
Object Serialization and Deserialization Using XML

N. Bhatti & W. Hassan

Computer Training Centre
Islamabad
Pakistan

FAX (+92) 519 204 908

Dirctc@comsats.net.pk

R. McClatchey, P. Martin &
Z. Kovacs

Complex Cooperative Systems Centre
UWE, Bristol BS16 1QY

UK
FAX (+44) 1179 763 860

Richard.McClatchey@cern.ch

J-M. Le Goff, H. Stockinger &
I. Willers

EP Division
CERN, 1211 Geneva

Switzerland
FAX (+41) 22 767 8930

Jean-Marie.Le.Goff@cern.ch

ABSTRACT
Interoperability of potentially heterogeneous databases has

been an ongoing research issue for a number of years in the
database community. With the trend towards globalization of data
location and data access and the consequent requirement for the
coexistence of new data stores with legacy systems, the
cooperation and data interchange between data repositories has
become increasingly important. The emergence of the eXtensible
Markup Language (XML) as a database independent
representation for data offers a suitable mechanism for
transporting data between repositories. This paper describes a
research activity within a group at CERN (called CMS) towards
identifying and implementing database serialization and
deserialization methods that can be used to replicate or migrate
objects across the network between CERN and worldwide centres
using XML to serialize the contents of multiple objects resident in
object-oriented databases.

1. INTRODUCTION
The Compact Muon Solenoid, CMS [1], a physics

experiment at CERN, the European Organization for Nuclear
Research, has a large number of Terabyte sized databases already
being generated during its construction phase. The final assembly
and installation of the CMS detector will take place at CERN and
the experiment is due to take its first data in mid 2005 after which
a Petabyte of raw event data will be generated and stored per year.
The CMS construction and simulation databases now being
produced use the Objectivity/DB [2] object database system. At
CERN there is a need to exchange data among repositories both at
the construction level (for transfer of parts information between
the local centers and also to the central system at CERN) and for
physics analysis data (for transfer of physics data for analysis to
the regional centers). At present the only way to transfer this data
between repositories is manual and database- and schema-

dependent. The contribution of this paper is to provide the
database community such a tool using Objectivity/DB and to
demonstrate the feasibility of the approach through real-world
applications. The diversity of sites and software used makes it
essential to provide tools for efficient data conversion and data
transfer in a distributed computing environment. XML is an
agreed standard for information exchange and allows the gap
between distributed data sources to be bridged.

The CMS detector consists of seven major systems called
subdetectors: the magnet, tracker, electromagnetic calorimeter,
hadron calorimeter, muon detector, trigger and data acquisition.
There will also be infrastructure including services such as
electricity, cooling and ventilation. As these complex systems are
manufactured and assembled, databases need to be built up that
describe individual items and their assembly. Data must be made
available across potentially heterogeneous databases to satisfy the
data management requirements of the CMS subdetectors. As one
example, the Electromagnetic CALorimeter, or ECAL, group has
developed specialist software called CRISTAL (see later) to keep
track of its construction and assembly information.

The CMS subdetectors are manufactured and assembled in
various centres around the world. The CRISTAL database for
ECAL is distributed between centres in Russia, China, France and
Switzerland. The main construction database is at CERN with
objects being sent to other centres where additional information is
collected and transferred back to CERN in the form of objects.
Recently it was decided to explore the use of the new eXtensible
Markup Language, XML, standard for a number of applications
including object transfer between centres.

A number of computing centres in CERN, Pakistan and UK
(see author list) have formed a project called WISDOM [3]
(Wide-area database-Independent Serialization of Distributed
Objects for Migration) in order to construct software that
investigates the use of the XML [4] standard. The aim of the first
phase is to acquire the ability to serialize Objectivity/DB objects,
turn the serialized objects into XML, and deserialize the objects,
turning XML into Objectivity/DB database objects. The
WISDOM project deals with the exchange of data among multiple
database inter-linked through a wide-area network in a database
independent way by using XML. XML brings the following
advantages:

• It supports transfer over the network.

• It is a human ’readable’ and an easily ’understandable’ format.

• It is language- and platform-independent.

