
Query and Answer Models for Keyword Search

Rose Catherine K.
Roll no: 07305010

Seminar under the guidance of
Prof. S. Sudarshan

Computer Science and Engineering
Indian Institute of Technology Bombay

Introduction

Keyword Searching : unstructured method of querying

greatest advantage: requires no knowledge of the underlying schema

keyword search in databases:

database normalization
table joins done on the fly
unique characteristics of databases: different types of edges, attributes
of nodes, semantics associated with tables
physical database design affects performance: availability of indexes on
certain columns

notion of relevance

Representing Data as a Graph

1 Schema Graph:

describes the schema of the data
meta-level representation of the data
constraints the edges that are permissible in the data graph
general construction: the tables in the database form the nodes; edges
capture some relationship or constraint between the corresponding
relations

2 Data Graph:

instantiation of its schema graph
contains actual data which is split across different nodes and edges
general construction: the tuples of the database form the nodes;
cross-references like foreign key references, inclusion dependencies, etc.,
form the edges of the graph
nodes can be set according to the granularity required - table, tuple or
cell

3 Concept of Node weight and Edge weight

Keyword Query System Model I

1 Data Model:

describes the high-level representation of the data in the system
reflects the constraints, associations, and organization of the data
graph model

2 Query Model:

specifies the structure of the input that can be given to the system
keyword queries - set of words
graph, tree patterns - the user can specify constraints which the answer
must satisfy

3 Answer Model:

specifies, what an answer to a query is
specifies the structure, requirements that it must satisfy according to
the semantics of the system
common form of representation: graph, tree, tuple, term

Keyword Query System Model II

4 Scoring Model:

assigns a score to the answers, based on their relevance

notion of relevance - ambigous; returns top scoring answers

a simple scheme: higher score to an answer with smaller number of joins

most systems use complex rules to assign scores, to improve the quality
of the top ranked answers

Object Rank System I

adapts the notion of PageRank to suit the database setting

concept of authority: nodes having query terms have authority

nodes transfer authority to neighbours in a fixed manner

final score given by the accumulated authority

Graph Representation

1 Data graph - labelled graph D(VD ,ED)

2 Schema graph - directed graph G (VG ,EG)

3 Authority Transfer Schema graph GA(VG ,EA)
for each edge eG = (u, v) in the schema graph, insert two authority
transfer edges:

1 forward edge e f
G = (u, v) with authority transfer rate: α(e f

G)
2 backward edge eb

G = (v , u) with authority transfer rate: α(eb
G)

intuition: authority could flow in both directions at different rates

Object Rank System II

4 Authority Transfer Data Graph DA(VD ,EA
D)

for every edge e = (u, v) ∈ ED , add two edges ef = (u, v) with authority
transfer rate α(ef) and eb = (v , u) with authority transfer rate α(eb)

ef be of type ef
G

OutDeg(u, ef
G) - number of outgoing edges from u of type ef

G

authority transfer rate α(ef) is defined as:

α(ef) =

{
α(e f

G)

OutDegree(u,e f
G)

ifOutDegree(u, ef
G) > 0

0 ifOutDegree(u, ef
G) = 0

Object Rank System - Random Surfer Model for Ranking

initially, large number of random surfers start from objects containing
the specified keyword; they traverse the database graph along the edges

at any point of time, a random surfer at a node does one of the
following:

move to an adjacent node by moving along an edge
jump to a randomly chosen node containing the keyword

ObjectRank of a node: expected percentage of surfers at that node,
as time goes to infinity

