, then its probability is set to 0 [ST04]. An important difference between this one and the

previous methods is that, here the node-probabilities may not add up to 1; and in fact, monotonically

decreases as the walk progresses.

3.2 Rationale

Clustering techniques using random-walks are based on the intuition that a walk started from a

particular node will remain within the enclosing cluster for that node with high probability, since the

nodes within the cluster are densely connected. Hence, if the probability distribution of nodes after a

few steps of the walk is considered, they will be roughly in the order of their degree of belongingness

to the cluster under consideration. As mentioned in [CS07], self-transitions in the walk allow it to

stay in place, and reinforce the importance of the starting point by slowing diffusion to other nodes.

But as the walk gets longer, the identity of nodes in the clusters blur together.
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Consider the toy example given in Fig-

ure 2, where the nodeProbability of

the nodes after a 3-step walk from the

startNode, is shown. It can be noted

that, the nodes within the cluster for the

startNode have high probabilities asso-

ciated with them and as soon as we cross

the cluster, the probabilites drop sud-

denly, thus revealing the boundary. This

notion is used in the algorithm for clus-

tering using seed sets, proposed by An-

dersen and Lang in [AL06]. Figure 2: Example for sudden drop in probability

outside the cluster

The above example shows that, the probability distribution of the random walk gives a rough

ranking of the nodes of the graph. Hence, it is possible to find the nodes of the cluster by considering

the first k of the top ranking nodes. But, this k cannot be fixed beforehand. Here, conductance comes

to our rescue.

Figure 3: Example for choosing the best cluster

based on conductance

Consider another toy example shown in Fig-

ure 3. The preferred cluster contains the first

7 top ranking nodes. It has 2 cut edges and

its volume is 22. Conductance of this cut is

0.09. Suppose that the seventh node, n1, is

not included. This corresponds to Cut1 in

the figure. It decreases the volume by 2 and

increases the cut size by 2, giving the con-

ductance as 0.2. Similarly, suppose that we

include the next highest ranking node, which

is n2, also in the cluster (Cut2). It increases

the volume by 3 and the cut size changes to

3, giving the conductance as 0.12.

The above example illustrates how conductance can be used to find the best cluster for a specified

startNode. This notion is used in the algorithm for partitioning graphs using Nibble, proposed by

Spielman and Teng in [ST04] (Section 3.4), and the Modified-Nibble algorithm proposed by us in

this report (Section 4).
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3.3 Advantages of using random walk based clustering

(i) With appropriate parameter settings, a random-walk based clustering technique can find good

communities by touching only a small neighborhood of the startNode, without exploring the

entire graph.

(ii) The time and space requirements to find a community for a particular node can be made

independent of the graph size, by using truncated random walks ([AL06]) or by bounding the

number of active nodes.

(iii) Rather than processing the entire graph at once, the clustering process can proceed by removing

one cluster at a time, and then continuing on the remainder graph.

3.4 Clustering using Nibble Algorithm

In the paper [ST04], Spielman and Teng describes a nearly-linear time algorithm, Partition, for

computing crude partitions of a graph. The algorithm works by approximating the distribution of

random walks on the graph. It employes truncated random walks to speed up the procedure.

3.4.1 Definitions

The definition of V ol(S), ∂(S) and conductance, Φ(S), for a subset S ⊆ V of the graph G = (V,E)

is given in Section 2, except that here, conductance is referred to as sparsity.

In addition to this, the balance of a cut S is defined as

bal(S) =
V olV (S)

V olV (V )

These terms are defined for the subgraph of G induced by a subset of the vertices W ⊆ V , where

S ⊆W , as below:

V olW (S) =
∑

v∈S

|w ∈W : (v,w) ∈ E|

∂W (S) =
∑

v∈S

|w ∈W − S : (v,w) ∈ E|

ΦW (S) =
|∂W (S)|

min(V olW (S), V olW S̄)

Random Walk - mathematical notations

Define two vectors χ and ψ as below:

χS(x) =

{

1 for x ∈ S

0 otherwise

ψS(x) =

{

d(x)/V olV (S) for x ∈ S

0 otherwise
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The walk that is considered here, is such that, at each step, it remains in the same vertex with half

the probability and otherwise, moves along one of the randomly chosen edges incident on this vertex,

to its neighbor. This can be represented in matrix form as P = (AD−1 + I)/2, where, A is the

unweighted graph, and D is the diagonal matrix with (d(1), ..., d(n)) on the diagonal. The proba-

bility distribution of the random walk with start vertex v, obtained after t steps, is given by pv
t = P tχv.

