
Graph Clustering for Keyword Search

Rose Catherine K.
Roll no: 07305010

M. Tech. Project Stage 3

under the guidance of

Prof. S. Sudarshan

Computer Science and Engineering
Indian Institute of Technology Bombay

Introduction

Keyword searching -important paradigm of searching.

Keyword search on external memory datagraphs could perform better
if the nodes that are connected to each other are retrieved together.

Clustering: finding a grouping of graph nodes such that, connections
within it are dense; inter-cluster edges are low.

Community: set of real-world entities that form a closely knit group

Objective function: distance-based measures, cut-size,
community-related measures: modularity, conductance

Graph Conductance:

Φ(S) = |∂(S)|
min(Vol(S),Vol(S̄))

For S ⊆ V :

* Vol(S): sum of node-degrees in S

* ∂(S): edges from S to S̄

Clustering by Graph Partitioning

input: k - desired number of partitions
Objective

group the nodes into k clusters, such that, all clusters are of roughly
the same size.
minimize the number of cut edges.

Metis

1 Coarsen the graph, by collapsing edges and grouping nodes.
2 Create a good partition on the smallest graph.
3 Project this partition back onto the original graph, by refining the

partition in the intermediate levels.
4 Recursively partition the two clusters obtained, to get k partitions.

Shortcomings:

Cannot find communities of varying sizes.
Since it creates multiple versions of the graph, requires lot of memory.

Finding Communities using Random Walks on Graphs

Random walks:

a graph traversal technique.

Probability distribution of a walk: probability of a random walk of k
steps, started at a particular startNode, to be at a particular node at
the instant/step of inspection (nodeProbability).

Clustering using Random walks:

Objective: find the cluster to which a particular node belongs, or the
enclosing cluster of a seed set.

Intuition:

Walk started from a node in the cluster will remain within it, with a
large probability.
Probability distribution of the random walk gives a rough ranking of the
nodes of the graph.
A good cluster can be obtained by considering the highest ranking
nodes, and by using conductance to choose the best.

Sudden drop in
probability, outside the
cluster boundary

——————————————————————————–

Φ(S) = 2
22 = 0.09

Cut 1: Φ(S − n1) = 4
22−2 = 0.2

Cut 2: Φ(S +n2) = 3
22+3 = 0.12

Dip in conductance at
cluster boundary

Clustering using Nibble Algorithm [ST04]

Objective: find the cluster to which the seed node belongs

Nibble Algorithm:
input: Start node v , Graph G , Max Conductance θ0

1 Compute the bound on maxIterations, t0, and threshold, ε.

2 Start spreading probabilities from v .

3 Truncate the walk by setting nodeProbability to 0 where it is < ε

4 Sort the nodes in the decreasing order of their probabilities.
5 Check if a j exists such that:

Conductance of the first j nodes ≤ θ0

The above set of nodes satisfy predefined requirements on its volume.

6 If a j was found, then return the first j nodes of the sorted set.

7 Otherwise, do the next step of spreading probabilities and repeat from
Step (3).

Partitioning using Nibble:

1 Merge the clusters returned by Nibble.
2 Stop merging when the volume exceeds a

predetermined fraction of G .
3 Shortcoming: processes the graph in

top-down manner - difficult for large graphs.

Clustering using Nibble with seed set [AL06]

Objective: find the enclosing community for a ‘seed set’ of nodes
Modification to Nibble: assign equal probabilities to all nodes in the
seed set, and spread from all seed nodes.
Shortcoming: Seed set is chosen manually.

Shortcomings of the Nibble algorithm

Specify the conductance of the clusters, apriori.

May terminate at larger conductance, before finding the best.

User cannot control the cluster size.

No control over the spread of the walk.

Clustering using Modified-Nibble algorithm : Outline

Overall clustering algorithm

1 Choose a start node.

2 Nibble out a cluster for the start node, and remove it from the graph.

3 Repeat from step (1), until the entire graph is processed.

Proceed by removing one cluster at a time, rather than processing the
entire graph at once.