Keyword-Specific and Global ObjectRanks I

Keyword-Specific ObjectRank

gives the relevance with respect to a keyword

w - keyword; S(w) - keyword base set - set of objects that contain w

rw (vi) of node vi obtained as the solution to:

rw = dArw + (1−d)
|S(w)|s

Aij = α(e) if there is an edge e = (vj , vi) in EA
D ; 0 otherwise

s = [s1, ..., sn]
T - base set vector; si = 1 if vi ∈ S(w); 0 otherwise

d - damping factor

Global ObjectRank

gives the general importance regardless of the query

calculated from the above equation, but with all nodes included in the
base set

Keyword-Specific and Global ObjectRanks II

Combined ObjectRank

rG (v) - Global ObjectRank of v

rw (v) - Keyword-specific ObjectRank of v w.r.t w

Combined Rank

rw ,G (v) = rw(v).(rG (v))g

g - Global ObjectRank weight

Multiple-Keyword Queries

extending the random surfer model

multiple-keyword query : w1, ...,wm

m independent random surfers, where the i th surfer starts from the
keyword base set S(wi)

AND semantics: probability that the m random surfers are
simultaneously at node v

rw1,...,wm

AND (v) =
∏

i=1,...,m

rwi (v)

OR semantics: probability that atleast one of them is at node v

rw1,...,wm

OR (v) =
∑

i=1,...,m

rwi (v)

The NAGA System

semantic search engine

Data Model :

Knowledge graph: directed, weighted, labeled multi-graph
G = (V ,E , LV , LE)
facts: binary relationships derived from the web
represented as an edge together with its end nodes
e.g. e(u, v), l(u) = MaxPlanck(physicist), l(e) = bornInYear ,
l(v) = 1858
witnesses of a fact: the pages from which it has been extracted

NAGA - Graph Pattern Query Model I

connected, directed graph

nodes, edges can be labeled with variables or constants

fact template: edge label and the two node labels. e.g.
AlbertEinstein friendOf $x

answer - subgraph of the data graph, that has valid objects which can
take the place of the variables and also satisfy the edge constraints

Queries supported:

1 Discovery query: to discover pieces of information
e.g. to find physicists who were born in the same year as Max Planck:

NAGA - Graph Pattern Query Model II

2 Regular expression query: to find out some particular path connecting
pieces of information
e.g. to find out the rivers located in Africa:

3 Relatedness query: to find out a broad relationship between pieces of
information
e.g. How are Margaret Thatcher and Indira Gandhi related?

NAGA - Answer Model I

matching path: e.g. Nile locatedIn Egypt, Egypt locatedIn
Africa is a valid match for $x locatedIn* Africa

Answer Graph- subgraph of the knowledge graph such that:

for each fact template in the query, there is a matching path

each fact in the answer is part of only one matching path

each vertex of the query is bound to exactly one vertex of answer

for query q = q1q2...qn, find subgraph g for which P(g |q) is the
highest

NAGA - Answer Model II

confidence value of a fact

Pconf (f) = 1
n

∑n
i=1 acc(f , pi).tr(pi)

pi : witnesses of f

acc(f , p) : estimated accuracy with which f was extracted from p

tr(p) : trust in p - computed by an algorithm similar to PageRank

informativeness of a fact

Pfinfo(f) - depends on number of witnesses, query
e.g. query:AlbertEinstein isA $x - AlbertEinstein isA
physicist ranked higher than AlbertEinstein isA politician
|W (AlbertEinstein isA physicist)|P

$x |W (AlbertEinstein isA $x)|
query: $x isA physicist
|W (AlbertEinstein isA physicist)|P

$x |W ($x isA physicist)|

NAGA - Answer Model III

confidence and informativeness of query qi

Pconf (qi |g) =
∏

f ∈match(qi ,g) Pconf (f)
Pinfo(qi |g) =

∏
f ∈match(qi ,g) Pfinfo(f |qi)

probability of the query being generated by g

P̃(qi |g) = βPconf (qi |g) + (1− β)Pinfo(qi |g)
P(qi |g) = αP̃(qi |g) + (1− α)P̃(qi)

where, P̃(qi) gives different weights to fact templates

estimate probability of an answer graph, given the query

P(g |q) ∼ P(q|g)P(g)
where, P(q|g) =

∏n
i=1 P(qi |g)

NAGA - Scoring Model

Scoring model captures the following:
1 Confidence:

certainity about a specific fact
independent of the query and the popularity of the fact
facts extracted from authoritative pages, with high accuracy, will be
given a higher score