The truncation operation can be represented as:

[p]ǫ(v) =

{

p(v) if p(v) ≥ 2ǫd(i)

0 otherwise

Truncation operation is done after every step of the random walk, and for the nodes whose probability,

pt(i) is lesser than 2ǫd(i), is rounded off to 0.

3.4.2 Nibble Algorithm

Nibble (Table 1) is an intermediate algorithm that is called implicitly by Partition. Nibble

takes a vertex as input, which is called the seed vertex, and returns the enclosing cluster of that node.

The algorithm executes a few steps of a random walk starting at the seed vertex and approximately

computes the probability distribution. If this random walk does not mix rapidly, then, from this

probability distribution, a small cut can be found. The time and space required to compute this

approximation can be minimized by executing a truncated random walk, where, after each step of the

walk, those probabilities that are lower than a particular threshold are set to 0.

C = Nibble(G, v, θ0, b)

G a graph, v a vertex, θ0 ∈ (0, 1), b a positive integer.

(1) Set p̃0(x) = χv

(2) Set t0 = 49 ln(me4)/θ2
0, γ = 5θ0

7.7.8 ln(me4) , and ǫb = θ0

7.8 ln(me4)t02b

(3) For t = 1 to t0

(a) Set p̃t = [P ˜pt−1]ǫb

(b) Compute a permutation π̃t such that p̃t(π̃t(i)) ≥ p̃t(π̃t(i+ 1)) for all i.

(c) If there exists a j̃ such that

(i) Φ(π̃t({1, ..., j̃}) ≤ θ0,

(ii) p̃t(π̃t(j̃)) ≥ γ/V olV (π̃t({1, ..., j̃}), and

(iii) 5 V olV (V )/6 ≥ V ol(π̃t({1, ..., j̃}) ≥ (5/7) 2b−1

then output C = π̃t({1, ..., j̃} and quit.

(4) Return ∅.

Table 1: Pseudocode for Nibble algorithm

Random Nibble (Table 2) is an intermediate algorithm which calls Nibble on carefully chosen

random inputs.

Partition (Table 3) calls Nibble through the Random Nibble method, for atmost, a fixed number

of times. It then collects the clusters found by Nibble. As can be seen from the Step (1)(c) of the

algorithm, as soon as the volume of this collection exceeds 1
6

th
of the volume of the entire graph, it

returns the collection.
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C = RandomNibble(G, θ0)

(1) Choose a vertex v according to ψV

(2) Choose a b in 1, ..., ⌈log(m)⌉ accord-

ing to

Pr[b = i] = 2−i/(1 − 2−⌈log(m)⌉)

(3) C = Nibble(G, v, θ0, b)

Table 2: Pseudocode for Random Nibble al-

gorithm

D = Partition(G, θ0, p)

where G is a graph, θ0, p ∈ (0, 1).

(0) Set W1 = V

(1) For j = 1 to 56m ⌈lg(1/p)⌉

(a) Set Dj = RandomNibble(G(Wj), θ0)

(b) Set Wj+1 = Wj −Dj

(c) If V olWj+1
(Wj+1) ≤ (5/6) V olV (V ), then go to

step (2)

(2) Set D = V −Wj+1

Table 3: Pseudocode for Partition algorithm

C = MultiwayPartition(G, θ, p)

(0) Set C1 = V and S = ∅

(1) For t = 1 to ⌈log17/16m⌉ . ⌈lg(m)⌉ . ⌈lg(2/ǫ)⌉

(a) For each component C ∈ Ct,

D = Partition(G(C), θ0, p/m)

Add D and C −D to Ct+1

(2) Return C = Ct+1

Table 4: Pseudocode for Multiway Partition algorithm

Multiway Partition (Table 4) uses Partition to get a partitioning of the graph. It then invokes

the latter again, on the two partitions thus obtained. This is repeated for a fixed number of times.

4 The Modified-Nibble Algorithm

Based on our implementation of the Nibble algorithm and the experiments conducted on the IIT

Bombay Electronic Submission of Theses and Dissertations Database (etd2) graph (described

in [Cat08]), we identified the following shortcomings of the algorithm.

(i) It is difficult to specify the conductance of the clusters, apriori. Hence, instead of taking it as a

user-input, the algorithm must be capable of finding clusters with best value of conductance.