Beneficial for clustering massive graphs

Modified Nibble Algorithm

1 Set the initial probability of the start node to 1 and start spreading
probability from it, for a specific number of steps (batch).

2 Find the best cluster for the currently active nodes, using Find Best
Cluster algorithm.

3 If the cluster obtained has same or higher conductance than the best
cluster of the previous iteration, stop and return the latter.

4 Else, if the conductance has reduced, continue spreading of
probabilities from all the active nodes (next batch), and repeat from
step (2).

The conductance of clusters are not taken as input from the user.

The algorithm finds the cluster of best conductance.

Find Best Cluster Algorithm

1 Consider the nodes in the decreasing order of probabilities.

2 The candidate clusters C i contain nodes from 1 to i of the sorted set.

3 Compute the conductance of all the candidates.

4 Return the one with smallest conductance as the best cluster.

The algorithm always finds a cluster, unlike the Nibble algorithm,
which will return a cluster only if it satisfies some specific
requirements.

Sample execution of Modified Nibble clustering
algorithm

Fig: Prob. distrn. after 1 step

Batch 1
Φ(best cluster) = 4

12 = 0.33
Preferred cluster S, not found
yet.

Batch 2
Φ(S) = 2

22 = 0.09
Φ(Cut1) = 4

22−2 = 0.2

Φ(Cut2) = 3
22+3 = 0.12

Best Cluster = S

Fig: Prob. distrn. after 3 steps

Fig: Prob. distrn. after 5 steps

Batch 3
Φ(Cut3) = 4

28 = 0.14
Φ(Cut4) = 6

32 = 0.18
Best Cluster = S

Parameters and Heuristics

H1. Start node
Ideal setting (communities are known beforehand): choose the node which
is most ‘central ’ to the cluster.

(a) Max degree

(b) Min degree

High-degree nodes are mostly hub nodes.
Could create many short-cut paths; random walk could spread to a
large proportion of the graph, in a few steps.
Nodes with lower out-degree are usually towards the periphery of the
graph.
Removing clusters from the periphery could make the processing of the
core, easier.

Parameters and Heuristics

H2. Nodes spreading in each step

(a) Spread from all active nodes

(b) Only a single node spreads in each step

δ: amount of probability received by a node, which is yet to be spread
to its neighbors.
A node spreads spreadProbability fraction of only its δ; remaining
gets added to its nodeProbability (not transferable).
Node to spread next in each step, is the one with largest value for δ.
Number of iterations in a batch: m× maxClusterSize.
m controls the amount of spreading in the graph, prior to testing for
best cluster.

Parameters and Heuristics

H3. Self-transition probability of a random walk

Determined by spreadProbability.

Lower values tend to over-emphasize proximity to the start node.

Higher values can blur the cluster boundary rapidly.

spreadProbability set to 0.5 for most experiments.

Parameters and Heuristics

H4. Number of iterations in a Batch

Each invocation of FindBestCluster involves sorting - slow down
the clustering process considerably.

Concept of Batch of random walks:

Use a series to decide the number of steps in a batch.
Invoke FindBestCluster only after the batch of steps.

Arithmetic Plus Geometric Progression (APGP)

tapgp
i = (a + id) + (a r i), i = 0, 1, 2, ...

Choose smaller values for r and larger values for d.

For larger values of i , terms of GP will surpass those of AP.

Number of times sorting is done: O(log totalNumSteps)

Parameters and Heuristics

H5. Upper bound on total number of random walk steps

If the conductance of the best cluster found in a batch has lowered,
the spreading of probabilities is continued.

Upper bound: maxClusterSize
Ensures that, all nodes of a cluster whose diameter is maxClusterSize,
are touched before spreading of probabilities is discontinued.

Parameters and Heuristics

H6. Upper bound on number of active nodes

The random walk can spread to the entire graph, if left checked.

Intuition for random walk based clustering - it is possible to extract a
cluster by exploring only a local neighborhood of the start node.