2 Informativeness:

relevance of a fact for a given query
dependent on the formulation of the query
fact deemed to be relevant if it is highly visible in the web
intuition: the more the number of pages that state the fact, the higher
is the likelihood that the fact is true and is important

3 Compactness of the resulting graph:

implicitly captured by the likelihood of the graph given the query
likelihood is the product over the probabilities of its component facts

Conclusion

Other systems studied: System by Goldman et. al. for search
incorporating the notion of proximity, DBXplorer, DISCOVER,
BANKS, System by Hristidis et. al. for IR style Keyword search,
Proximity Search in Type-Annotated Corpora and FleXPath

Keyword Searching is an important paradigm for searching in databases

methods of querying: set of words, graph/tree patterns

answer models: from rows in the database, to trees and graphs

different semantics: OR, AND, proximity

scoring models: number of joins, complex combinations of node and
edge scores, concept of authority, probabilities etc.

future work:

oriented towards incorporating more semantics into the search systems
alternate structure for answers which will make it more intuitive
fine tuning of the scoring model, based on feedback from the user -
instead of having a static function

References I

[1] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A
System for Keyword-Based Search over Relational Databases. ICDE, 2002.
[2] Sihem Amer-Yahia, Laks V.S. Lakshmanan, and Shashank Pandit.
FleXPath: Flexible Structure and FullText Querying for XML. SIGMOD,
2004.
[3] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti,
and S. Sudarshan. Keyword Searching and Browsing in Databases using
BANKS. ICDE, 2002.
[4] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou.
ObjectRank: Authority-Based Keyword Search in Databases. VLDB
Conference, 2004.
[5] Sergey Brin and Lawrence Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. WWW Conference, 1998.
[6] Soumen Chakrabarti, Kriti Puniyani, and Sujatha Das. Optimizing
Scoring Functions and Indexes for Proximity Search in Type-annotated
Corpora. DBLP Conference, pages 717726, 2006.

References II

[7] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian, and
Hector Garcia-Molina. Proximity Search in Databases. VLDB Conference,
1998.
[8] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient
IR-Style Keyword Search over Relational Databases. VLDB Conference,
2003.
[9] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: Keyword
Search in Relational Databases. VLDB Conference, 2002.
[10] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan,
Rushi Desai, and Hrishikesh Karambelkar. Bidirectional Expansion For
Keyword Search on Graph Databases. VLDB Conference, 2005.
[11] Georgia Koutrika, Alkis Simitsis, and Yannis Ioannidis. Précis: The
Essence of a Query Answer. ICDE, 2006.
[12] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya
Ramanath, and Gerhard Weikum. NAGA: Searching and Ranking
Knowledge. ICDE, 2008.

DBXplorer

Answer: row that contains all keywords
rows may be either from single tables, or by joining tables connected
by foreign-key relationships
ranking of rows - by the number of joins involved

DISCOVER

Answer: Minimal Total Joining Networks of Tuples (MTJNT)
MTJNT - Joining Network of Tuples that satisfy Totality and
Minimality requirements
Joining Network of Tuples j is a tree of tuples where for each pair of
adjacent tuples ti , tj ∈ j , where ti ∈ Ri , tj ∈ Rj , there is an edge
(Ri ,Rj) in the schema graph and (ti ./ tj) ∈ (Ri ./ Rj)
Total: answer graph should contain ALL the words in the query
Minimal: if any node is removed from the answer graph, then either, it
becomes disconnected or it is no longer total
ranking of rows - by the number of joins involved

IR style Keyword search by Hristidis et. al.

idea: use the underlying RDBMS, to efficiently process a keyword
query. incorporates IR techniques of proximity, in answering keyword
queries on a database. Contemporary RDBMS possess efficient
querying capabilities for text attributes, but
data, query model - same as that in DISCOVER
Scoring model:

for each textual attribute ai in T , the joining tree of tuples, find
single-attribute score using the IR engine employed in the underlying
database
final score: combination of single-attribute scores using Combine

Combine(Score(A,Q), size(T)) =
P

ai∈A Score(ai ,Q)

size(T)