(ii) In the step 3(c) of Nibble, any value of j that satisfies the three conditions is accepted. Consider

the case where the user-specified conductance value is greater than the actual conductance of a

cluster. Then, the algorithm might terminate early, as soon as the larger value of conductance

is reached, but before finding this better cluster.

(iii) Size of the cluster is an important property which the user may want to control to some extent.

The maximum allowable size may be constrained by the size of external memory block or by

the size of the main memory of machines in a distributed scenario. In Nibble, the user has no

way of regulating the cluster size.

(iv) etd2 contains tables for department, faculty, program, students and thesis. Nibble was

not able to find the intuitive clustering which is the one based on Department. However, when
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we modified it to take as input, a value maxClusterSize as an upper bound on the size of the

clusters, it could find the required clustering, indicating that upper-bounding the cluster-size is

key to finding better clusters.

(v) If unchecked, there is a high probability for the random walk to spread over the entire graph,

especially when there are hub nodes. This situation is not desirable and the algorithm must be

able to reduce the impact of misbehaving hub nodes. Nibble doesn’t control the spread of the

walk.

Keeping the above drawbacks in mind, we propose the Modified-Nibble algorithm, which is

detailed below. It gives the user, adequate control over the properties of the clusters and at the same

time, finds the cluster with best conductance without requiring the user to specify any value.

4.1 Terms and Definitions

Modified-Nibble, finds the probability distribution over the nodes of the graph. The random

walk considered here has self-transition probability set to 0.5. The edge-weights are not taken into

account while spreading probability to neighbors (these terms were described in Section 3.1).

If A represents the adjacency matrix of the graph, and D, the diagonal matrix with (d(1), ..., d(n))

on the diagonal, where d(i) gives the degree of node i, then the transition probability matrix, P , can

be expressed as (AD−1 + I)/2. The probability distribution of the random walk with start vertex v,

obtained after t steps, is given by pv
t = P tχv, where χv is the vector with all entries set to 0, except

for v, which is set to 1.

Random walk step: By simulating a step of the walk, we mean that all nodes with non-zero node-

probability will spread its current probability value to its neighbors. This is equivalent to computing

pt+1 = P pt. New nodes that become active during this step, can take part in spreading probabilities,

only in the next step.

Batched random walk: A batch of i random walk steps just means that i steps of the walk are

performed one after the other, without any intervention. This is equivalent to computing pt+i = P i pt.

MaxClusterSize: This, taken as an input from the user, defines the upper bound on the number

of nodes put into a single cluster. The values used in the experiments range from 100 to 1500. As

reported in [DKS08], lower cluster sizes incur high IO cost, and larger sizes lead to considerable search

overhead.

MaxActiveNodeBound and f: The former term upper bounds the maximum number of nodes that

can be active at any time, during the clustering process. The latter term stands for factor and is

a user-input. Its values in the experiments range from 100 to 600. Given MaxClusterSize and f,

MaxActiveNodeBound is set as the product of the two.

9



Arithmetic plus Geometric Progression (APGP): As the name suggests, the ith term of an

APGP series is the sum of ith terms of an Arithmetic Progression and a Geometric Progression.

tapgp
i = (a+ id)+ (a ri), i = 0, 1, 2, ... The parameters can be used to get fine-grained control over the

difference between successive terms of the series. r has to be kept small since otherwise, as i increases,

the successive terms differ by a very large value. But then, for smaller values of i, the successive terms

will be too close. To avoid this, we set d to a high value, and for larger values of i, the effect of the

terms from AP will be overtaken by the terms of GP. For most of the experiments, the values used

were: a = 2, d = 7, r = 1.5.

Degree Normalized Probability of a node is the ratio of its nodeProbability and degree. Nodes

with large degree tend to acquire high values of probability even if they don’t “belong” to the cluster.

Normalizing the probability with the degree enables us to deal with such misbehaving nodes.

4.2 The Clustering Algorithm

The algorithm for clustering takes as input, the graph representation of data and outputs the

clusters, which are disjoint sets of nodes of the graph. The core of the entire algorithm is the Modified

Nibble procedure (detailed in Section 4.2.1), which in turn invokes the Find Best Cluster procedure

(detailed in Section 4.2.2).

Algorithm

(i) Choose a start node, s. Here, if any prior knowledge of communitites is available, it can be used

to select the start node. In our implementation, we chose the one with largest out-degree, similar

to the Random Nibble algorithm (Table 2), except for the probability aspect. This decision was

revised later (discussed in Section 4.3).