Restrict the size of this neighborhood to maxActiveNodeBound.

maxActiveNodeBound = f× maxClusterSize

Parameters and Heuristics

H7. Behavior on maxActiveNodeBound
If the number of active nodes is restricted, options when the number of
active nodes reach the bound:

(a) Stop processing and output the best cluster obtained so far.

(b) Continue with spreading, but propagate to only those nodes that are
already active.

Bound might be reached rapidly, due to hub nodes.
Identifying a good cluster in a very few steps of the walk, becomes
difficult.
Terminating the walk as soon as the bound is reached (option (a)) can
hurt the overall quality of the clustering.
Disadvantage: increases the processing time.

H8. Compaction procedure

Modified Nibble procedure may return clusters of sizes much
smaller than MaxClusterSize.

Large number of supernodes in the graph .

Bundle together, multiple clusters.

CP1. Blind and greedy compaction of all clusters

CP2. Edge aware compaction of all clusters

CP3. Näıve compaction of tiny clusters

Both CP1 and CP2 improve edge compression, but create dense graphs.
Combine only tiny clusters that don’t have any cut edges.
Applying CP3 compaction will not make the supernode graph denser.

Co-citation heuristic

Co-citation of A1 and A2 occurs, when C links to both A1 and A2.

If all co-cited nodes were in a single cluster, all edges to them will be
condensed to a very few superedges.

H9. Remove hub nodes

Select nodes of indegree at least maxClusterSize.

Choose the top t× maxClusterSize and create t clusters of size,
maxClusterSize.

Execute the clustering procedure on the remainder graph.

Graph formations

In FindBestCluster, candidate clusters were generated by
considering the graph nodes in the order of their increasing
probabilities.

Straightforward implementation leads to some interesting formations
in the supernode graph - observed from experiments conducted on
sample datasets.

Bridge formation

V formation

Umbrella formation

abandoned nodes: nodes that are separated from all its neighbors.

Many reasons for occurrence of formations:
e.g.nc is a hub which connects to many authoritative nodes. Each
neighbor gets absorbed into the cluster for its domain, leaving out nc .

Results in more cache misses during search.

Graph formation heuristics

H10. Graph formation heuristic

(a) Post-process

After the best cluster is found, add the abandoned nodes to it.
Can increase the size of the cluster beyond maxClusterSize.

(b) Abandoned node awareness

Prevent the occurrence of formations right from the creation of
candidate clusters.
Add all abandoned nodes to the candidate clusters.
Discard candidates whose size goes beyond maxClusterSize.

Final Modified-Nibble algorithm

input: Graph G, maxClusterSize

Overall clustering algorithm

1 If H9 (co-citation) is used, remove hub nodes from graph.

2 Choose a start node, using H1.

3 Nibble out a cluster for the start node, and remove it from the graph.

4 Repeat from step (2), until the entire graph is processed.

5 Use H8 to compact the clusters obtained.

Modified Nibble Algorithm

1 Set the initial probability of the start node to 1.
2 Batch i:

spread probabilities from all active nodes or a single node (H2).
amount spread is decided by H3.
number of iterations in this batch is decided by H4.
if maxActiveNodeBound is used (H6), according to H7:
(a) stop this batch and proceed to step 6
(b) continue, but spread only to already active nodes.

3 Find the best cluster Ci for Batch i, using Modified FindBestCluster
algorithm.

4 If Ci has same or higher conductance than Ci−1, stop and set Cbest as
Ci−1, and go to step 6.

5 Else, Cbest is Ci and start next batch. But, if number of iterations
have reached the bound set using H5, then go to step 6.

6 If graph heuristic H10 is used and is set to (a)-post process, add the
abandoned nodes of Cbest to it.

7 Return Cbest as the best cluster of start node.

Modified FindBestCluster Algorithm

1 Consider the nodes in the decreasing order of probabilities.

2 The candidate clusters C i contain nodes from 1 to i of the sorted set.

3 If graph heuristic H10 is used, and is set to (b) - abandoned node
awareness, for all candidates, add the abandoned nodes; and discard
larger ones.