ADVANCES IN DATA MANAGEMENT 2000
Krithi Ramamritham, T.M. Vijayaraman (Editors)
Tata McGraw-Hill Publishing Company Ltd.
©CSI 2000

• The validity of the XML document, after transfer over
network, can easily be checked at the destination using a standard
parser.

The process of collecting the complex data structures from
the database in XML format is called serialization. Similarly the
process of recreating the complex structure back from the XML
format is called deserialization. The main purpose of XML
serialization is to move selected objects (including collections)
between persistent stores. Serialization is employed to provide
coherent duplication of consistent datasets.

In WISDOM a C++ class has been designed for serialization
which is responsible for serializing the complex data “objects”
and its model, the “schema”. Two separate XML files are
generated by the Serializer class (called the SchemaXML and
ObjectXML files) and these files can be exchanged between the
repositories. Once the files reach the destination they are handled
by the deserializer class for the re-creation of the objects. The
deserializer first recreates the schema and then populates the
schema with objects. The WISDOM project is making the
process of replication automatic and database independent. In the
final phase this project will provide a tool for managing the
transfer of objects between repositories in a database-independent
way. This tool is designed in Java2 and is consequently platform-
independent.

The layout of this paper is as follows. In the next section the
background to serialization and deserialization in the WISDOM
project is introduced and this is compared to related work in the
following section. The implemented serialization and
deserialization tools are then described. Applications of object
(de-)serialization and future work are later discussed and their use
in CMS is outlined.

2. OBJECT SERIALIZATION and
OBJECTIVITY/DB

The decomposition of complex data structures such as
Objectivity/DB data containers, into a sequence of their primitive
data parts, which can be saved directly in a file or transferred over
a network, is referred to as serialization. Object serialization
means storing an objects state and model in a form that could be
accessed serially, such as storing the object in a disk file, or
transferring the object via a network, such as with HTML data.
The serialized data are used to reproduce or re-create the object.
Every object has a state, including the current values stored in
various member variables of the object and its model, i.e. a
skeleton of the object with member variable and member function
definitions. To serialize an object, both the state and model of the
object must be serialized.

The re-creation of complex data structures or data containers,
from a sequence of their primitive data parts is called de-
serialization. Deserialization implies re-creating the object by
reading its state/model from some serialized data. The underlying
object model plays an important role in the serialization/de-
serialization process, as it gives complete information about the
object. The object model defines the names of the member
variables associated to the object, the possible operations defined
in the object and any links of the object with other objects. This
study reports on the serialization and de-serialization of objects
from an Objectivity/DB database. The objects created in an
Objectivity/DB base are persistent. Objects have two parts: 'The

Object Data' and ’The Object/Data Model', called the Schema.
With Objectivity/DB the serialization of object data is relatively
straightforward as Objectivity/DB provides methods to open an
object from a database and access its data and other attributes
such as its type and its unique Object ID (OID).

The general information about the object (e.g. OID and type)
is accessible to every application while the access to object data is
possible only if its schema is known. Knowing the schema, a
Serializer application can place this information in an appropriate
format for a Deserializer. This serialized object can be transported
to a Deserializer application as a serialized object. The serialized
object can then be de-serialized by re-creating it at the destination
database and accessing the values stored in the serialized object.
Clearly, this re-creation can only be possible if the schema of the
object is known to the De-Serializer application as well as the
Serializer application. This can only be achieved by serializing the
object model (the schema) along with the object data, and by this
schema being made known to the database at the destination.

A schema-independent application can be developed that
opens any object, in any Objectivity/DB container in any database
of any federation and can write its serialized object. (Hereafter
these expressions are used as Objectivity-specific definitions). In
this work a Serializer/ Deserializer application has been
developed that can be used to replicate/migrate an Objectivity/DB
database for an application-specific domain.

3. RELATED WORK
Any serialized representation of an object should have the

following capabilities:

• It should be platform and language independent, since
serialization and deserialization could be carried out on different
platforms.

• Its validity must be easily verified.

• It should be simple to deserialize.