(ii) Invoke Modified Nibble procedure with s as the start node, on the current graph.

(iii) Let L be the list of nodes returned by Modified Nibble. This is the cluster for s. Remove L

from the graph.

(iv) Repeat from step (i), until the entire graph is processed.

As can be seen from step (iii), instead of processing the entire graph at once, the algorithm

proceeds by removing one cluster at a time, and then continuing on the remainder graph.

4.2.1 Modified Nibble procedure

Modified Nibble procedure accepts as input, a start node s and a graph G′, and outputs a set

of nodes belonging to the cluster for s. G′ is the remainder graph, which consists of only unprocessed

nodes.

Algorithm

(i) Set the nodeProbability of s to 1, and that of all other nodes of G′ to 0. Let totalWalkSteps,

initially set to 0, denote the number of steps of random walk simulated till now.
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(ii) Get the next term, ti (for ith iteration), in the APGP series, and perform a batch of random

walks for (ti − totalWalkSteps) number of steps. If ti exceeds maxClusterSize, the batch of

random walks is done for (maxClusterSize− totalWalkSteps) steps.

(iii) If at any time during the batched random walk in step (ii), the number of active nodes exceed

maxActiveNodeBound, then we don’t simulate the remaining steps in the batch. But, directly

proceed to step (iv). This decision was revised later and is discussed in Section 4.3.

(iv) Invoke Find Best Cluster to get the best cluster among the current active nodes.

(v) If the conductance of the best cluster returned in step (iv) is equal to or larger than the conduc-

tance of the best cluster obtained in the previous iteration of this loop (i.e., with the previous

batch of random walks), then we make a greedy decision to stop, assuming that doing more

walks may not give any improvement. So, return the cluster obtained in the previous iteration.

(vi) Else if the conductance has decreased, we assume that doing more walks might give a better

cluster. But if ti already exceedsmaxClusterSize, or, if the number of active nodes have reached

the maxActiveNodeBound, we stop and return the best out of the current and previous clusters.

Otherwise, set totalWalkSteps to ti and repeat from step (ii).

In the algorithm, totalWalkSteps is upper bounded bymaxClusterSize (step (vi)). As mentioned

earlier, maxClusterSize usually has its value in hundreds; and on performing that many walks, the

probability distribution of nodes will tend towards the stationary distribution, which is not desirable.

But, we still allow maxClusterSize number of walks, to take care of the special situation where we

have chains of nodes.

The decision to stop when the number of active nodes reach maxActiveNodeBound was also

changed later and is discussed in Section 4.3.

4.2.2 Find Best Cluster procedure

Find Best Cluster procedure accepts as input, a set of nodes, their current node-probabilities

and in-degrees. It outputs a subset of these nodes, which can be considered as the best cluster among

the nodes which are active at present.

Algorithm

(i) Find the degree-normalized probabilities of all nodes. Here, the probability of a node is normal-

ized by its in-degree.

(ii) Sort the nodes in the decreasing order of their degree-normalized probabilities.

(iii) Find a j such that the first j entries of the sorted set have the smallest conductance. Here, j is

constrained to lie between 1 and min(numActiveNodes,maxClusterSize). If two values of j

give the same conductance, then choose the larger one.

(iv) Return the first j entries of the sorted set as the best cluster, for the current active nodes.
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Each invocation of the above procedure involves a sorting. Hence, from the aspect of running time

of the entire clustering, adequate care must be taken to ensure that it is not invoked too often. This

is dicussed in the section on heuristics (Section 4.4).

4.3 Revised version of the Modified-Nibble algorithm

Based on some of the experiments done on the dblp3 database and the wikipedia dataset (detailed

in Section 5.2), we have made a few changes to the proposed clustering algorithm.

Choosing the start node

Nodes with smaller degrees are very often, towards the periphery of the graph, and their clusters

are easier to find. In particular, degree 1 nodes (pendant vertices) almost always belong to the cluster

of its lone neighbor. Hence, they provide a good starting point for exploring the graph. Nodes with

larger degrees are usually hub nodes and they are mostly towards the core of the graph. A random

walk started from such a node can spread to a large proportion of the graph, in just a few steps,

making it quite difficult to process. Proceeding from the peripheral clusters also decongests the core

gradually, making it easier for exploring.

In step (i) of the clustering algorithm described in Section 4.2, the start node chosen was the one

with largest degree. In the revised version, we choose the start node as the one with the lowest degree.

If there are two or more of them, we choose one of them randomly.