4 Compute the conductance of all remaining candidates.

5 Return the one with smallest conductance as the best cluster.

Experiments and Analysis

Digital Bibliography Library Project (dblp) (2003 version)

Tables: author, cites, paper,
writes
Number of nodes: 1,771,381
Number of edges: 2,124,938
max degree = 784

——————————————————————————–
Wikipedia (2008 version)

Tables: document, links
Number of nodes: 2,648,581
Number of undirected edges: 39,864,569
max degree = 267,884

Base implementation of Modified Nibble clustering

Heuristic / Parameter Choice / Value
H1 - start node : max degree
H2 - nodes spreading in each step : all active nodes
H3 - self-transition probability : 0.5
H4 - number of steps in a batch : APGP (a=2, d=7, r=1.5)
H5 - maximum number of steps : maxClusterSize
H6 - maxActiveNodeBound : f = 500
H7 - behavior on H6 : stop on maxActiveNodeBound
H8 - compaction : CP1 - blind & greedy compaction
H9 - co-citation : no

Doesn’t take care of the graph formations.

BI - for short

Node and edge compression

Node Compression =
number of nodes in the original graph

number of clusters

Edge Compression =
number of edges in the original graph

number of inter-cluster edges

Node compression is easier to obtain.

Edge compression - main indicator of quality of clustering.

Higher the edge compression, better the clustering.

Compression on dblp3

maxClusterSize # clusters edge compression
100 24,113 10.31
200 12,698 12.78
400 6,709 15.53
800 3,505 18.55

1500 1,909 23.46

By increasing maxClusterSize from 100 to 1500, compression
improves 2 times.

Chart of cluster size vs. frequency of dblp3

Indicates that the inherent clusters of dblp3, are mostly of size 100 to
400.

Compression on wiki

maxClusterSize # clusters edge compression
200 16,208 3.203
400 8,052 5.031

1500 2,205 21.299

By increasing maxClusterSize from 200 to 1500, compression
improves by more than 6 times.

Chart of cluster size vs. frequency of wiki

There are many communities in wikipedia of large size.

The last entry indicates that there are communities of even larger size.

Analysis of the effect of
heuristics and parameters on compression

H2 - nodes spreading in each step

(a) all active nodes spread in each step of the walk

(b) only a single node spreads in each step

H2 # clusters # inter-cluster edges edge compression
(a) 61,633 96,101 22.115
(b) 73,839 118,406 17.946

Edge compression on dblp3. (settings: maxClusterSize = 1500, no compaction)

Higher compression with H2(a).

H6 - upper bound on active nodes I

maxActiveNodeBound = f× maxClusterSize

f
0 100 200 300 400 500 no bounds

ed
ge

 c
om

pr
es

si
on

0

10

20

30

Effect of f on edge compression in dblp3 (mcs = 1500)

H6 - upper bound on active nodes II

Edge compression improves with increase in f.

Compression improves to about 27 when number of active nodes are
not bound.

With f = 500, compression obtained is 23.4.

For an improvement in compression by a factor of 1.14, we incur 2.5
times the processing cost.

We upper bound the number of active nodes, with f = 500.

H7 - behavior on maxActiveNodeBound

Following options when the number of active nodes reach the bound:

(a) terminate the search

(b) continue spreading, but only to current active nodes

clusters edge compression time
H7(a) 77,462 14.39 1.5 hrs
H7(b) 65,883 16.54 4 days

Edge compression on dblp3 (settings: startnode - minDegree, no compaction)

Edge compression improves when the search for clusters is continued
on reaching the bound.

But, processing time shoots up, to 4 days.

We use option H7(a) - stop on maxActiveNodeBound.

H9 - co-citation heuristic for wikipedia

H9 heuristic - remove hub nodes, prior to clustering.

Number of hub nodes removed = t× maxClusterSize.

t # clusters edge compression
0 2,350 22.431
1 2,294 29.867
2 2,290 30.554

Edge compression on wiki. (settings: minDegree start,

H7(b)-continue on maxActiveNodeBound)

When top indegree nodes are removed, edge compression increases
from 22.4 (t=0) to 29.8 (t=1) .