AND semantics: 0 score for tuple trees that don’t have all keywords;
else, score given by Combine function
OR semantics: score given by the Combine function

The BANKS System I

Data Graph - tuples: nodes and edges: foreign key - primary key
relationships
Answer Model

connection tree - a directed rooted tree containing all the keywords

keywords nodes form the leaves of the tree

root node - the information node; is a common vertex from where
there exists path to all the keyword nodes

Scoring Model

overall relevance score of an answer tree:

additive combination: (1− λ)Escore + λNscore
multiplicative combination: Escore×Nscoreλ

λ - controls relative weightage

Nscore of a tree : average of node scores of (i) leaf nodes (ii) root node

The BANKS System II

Escore of a tree : 1/(1 +
∑

e

Escore(e)), where Escore(e) - normalized

score of individual edges

gives lower relevance to larger trees

Bidirectional Search : Scoring Model

s(T , ti) - score of answer tree T with respect to keyword ti : defined as
the sum of the edge weights on the path from the root of T to the leaf
containing ti

aggregate edge-score E of T :
∑

i s(T , ti).

tree node prestige N: sum of the node prestiges of the leaf nodes and
the answer root

Prestige: computed by a biased random walk, where, the probability of
moving along a particular edge is inversely proportional to its edge
weight

overall tree score: ENλ

λ controls relative weightage

Search incorporating the notion of proximity by Goldman et. al.

proximity measured as the shortest distance between nodes
query model: pair of queries
Find Query:

specifies the type of the answer e.g. objects of type movie
defines FindSet: set of objects that can potentially be the answer

Near Query: specifies the keywords that define a NearSet.
idea: rank FindSet objects based on proximity to NearSet objects
bond between FindSet object f and NearSet object n:

b(f , n) = rF (f)rN(n)
d(f ,n)t

rF (f) - ranking of f in FindSet, F ; rN(n) - ranking of n in NearSet, N
d(f , n) - distance between f and n
t - tuning component

Scoring model:

Additive : score(f) =
∑

n∈N b(f , n)
Maximum : score(f) = maxn∈Nb(f , n)
Beliefs : score(f) = 1−

∏
n∈N(1− b(f , n))

Proximity Search in Type-Annotated Corpora

query model: type=atype NEAR S1S2...Sk

candidate answer token: any token connected to a descendant of
atype
nearness is a function of:

matching selectors
frequency of selectors in the corpus
distance of selectors from the candidate answer

scoring model:

energy(s): similar to inverse document frequency (IDF)
gap(w , s): number of tokens present between a candidate token and a
matched selector
energy received: energy(s)decay(gap(w , s)), where decay(g) is a
function of the gap
decay function is automatically learned - found that its not
monotonically decreasing with gap, as was expected
score of a candidate a:
score(a) = ⊕s �i energy(si)decay(gap(si , a))
si : multiple occurrences of s near a

FleXPath I

query model - tree pattern query (TPQ) (T ,F):

T : rooted tree with nodes denoting variables; edges denoting structural
predicates - parent-child (pc), ancestor-descendant (ad) relationships
F : predicate expression - specifies constraints on the contents of the
nodes
distinguished node: usually, the root node; designated as the answer

query relaxation:

replacing parent-child by ancestor-descendant predicate
dropping an ancestor-descendant constraint
promoting a contains predicate to the parent

Predicate Penalty: measures the extend of the loss of context, when a
predicate is dropped to get the relaxed query

penaltyOfDropping(pc($i , $j)) =
#pc (ti ,tj)
#ad (ti ,tj)

wQ(pc($i , $j))

where, wQ(p) - weight of the predicate - measure of its importance

FleXPath II

score of an answer- ss: structural score; ks:keyword score

ss =
∑

p∈P wQ(p)−
∑

p∈S π(p)

P: set of all predicates in the original query, Q

S : set of predicates that have been dropped from P to obtain relaxed
version

π(p): penalty incurred for dropping predicate p

final score:

structure first: (ss, ks)

keyword first: (ks, ss)

arithmetic function that combines ks and ss