Proceeding when maxActiveNodeBound is reached

When the graph is tightly connected, even if the random walk is started from a node with low

degree, the number of active nodes reach the maxActiveNodeBound quite rapidly. This is also

accelerated by the presence of a large number of hub nodes, as is the case in the wiki-graph. It is

quite difficult to identify a good cluster with very few steps of the walk. Hence, terminating the walk

as soon as the bound is reached and emiting the current best cluster, hurts the overall quality of the

clustering, especially in the case of the wiki-graph.

In the revised version, we decided to continue the walk even when the bound is reached, but no

more new nodes will be added to the set of active nodes. Hence the walk moves only to neighbors which

are already explored. In step (iii) of the Modified-Nibble procedure (Section 4.2.1), we simulate all

the steps of the batch, except that as soon as maxActiveNodeBound is reached, the walk is confined

to current active nodes. And in step (vi), we stop only when the total number of steps has crossed

maxClusterSize, and not when the maxActiveNodeBound is reached.

4.4 Heuristics

As explained in Section 4.2.2, every time the Find Best Cluster procedure is invoked, a sorting

is done, which can hurt the total time for clustering. From the Modified Nibble algorithm (Section

4.2.1), it can be seen that, the procedure is invoked according to the terms of APGP series. Thus, the

number of times sorting is done, is proportional to logarithm of maxClusterSize, which is acceptable.

Also, as mentioned before, there is no reason for communities to be of similar sizes. Hence

Modified Nibble procedure returns clusters of sizes ranging from 1 to MaxClusterSize. When the
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size of the cluster becomes very small, in general, the cost of retrieving it increases. Keeping this in

mind, when the entire graph is processed, we perform a compaction, which is explained below.

Compaction procedure

(i) Read the clusters one after another.

(ii) If the size of the current cluster is greater than MaxClusterSize/2, then emit it.

(iii) Else keep it on hold. If there is already a cluster on hold, then, merge them.

(iv) If on merging in step (iii), the size exceeds MaxClusterSize/2, emit the combined cluster as a

new cluster.

(v) Repeat from step (i) until all clusters are processed.

Since compaction does a blind merging of small clusters, the final clustering could group together,

nodes that may be unrelated.

5 Experiments and Analysis

The proposed Modified-Nibble algorithm was implemented in Java and experiments were con-

ducted on the Digital Bibliography Library Project (dblp) database graph (2003 version), and

the Wikipedia datagraph (2008 version). The revised version of the algorithm was also implemented

and tested on the above two datasets. The details of experiments are explained in Sections 5.2 and

5.3.

5.1 Details of Datasets

dblp3 database

Tables: author, cites, paper, writes (Figure 4)

Number of nodes: 1,771,381

Number of undirected edges: 2,124,938

max degree = 784

Figure 4: dblp3 database schema
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wiki database

Tables: document, links (Figure 5)

Number of nodes: 2,648,581

Number of undirected edges: 39,864,569

max degree = 267,884

Figure 5: wiki database schema

5.2 Results for Modified-Nibble algorithm

5.2.1 Node and Edge compression

Node Compression =
number of nodes in the original graph

number of clusters

Edge Compression =
number of edges in the original graph

number of inter-cluster edges

Node compression is easier to obtain; edge compression is the main indicator of quality of clus-

tering. Higher the edge compression, better the clustering. Table 5 gives the compression ratios for

different cluster sizes, on dblp3 datagraph, and Table 6 gives the same for wikipedia datagraph.

maxClusterSize # clusters # inter-cluster edges node compression edge compression

100 24,113 206,040 73 10.31

200 12,698 166,219 139.5 12.78

400 6,709 136,784 264.0 15.53

800 3,505 114,536 505.39 18.55

1500 1,909 90,574 927.91 23.46

Table 5: Compression values for different cluster sizes on dblp3. Parameter settings: a = 2, d = 7, r

= 1.5, f = 500 and with compaction

# clusters # inter-cluster edges node compression edge compression

16,208 12,445,795 163.41 3.203

Table 6: Compression values for maxClusterSize = 200 on wikipedia. Parameter settings: a = 2,

d = 7, r = 1.5, f = 500 and with compaction
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5.2.2 Average Conductance

Average Conductance =

∑

c:cluster Φ(c)

number of clusters

Conductance (Equation 2.1) was the objective used for the clustering process. Average conduc-

tance gives the conductance after the clustering process is done, averaged over all the clusters. Table

7 gives the same for different cluster sizes on dblp3 datagraph.