Degree of co-citation of these nodes are high.

But, by removing twice the number of top indegree nodes,
improvement is negligible - co-citation drops with decreasing degree.

H9 could create many short-cut paths in the supernode graph.

H10 - heuristics for graph formations

Heuristic maxClusterSize Bridge V Umbrella
BI 200 480 148 3,466
BI 400 412 126 3,014
BI + H1(b) 400 584 95 4,588
BI + H1(b) + H7(b) 400 327 22 1,058

Graph formations on dblp3 (settings: no compaction)

Heuristic maxClusterSize Umbrella
BI 1500 180,725
BI + H1(b) + H7(b) 1500 291,068
BI + H1(b) + H7(b) + H9 1500 246,864

Graph formations on wiki (settings: no compaction)

Graph formations are prevalent.

H10 - heuristics for graph formations

(a) Post-process

Dataset maxClusterSize Final maxClusterSize
dblp3 200 323
wiki 1500 5627

Increase in the final cluster size using H10(a)

Using H10(a), increase in the final cluster size for wiki is not within
acceptable limits.

H10(b) : Abandoned node awareness - will produce formation-free
clusters of size within the maxClusterSize parameter.

We will use H10(b).

Final settings for Modified Nibble clustering

Heuristic / Parameter Choice / Value
H1 - start node : max degree
H2 - nodes spreading : all active nodes
H3 - self-transition probability : 0.5
H4 - number of batch steps : APGP with a=2, d=7, r=1.5
H5 - max number of steps : maxClusterSize
H6 - maxActiveNodeBound : f = 500
H7 - behavior on H6 : stop on maxActiveNodeBound
H8 - compaction : CP3-näıve compaction of tiny clusters
H9 - co-citation : no
H10 - graph formation : abandoned node awareness

Comparison with Other Clustering Algorithms

Final Implementation of Modified Nibble clustering algorithm (FI),
compared with:

EBFS

Metis

Comparison metrics:

edge compression on dblp3 and wiki datasets.

connection query performance, using the Incremental Expansion
Backward search algorithm on dblp3
e.g. krishnamurthy parametric query optimization

near query performance on dblp3
e.g. author (near data mining)

time and space requirements for clustering.

EBFS: edge compression

Edge compression on dblp3 of FI and EBFS

FI is able to achieve better edge compression than EBFS, on the
dblp3 dataset.

EBFS: performance on connection queries

CPU + IO time (sec) : connection query on dblp3

Final implementation of modified nibble is out-performing ebfs by a
very large margin.

EBFS: performance on near queries

CPU + IO time (sec) : near queries on dblp3

FI is able to beat EBFS on all queries considered.

Metis

Difficulty in comparing FI with Metis: parameters and objectives are
much different.

For comparison purposes, we use clusterings whose maxClusterSize
and average cluster sizes are comparable.

FI clustering used for dblp3

maxClusterSize = 400

number of clusters = 31,215

Metis clustering used for dblp3

k (number of clusters) = 30,000

maximum cluster size = 335

Metis: Edge compression

Edge compression on dblp3

#clusters maxClusterSize edge compression
FI 31,215 400 15.6
Metis 30,000 335 9.616

Edge compression on wiki

#clusters maxClusterSize edge compression
FI 11,305 1600 17.3
Metis 3,000 1,096 15.7
Metis 4,000 16,353 9.13

Modified Nibble is able to achieve better edge compression than Metis.

Metis: performance on connection queries

CPU + IO time (sec) : connection query on dblp3

Metis performs really well on some keyword queries, while FI
outperforms Metis on some others.

Difference in performance can also be caused by the queries under
consideration.

Metis: performance on near queries

number of supernodes with near keywords match : near queries on dblp3

In all cases, number of supernodes with near keywords match, for FI is
lesser than Metis.