Currently there is much effort going on in using XML as a
means of serializing objects. The following research areas can be
distinguished: serializing Java objects, serializing data from
relational databases into XML and serializing persistent objects
from object-oriented databases. One example is KOML, the
KOala xML serialization tool [5] that provides an easy way to
serialize and deserialize any Java objects in an XML document.
KOML is similar to the approach adopted in this paper in that two
main classes for serialization and deserialization are provided.
KOML takes advantage of the built-in streaming features of the
Java language, which is an important difference between KOML
and WISDOM, since streaming cannot be used in WISDOM’s
C++-based approach. However, KOML does not have any
binding for an object-oriented database management system such
as Objectivity/DB.

The Casbah distributed objects system allows for different
object serialization formats that are self-describing [6]. The
project uses features of the XML specification for serialization
purposes. XML Serialization defines three generic datatypes,
<atom>, <list>, and <dictionary> that can be further specialized
by higher level protocols or marshalling. Since there is no
database binding, the project is not directly related to our work.
Sun is also currently developing a tool called the XML Data-
Binding facility which provides an automatic translation between

XML and Java objects [7]. This is related to the work presented in
this paper, except that here persistent C++ objects are serialized.

The XML Metadata Object Persistence (XMOP) allows
interoperation between object technologies such as Java,
Microsoft COM and CORBA [8]. XMOP is unique in currently
available object serialization in that it is not directly tied to a
particular object system. Currently there is no effort going on to
serialize objects into XML created with Objectivity/DB. This
paper redresses this deficiency.

4. SERIALIZATION &
DESERIALIZATION VIA XML

In the serialization philosophy adopted for the WISDOM
project, to enable migration of data between databases it is
necessary to convert the database schema into a suitable format
for transfer. Without the capability of the so-called Active Schema
facility in Objectivity/DB any implementation of the serializer
would, by definition, become schema dependent. Hard-coding the
schema information, however, makes the Serializer schema-
dependent. With the newly released Active Schema API an
application can retrieve schema information dynamically and
consequently schema-independence can be achieved.

The latest release of Objectivity/DB, Objectivity 5.2,
includes this Active Schema (AS) facility [2]. The AS facility
allows programmers to dynamically interrogate the database
schema. Among many capabilities, the AS provides facilities for
obtaining class descriptions and modifying class specifications
dynamically. Programmers have access to domain descriptions at
runtime, consequently allowing them to access and manipulate the
schema. The AS facility is a tool which can help in the creation of
a generic query facility for Objectivity/DB databases (see later
example). A generic query facility for Objectivity/DB databases
can use the AS facility to load and interrogate the database
schema dynamically, thereby not restricting the query facility to a
particular domain specification.

The WISDOM project is using XML as the data format for
serialized objects for the following reasons:

• The XML document (DTD) contains the description of the
primitive data parts of the objects i.e. it contains the ’data’ as well
as their ’context’.

• Standard parsers/de-parsers are available for the deserializing
application to parse and deparse the DTD.

Furthermore, XML is an appropriate format for moving data
between databases (object-oriented and/or relational) since it
supports the separation between the semantic and graphical
representation of the data and the data instances themselves. This
facilitates the separation of the description of the database
architecture from the description of the database schema, leading
naturally to a generic architecture for moving data between
heterogeneous databases. Using these basic ideas and the Active
Schema API, a schema independent Serializer/ Deserializer has
been developed that can be used to serialize any Objectivity/DB
Database. The Serializer is provided as a C++ class that can be
used by any C++ Objectivity/DB application to serialize any
object from the database.

5. THE IMPLEMENTED SERIALIZER

5.1 The Serializer Class
Figure 1 shows the UML [9] model of the Serializer class.

The Serializer class acts as the interface to the User/ Application
(class(es)) and also as a "coordinator" among its various
"component" classes. The Serializer uses the AS API to
dynamically read the schema and object information from an
Objectivity/DB federation. This dynamically read information is
packed into the XML Document Object Model (DOM) [10] tree
using the DOM API. This DOM tree is then dumped into a stream
using an overloaded operator for DOM elements. The stream can
be connected to a buffer in memory or to a file on the disk.