maxClusterSize 100 200 400 800 1500

avg conductance 0.0838 0.0689 0.0579 0.0499 0.0401

Table 7: Average conductance values for different cluster sizes on dblp3. Parameter settings: a = 2,

d = 7, r = 1.5, f = 500 and with compaction

5.2.3 Effect of the factor f on compression and conductance

Factor f decides the bound on the number of active nodes. The latter is computed as the product

of f and maxClusterSize. Table 8 summarizes the compression figures obtained for different values of

f for the dblp3 database, where maxClusterSize is set to 1500. Table 9 gives the average conductance

figures for the same. The entry “no bounds” in these tables is for the case where there was no bound

on the number of active nodes. The entry “cost” in Table 8 gives the time required for the clustering

process on a 2.66GHz Intel Core2 Duo CPU machine with 3 GB RAM, running Fedora 8.

f # clusters
# inter-cluster

edges

node

compression

edge

compression

cost (ap-

proximate)

100 1,965 105,290 901.46 20.18 1.5 hrs

150 1,946 103,603 910.27 20.51 2 hrs

200 1,945 102,080 910.74 20.82 3 hrs

300 1,934 97,529 915.92 21.79 9.5 hrs

400 1,921 94,872 922.11 22.39 15 hrs

500 1,909 90,574 927.91 23.46 1 day

no bounds 1,862 78,973 951.33 26.91 2.5 days

Table 8: Compression for different values of f on dblp3, for maxClusterSize = 1500. Parameter

settings: a = 2, d = 7, r = 1.5 and with compaction

f 100 150 200 300 400 500 no bounds

avg conductance 0.0474 0.0467 0.0458 0.0436 0.0423 0.0401 0.0344

Table 9: Average conductance for different values of f on dblp3, for maxClusterSize = 1500. Pa-

rameter settings: a = 2, d = 7, r = 1.5 and with compaction
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Figure 6: Effect of f on edge compression

(Table 8)
Figure 7: Effect of f on avg conductance (Table 9)

5.2.4 Comparison with EBFS Clusters

Edge-weight prioritized breadth first search (EBFS) is a clustering technique which takes weights

of edges into account. It chooses an unassigned node as the start-node, and performs a BFS from it,

where the neighboring nodes are explored in the order of the weight of the edges connecting them. The

search is stopped when the number of explored nodes reach the predefined maximum supernode size.

All the explored nodes form a cluster. The process is repeated till all nodes are processed. The BANKS

system for external memory datagraphs uses the clusters produced by EBFS ([DKS08]). Figures 8

and 9 compare the edge compression and average conductance obtained by Modified-Nibble and

EBFS, for different cluster sizes on dblp3.

Figure 8: Comparison of edge compression between

Modified-Nibble and EBFS, on dblp3 datagraph

Figure 9: Comparison of avg conductance between

Modified-Nibble and EBFS, on dblp3 datagraph

16



5.2.5 Performance improvement in BANKS

The clusters obtained by Modified-Nibble algorithm on the dblp3 datagraph were incorporated

into the BANKS system and their effect on its performance was studied. Table 10 summarizes the

improvement in performance when compared to the EBFS algorithm. The values give the percentage

reduction in some of the performance metrics for cluster sizes of 100, 200, 400 and 800, averaged over

10 benchmark queries. Details of the performance analysis can be found in [Sav09, Agr09].

% reduction

Cluster Size 100 200 400 800

CPU + IO time taken 43.6 36.62 45.27 41.04

Number of nodes explored -0.23 16.22 57.25 49.41

Number of nodes touched 22.85 26.49 59.09 60.47

Number of cache misses 48.71 36.41 39.74 17.53

Table 10: Summary of performance improvement in BANKS system for different cluster sizes - relative

performance of Modified-Nibble and EBFS algorithms

5.3 Results for revised version of Modified-Nibble algorithm

The revised version of Modified-Nibble discussed in Section 4.3 was tested on the dblp3 dataset

to gauge its impact on clustering. Table 11 gives a comparison between the two on dblp3 database

for maxClusterSize of 400.