Clusters produced by FI, also groups the paper titles in dblp3.

Metis: performance on near queries

cache misses : near queries on dblp3

FI has significanly lesser cache misses than Metis.

Metis: performance on near queries

CPU + IO time (sec) : near queries on dblp3

FI outperforms Metis on almost all queries considered.

Time and space required for clustering

Modified Nibble Clustering algorithm:

dataset time space
dblp3 (132 MB) ∼ 1.5 hrs 190 MB
wiki (1.9 GB) ∼ 1.5 days 2 GB

Space requirements of FI - very close to the size of the graph.

It was found that difference in time and space required, for different
maxClusterSize is negligible.

Time and space required for clustering : Metis

k
0 10000 20000 30000 40000 50000

m
em

or
y

(M
B

)

0

2000

4000

6000

8000

10000

12000

14000

k vs memory for dblp3

k
2000 2500 3000 3500 4000 4500

m
em

or
y

(G
B

)

4.6

4.8

5.0

5.2

5.4

k vs memory for wiki

Space required grows almost linearly with k.

Constants are very high (e.g. for k = 40,000 on dblp3, memory
required is 12.8 GB).

Time taken: dblp3 - 5 mins, wiki - 1.5 hrs.

But, since clustering is done offline, time may not be an issue, but
space may be.

Conclusions

We proposed an algorithm called Modified Nibble Clustering
algorithm, for clustering data represented as graphs, using the
technique of random walks. It improved upon the earlier Nibble
algorithm.

Outlined several heuristics that improved its performance.

Compared our algorithm with EBFS and Metis, where the metrics
used were edge compression, keyword search performance, time &
space requirements for clustering, on sample graphs.

Results showed that Modified Nibble clustering outperformed EBFS
uniformly, and Metis, for some metrics.

Future Work

Formulating a clustering objective for getting good connection query
performance, on external memory search systems.

Test the effect of combinations of heuristics.

Test the performance of Modified Nibble clustering algorithm on
larger graphs, that fit in memory.

Modifying the algorithm to run in a distributed environment, so that
massive graphs can be handled.

Improve the speed of clustering process, by nibbling out multiple
clusters in parallel.

References

[Agr09] Rakhi Agrawal. Keyword Search on External Memory and Distributed
Graph. MTech. Project Stage 3 Report, Indian Institute of Technology,
Bombay, 2009.

[AL06] Reid Andersen and Kevin J. Lang. Communities from Seed Sets. Pro-
ceedings of the 15th international conference on World Wide Web,
pages 223-232, 2006.

[KK98] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme
for Irregular Graphs. Journal of Parallel and Distributed Computing 48,
pages 96-129, 1998.

[Sav09] Amita Savagaonkar. Distributed Keyword Search. MTech. Project
Stage 3 Report, Indian Institute of Technology, Bombay, 2009.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-Linear Time Algo-
rithms for Graph Partitioning, Graph Sparsification, and Solving Linear
Systems. ACM STOC-04, pages 81-90, 2004.

Extra Slides

Detailed pseudocode

Overall clustering algorithm

input: Graph G

1 Set G ′ = G .
If co-citation heuristic H9 is used, set G ′ to the remainder graph, after
removing hub nodes.

2 Choose start node ns according to H1.

3 Obtain cluster Cs = ModifiedNibble(ns ,G
′)

4 Set G ′ = G ′ − Cs , and save Cs .

5 Repeat from step (2), until G ′ is null.

6 Compact the clusters obtained, using H8 procedure.

ModifiedNibble I

input: start node ns , Graph G ′

1 initialization:

set nodeProbability of ns to 1 and add it to the activeNodes set.
set maxSteps according to H5.
if number of active nodes are bounded, calculate maxActiveNodeBound
using H6.
set totalSteps to 0.

2 Batch i:
initialization:

get term ti from the series chosen using H4.
set batchSteps to (ti - totalSteps).
but, if ti exceeds maxSteps, set batchSteps to (maxSteps -
totalSteps).