Logically the interface of the Serializer has three sections
through which the applications can use the Serializer: Schema
XML Generation, Object XML Generation and Serialized Object
List Maintenance. Once both the serialized schema and object
XML files are created and transferred to the destination, there is a
need to recreate the schema and all the states of the serialized

Serializer

serializedObjs : vector<string>

linkedObjs : map<string,ooRef(ooObj),less<string>>

toBeSerializedObs : map<string,ooRef(ooObj),less<string>>

getSchemaXML() : String

buildModuleNode(TopLevelModule : DOM_Element, module : d_Module) : void

buildClassNode(Class : DOM_Element, dClass : d_Class) : void

WriteSchemaXMLToFile(SchemaXMLFile : String = "SchemaXMLFile") : void

Serializer(objXMLFile : String = "ObjXMLFile.xml")

getObjXML(objptr : ooRef(ooObj)&, serializationLevel : Integer = 0) : String

serializeObjects() : String
WriteObjXMLToFile(objptr : ooRef(ooObj)&, serializationLeve : Integer = 0) : void

~Serializer()

addToSerializedObjList(idList : vector<string>) : void

addToSerializedObjList(id : String) : void

getSerializedObjList() : vector<stirng>

clearSerializedObjList() : void

deleteID(id : String) : void

Figure 1. UML model of the Serializer.

objects. In the process of serialization the persistent objects are
transferred from the Objectivity/DB to another persistent layer i.e.
an XML layer. At this point these files must be interpreted to get
the object states and models back to the base. That is
deserialization takes place.

The Schema XML Generation section consists of the
following functions (see figure 1):

string getSchemaXML()
void writeSchemaToXMLFile(char * schemaXMLFile=
"SchemaXMLFile.xml")

The first function returns a string, containing the schema in an
XML format. The second function uses the first function to get
the XML string and writes it to a file called schemaXML. Figure
2 shows an example of some DDL from Objectivity/DB and the
corresponding schemaXML file produced by the Serializer. The
Object XML Generation section consists of the following

functions:

string getObjXML(ooRef(ooObj)& objptr, int serializationLevel)
void writeObjToXMLFile(ooRef(ooObj)& objptr, int
serializationLevel)

Here the first function serializes the specified object and the
objects linked to it, up to a specified serializationLevel, and
returns the generated XML string. If the serializationLevel is set
to a negative value, the whole web of objects connected to the
specified object is serialized.

The Serialized Object List Maintenance section consists of
the following functions:

void addToSerializedObjList(vector<string>& idList)
void addToSerializedObjList(string id)
void clearSerializedObjList()
void deleteID(string id)

DDL:
class APersistanceClass : public ooObj
{
 public:
//Constructor
 APersistanceClass(int);
 APersistanceClass(){}
//Associations
//Bidirectional
//One to One
ooRef(DerivedClass) derivedClass_OneToOne <-> aPersistanceClass_OneToOne:copy(delete),version(delete);
ooRef(BaseClass1) baseClass1_OneToOne <-> aPersistanceClass_OneToOne:copy(delete),version(delete);

//Destructor
 ~APersistanceClass(){}
//Interface
private:
 int16 DC_BasicAttribute;
 ooVString DC_ooVString;
};

SchemaXML:
<Schema>
<TopLevelModule>
<Class Name="APersistanceClass" TypeNumber="1000000">
 <BaseClass Name="ooObj" Position="0" AccessKind="PUBLIC" />

<Relationships>
<Bidirectional Name="derivedClass_OneToOne" IsShort="false" CopyMode="CopyDrop" IsInline="false" IsToMany="false" Position="1"
AccessKind="PUBLIC" Versioning="VersionDrop" InverseName="aPersistanceClass_OneToOne" Propagation="NoInfo"
OtherClassName="DerivedClass" InverseIsToMany="false" SpecifiedAssocNum="3020898880" />

<Bidirectional Name="baseClass1_OneToOne" IsShort="false" CopyMode="CopyDrop" IsInline="false" IsToMany="false" Position="2"
AccessKind="PUBLIC" Versioning="VersionDrop" InverseName="aPersistanceClass_OneToOne" Propagation="NoInfo"
OtherClassName="BaseClass1" InverseIsToMany="false" SpecifiedAssocNum="873415233" />
</Relationships>
<Attributes>
<BasicAttribute Name="DC_BasicAttribute" Type="int16" Position="9" ArraySize="1" AccessKind="PRIVATE" HasDefaultValue="false" />
<EmbeddedClassAttribute Name="DC_ooVString" Position="10" ArraySize="1" AccessKind="PRIVATE" OtherClassName="ooVString" />
</Attributes>

</Class>
</TopLevelModule>

</Schema>
Figure 2. Objectivity DDL and the associated schemaXML file.