Modified-Nibble Revised Modified-Nibble

# clusters 6,709 6,709

# inter-cluster edges 136,784 125,651

edge compression 15.53 16.91

Table 11: Comparison between Modified-Nibble and Revised Modified-Nibble on dblp3 data-

graph for maxClusterSize = 400. Parameter settings: a = 2, d = 7, r = 1.5, f = 500 and with

compaction

max Cluster

Size
# clusters

# inter-cluster

edges

node

compression

edge

compression

avg con-

ductance

200 17,713 11,485,314 149.5 3.471 0.350

Table 12: Compression and Conductance values for cluster size of 200 on wiki. Parameter settings:

a = 2, d = 7, r = 1.5, f = 100 and with compaction
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5.4 Observations and Analysis

(i) As can be observed from Table 5, both node and edge compression figures improve with larger

bound on the cluster size.

(ii) Edge compression on the wiki-graph, given in Table 6, is quite discouraging. The reason behind

this could be any of the following:

(a) Almost all the inherent clusters in wikipedia have their size greater than 200.

(b) The decision to stop as soon as the maxActiveNodeBound is reached is hurting the clustering

to a very large extent.

(c) The community structure of wikipedia is different from that of dblp, and we are missing

out on some important aspect of the former, which is absent in the latter.

(iii) From Tables 8 and 9, it is obvious that larger values of f give better clusters. Especially, for the

case where there is no bound on the number of active nodes, the algorithm performs its best.

But, from this, it cannot be concluded that f alone is affecting the quality. From Table 11, it

can be seen that on continuing the processing even when the maxActiveNodeBound is reached,

is giving improvement. Thus, this case requires more tests for confirmation.

(iv) From Figures 6 and 7, it can be noted that the compression and conductance values are com-

parable for values of f ranging from 100 to 500. Sharp improvement is observed only for the

case of “no bounds”. In line with the earlier observation, this may be indicative of the fact that

f is not directly affecting the quality of the clustering. So, lower values of f may suffice, also

considering the marked reduction in the cost (Table 8).

(v) Figures 8 and 9 show that clusters produced by Modified-Nibble give much better compression

and conductance values than those produced by EBFS. It can also be noted that, for both the

algorithms, decrease in conductance is accompanied by better edge compression. This suggests

that, the objective of our algorithm, which is to minimize the conductance of clusters, is in effect,

giving better quality clusters. But, it requires experiments on different datasets for confirmation.

(vi) From Table 10, it is quite clear that the clusters found by Modified-Nibble is outperforming

those found by EBFS, by a large margin. This indicates that clusters with better compression

and conductance values, also perform well in the actual search system. However, as reported

in [Sav09, Agr09], the number of nodes explored and number of nodes touched increases quite

rapidly as the cluster size increases. Preliminary analysis points at the blind compaction step

done after the clustering, since this groups together nodes that may be totally unrelated.

(vii) Even with the revised version of the algorithm, the compression and conductance values on

wiki-graph have not improved significantly (Table 12). As suggested earlier, it might be due

to a yet unrecognized aspect of the community structure of the graph. However, this requires

more experiments for confirmation.
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6 Conclusions and Future Work

Clustering is the technique of finding the underlying structure of a graph and is a very important

area of research. An interesting development in the recent years is the application of random walks

on graphs to find good quality clustering. One such method is the graph partitioning technique which

uses an algorithm called Nibble that approximates the probability distribution of random walks on

the nodes of the graph. This algorithm was implemented and its performance was studied. Based on

the shortcomings identified, we proposed the Modified-Nibble algorithm, which was implemented

and tested on the dblp3 and wiki datasets, to understand its performance. Through this exercise,

we identified a few shortcomings and it has given us insight into how we should proceed in the future.

Following is the proposed direction of future work:

• As seen from the results of the experiments, the clustering algorithm could not perform well on

the wiki-graph. The reason behind this could be that the structure of wiki-graph is quite different

from dblp3. It is known that wikipedia has large number of hub pages, and disambiguation pages.

The latter, usually connects many unrelated concepts together, thus adding to the noise of the

structure. Another issue is related to the out-degree of nodes. While the largest out-degree in

dblp3 was less than 800, the largest in wiki-graph is more than 200,000. The algorithm must be

smart enough to deal with misbehaving nodes, to discover the underlying community structure.

• To deal with the vast disparity in the cluster sizes, the current approach is to compact the

clusters found. But, since this is done blindly, it may group together nodes, that are totally

unrelated. This can lead to an increase in the query answer time of the search system. A better

approach would be to merge clusters that are comparatively related to each other. Similarity

between clusters can be judged by the number of edges crossing them.

• Currently, the clustering process takes time in the order of days, for the wiki graph. Though

this is not a serious issue since clustering is an offline process, this is still quite important when

dealing with larger graphs. Parallelizing the clustering, and running the clustering algorithm in

a distributed environment are promising areas of future work.