ModifiedNibble II

do the following for batchSteps number of times:

1 spread from all nodes in activeNodes or a single node, according to
H2.

2 the amount of spreading is determined by spreadProbability as
chosen in H3.

3 update nodeProbability of all nodes, with the probabilities
accumulated from their neighbors.

4 update activeNodes set to contain all nodes with positive values for
their nodeProbabilities.

5 if number of active nodes are bounded, check if maxActiveNodeBound
has been reached. If yes, then, according to the choice of H7, do as
below:

H7(a) : stop this batch, and proceed directly to step 3.

H7(b) : continue this batch, but spreading is done to only those nodes,
which are already in activeNodes.

ModifiedNibble III

3 obtain cluster Ci = ModifiedFindBestCluster(activeNodes, G ′).

4 find conductance of Ci w.r.t the current graph G ′, ΦG ′(Ci).

if ΦG ′(Ci) ≥ ΦG ′(Ci−1), set Cbest to Ci−1, and go to step 6.

else, set Cbest to Ci

5 do the following and repeat from step 2 onwards (Batch i+1).

if ti exceeds maxSteps, go to step 6.

else, set totalSteps to ti .

6 if graph heuristic H10 is being used, and is set to H10(a),
set Cbest to Cbest ∪ {nc | nc is abandoned by Cbest}

7 return Cbest as the best cluster of ns .

ModifiedFindBestCluster

input: set activeNodes, graph G ′

1 normalize the nodeProbability of all nodes in activeNodes

2 sort the nodes in activeNodes set, in the decreasing order of their
degree-normalized nodeProbabilities.

3 candidate clusters C j - set of nodes from 1 to j , in sorted order,
where j = min(maxClusterSize, |activeNodes|).

4 if the graph heuristic H10 is used, and is set to H10(b), then do the
following:

set each C j to C j ∪ {nc | nc is abandoned by C j}
if for any j , |C j | exceeds maxClusterSize, discard C j .

5 for all remaining candidate clusters, compute ΦG ′ .

6 return that candidate, which has the smallest conductance.

Clustering using Nibble Algorithm

Objective: find the cluster to which seed node belongs

Nibble Algorithm:
input: Start Vertex v , Graph G , Conductance θ0, a positive integer b

1 Compute t0 (∝ ln(m)/θ2
0), γ (∝ θ0/ln(m)), εb (∝ θ0/ln(m)t02b)

2 Start a lazy random walk from v
3 At each step: (until t0)

Do the Truncation Operation with threshold = εb
Sort the nodes in the decreasing order of their probabilities
Check if a j̃ exists such that:

Φ({1, ..., j̃}) ≤ θ0

Pr (̃j) ≥ γ/Vol({1, ..., j̃})
Vol({1, ..., j̃}) ≤ 5

6
Vol(V), then, output C = {1, ..., j̃}

4 Do the next step of random walk and repeat from Step (3)

Random Nibble Algorithm:
input: G , θ0

1 Set v to be the largest degree vertex of G
2 Choose b in 1, ..., dlog(m)e according to

Pr [b = i] ∝ 2−i

3 Call Nibble(G , v , θ0, b)

Partition Algorithm:
input: G , θ0, p ∈ (0, 1)

1 Compute number of iterations j (∝ mdlg(1/p)e
2 Start with the entire graph, i.e., set W to V
3 Call RandomNibble(G (W), θ0)
4 Add the cluster nodes returned by RandomNibble to the answer
5 Now, remove these nodes from W
6 If Vol(W) ≤ 5

6Vol(V), then stop
7 Else, repeat from Step (3)

Multiway Partition Algorithm:
input: G , θ, p

1 Set θ0 to (5/36)θ
2 Compute number of iterations t (∝ (lg m)2)
3 Start with the entire vertex set, i.e, set C1 to V
4 In each step: For each component C ∈ Ct ,

Call Partition(G (C), θ0, p/m)
5 Add the two partitions returned to Ct+1 and repeat from Step 4
6 Final clustering is given by Ct+1

Running Time:
Nibble : O(2bln4(m)/θ5

0

Multiway Partition : O(m (lg(1/p) lgO(1)(m))/θ5)

Clustering using Seed Sets [AL06]

Objective: find the enclosing community of a “seed set” of nodes

Algorithm:

1 Assign equal probabilities to all nodes in the seed set, and start
spreading probabilities.

2 Sort the vertices in descending order of their degree-normalized
probabilities.

3 Truncate the walk for nodes with probabilites lesser than a predefined
threshold.

4 Find a j such that the set of first j nodes, C , satisfy the test for a
good community: the probability outside C is lesser than a
predetermined fraction of Φ(C) × #numSteps

5 If a j is found, stop and return that set as the community.
6 Else, continue the random walk from step (2) onwards.

Shortcoming:
The seed set is chosen manually.

H1 - start node

edge compression
maxClusterSize

start node 200 400 800

min degree 11.81 14.39 16.95
max degree 12.78 15.53 18.55

Table: Edge compression on dblp3

Compression obtained maxDegree start is always higher than that of
minDegree.

H3 - spread probability

spreadProbability # clusters edge compression
25 79,065 16.052
50 78,435 16.163
75 74,356 17.495
85 71,364 18.371
95 65,616 19.367

Edge compression on dblp3. (settings: H2(b), mcs = 1500, no compaction.)

Edge compression increases with spreadProbability.

Number of clusters reduces by about 13,500 - clusters found are of
larger size.

With higher spreadProbability, larger fraction of total probability
can escape the cluster boundary.

Larger clusters could be merging together multiple smaller ones.

To avoid such effects, we use 0.5 for all the experiments.

H8 - compaction techniques

Following compaction techniques tried:

CP1 Blind and greedy compaction of all clusters

CP2 Edge aware compaction of all clusters

CP3 Näıve compaction of tiny clusters

CP1 and CP2 improves edge compression, since they combine clusters
which may have edges across them.

But, applying CP1 and CP2, made the supernode graph, denser.

Searching in a dense supernode graph, quickly spreads to a very large
fraction of it, and can incur more cache misses.

CP3 doesn’t affect edge compression and does make the supernode
graph denser.

We choose CP3, since we want to strike a balance between the following:

number of supernodes in the graph

denseness of the supernode graph

Q1 sudarshan soumen
Q2 vapnik support vector
Q3 divesh jignesh jagadish timber querying XML
Q4 sudarshan widom
Q5 giora fernandez
Q6 david fernandez parametric
Q7 chaudhuri agrawal
Q8 widom database
Q9 raghu deductive databases
Q10 “prabhakar raghavan” “raghu ramakrishnan”
Q11 rozenberg “petri nets”
Q12 rozenberg janssens “graph grammars”
Q13 silberschatz “disk arrays”
Q14 ramamritham “real time”
Q15 “howard siegel” SIMD
Q16 frieze “random graphs”
Q17 romanski ada
Q18 banerjee “distributed memory” multicomputers
Q19 didier “possibilistic logic”
Q20 tamassia “graph drawing”

connection queries for dblp3 dataset

N1 author (near “data mining”)
N2 paper (near christos faloutsos nick roussopoulos)
N3 author (near “query processing”)
N4 author (near “possibilistic logic”)
N5 paper (near chaudhuri agrawal)
N6 paper (near “deductive databases”)
N7 paper (near “random graphs”)
N8 author (near “handwriting recognition” “subgraph isomorphism”)
N9 paper (near “branching programs”)
N10 paper (near “petri nets” “context free grammars”)
N11 author (near “graph grammars”)
N12 author (near “load balancing”)
N13 author (near “scan circuits”)
N14 author (near “kolmogorov complexity” “match making”)
N15 author (near “distributed memory” multicomputers)
N16 author (near “image retrieval”)
N17 author (near “reliability performance”)
N18 paper (near smith siegel McMillen)
N19 author (near “maximum matchings” “game trees”)
N20 author (near “NP complete”)

near queries for dblp3 dataset