• Consider a mapping from the set of web pages in WWW to the wiki articles, which is based on

some similarity between the two. A webpage may be connected to more than one wiki article.

Once the clustering on wiki-graph is in place, then, given such a mapping, it may be possible to

cluster the entire web corpus based on the clustering computed for their images in wiki-graph.

In general, given a small graph and a mapping of the nodes of a larger graph to nodes in the

former, it may be easier to find a good clustering for the latter, by finding a good clustering for

the smaller graph.

• Wikipedia has an inbuilt category structure. Categories give a rough grouping of the articles,

and are entered by the authors manually. They are organized in a hierarchical fashion. Even

though an article can belong to multiple categories, they still can provide some insight into

the underlying structure of wikipedia. The clustering algorithm may be able to perform better

on the wiki-graph if, in addition to the link structure, it also takes the category structure into

consideration. This is an important direction to explore.
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A Documentation of the Java implementation of Modified-Nibble

algorithm

Some of the important classes in the implementation are given below.

ModifiedNibble : implements the Modified-Nibble algorithm.

Graph : this class represents the datagraph used by the clustering process. It handles

all graph related operations.

Cluster : this datastructure represents a cluster. It stores the nodes that belong to it,

and has methods to get the properties like volume, cutsize and conductance

of the cluster.

Configuration : provides methods for reading the configuration file provided by the user.

Utils : provides utility functions, such as quick sort.

Important methods of some of the classes are elaborated below.

A.1 ModifiedNibble

FindClusters : This implements the major portion of the Modified-Nibble algorithm.

It invokes the APGP series generator with the user specified values

for the parameters and then calls the Graph.NextRandomWalkStep

method for that batch. This is followed by a call to

ModifiedNibble.GetCluster to get the best cluster. On getting the

best cluster, it makes the decision on whether to continue or not. It

also keeps track of whether the maxActiveNodeBound has reached and

whether the total number of walk steps is within maxClusterSize.

ResumeFindClusters : This method is used to resume the clustering process from a previously

terminated execution. It reads the partially processed cluster output

and creates the remainder graph by a call to Graph.CreateNewGraph.

It then continues in a similar way as ModifiedNibble.FindClusters.

GetCluster : This implements the FindBestCluster procedure. It invokes

Graph.SortOnDegNormProb method for getting the nodes in the de-

creasing order of their degree normalized probabilities. It then uses a

sweeping method to find the first j nodes that give lowest conductance.

WriteClusterToFile : It outputs the cluster passed as argument, in the required format, to

the user-specified outfile.
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A.2 Graph

CreateNewGraph : It removes the nodes present in the cluster provided as the ar-

gument, from the current graph and adjusts the degrees of the

remaining nodes.

SetStartNode : This is called just before starting the random walk for a cluster.

It sets the startNode as the one with highest degree, or the one

with lowest degree, as the case may be.

NextRandomWalkStep : This method performs one step of the random walk on the current

graph, from the current set of active nodes.

GetOutNeighbors : It returns the out neighbors of the node provided as its argument,

which are present in the current graph.

GetActiveOutNeighbors : This method is called only when the maxActiveNodeBound has

reached. It is similar to the Graph.GetOutNeighbors method,

except that only active neighbors are returned.

SortOnDegNormProb : It invokes Utils.QuickSort method for sorting the current active

nodes on their degree normalized probabilities.

A.3 Data structures

IntArrayList : implements the java.util.ArrayList<Integer> in terms of an array of

fixed length, where the maximum required length is known beforehand. It

provides size, get, set, clear, add and addAll methods, similar to the

ArrayList. This is used to store the current active nodes, since the maxi-

mum number of active nodes is limited by the total number of nodes in the

graph. It improves the performance by avoiding runtime memory allocation.

HashCache : it is an instance of java.util.HashMap<Integer, ArrayList<Integer>>

initialized with maxActiveNodeBound as its size. It is used

for caching the current active out-neighbors of a node. When

Graph.GetActiveOutNeighbors method is called for a node which is

not already entered in the hashmap, it is retrieved from the current graph.

This is then entered in the hashmap. Next time the active out-neighbors

of this node is requested, it is retrieved directly from the hashmap. Every

time Graph.CreateNewGraph is invoked, the hashmap is cleared. It was

observed that the time taken by Graph.GetActiveOutNeighbors decreased

from 78% to 29% of the overall processing time.
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