After serializing an object, the serializer adds its ID to the
SerializedObjList vector. Before serializing an object, it checks
the SerializedObjList to see if the object is already serialized or
not. If not, it serializes the specified object. An application using
the Serializer can directly interact with the SerializedObjList
vector using the Serialized Objects List Maintenance section of
the interface, which results in some interesting usage scenarios
(see later).

5.2 A Modified Overloaded Operator for
DOM Nodes

The standard operator overloading function has the ability to
dump a DOM node and its child nodes in an XML format
regardless of the fact that the node is a Document node, a
Document Type node or an ordinary Element node. This has the
drawback that the whole DOM structure has to be created in
memory prior to dumping it into a file which is impractical for
large DOM trees due to memory shortage.

In WISDOM this standard behaviour has been modified so
that the operator prints <?xml version=’1.0’ encoding=’utf-8’ ?>
in case of Document nodes. For Document Type nodes the
function checks if the XML is being generated for a Schema or for
Objects and includes the respective DTD in the DOCTYPE
element. The behaviour is the same for ordinary Element nodes
i.e. dump all the nodes in the stream which assists in generating
XML for large databases.

For objects the XML generation has the following sequence;

1. Firstly, in the current Serializer the objects constructor prints
<?xml version=’1.0’ encoding=’utf-8’ ?>, DOCTYPE node
together with the starting tag of the root node in the XML
file and this file is referred to as the objectXML file.

2. Any request to serialize an object results in an Object

element node. This node is dumped to the objectXML file.

3. At the end of the scope of the Serializer object, the destructor
prints the closing tag of the root element in the XML file and
closes the objectXML file.

5.3 Usage scenarios
The currently implemented XML Serializer can be used to

generate XML either in a memory buffer or in a file on the disk in
the following ways:

• Generate Schema XML

• Generate the XML of an object.

• Generate the XML of an object and the objects linked to it,
up to a specified level

• Generate the XML of an object and the complete web of the
objects linked to it.

• Generate the XML of all objects linked to a specified object.

• Generate the XML of a subset of objects linked to a specified
object.

Different combinations of the following input parameters make all
the above permutations possible:

• Serialization level

• Object to be serialized

• Objects not to be serialized

6. THE IMPLEMENTED DESERIALIZER

6.1 The Deserializer class
The Deserializer class has been developed with

generalization in mind: any applications that need to deserialize
an object from any XML input can use the Deserializer. The

De-serializer
DOM_Node doc
SAXPrintHandlers* objecthandler

de_ser_schemaXML()
de_ser_objXML()

SAX_Parser

parse(objectXML)

DOM_Parser

parse(schemaXML)

objectHandler

d_Module &topMod, &newMod
Class_Object fclassObj
DOM_Node doc4SAX

startElement()
void children()
void characters()
void schemaHandler()
void dbHandler()
endElement()

Combine Schema/Obj info plus the AS info to
create a DB object

#3 Info from
Active Schema

#1 schema info
resides in memory

#2 object info
+

Figure 3. UML model of the Deserializer

Deserializer uses the Active Schema API to dynamically read and
create the schema as well as objects information in an
Objectivity/DB federation. This dynamically read information is
used by the Deserializer to populate the database, getting object
info from the serialized objects file. Its UML model is shown in
Figure 3. The Deserializer uses the Objectivity Active Schema to
recreate the schema at the destination and this schema is later used
to populate the DB at the destination.

The interface comprises the following two methods for
Schema and Object Deserialization:

De_serialize_schema(schemaXMLFile.xml)
De_serialize_obj(objectXMLFile.xml)

The Schema Deserialization section gets the schemaXML
file (created by the Serializer see figure 2) from the application
using the Deserializer. The file is sent to the DOM parser object,
which creates the memory-resident tree structure of the schema.
This allows the Deserializer to have rapid access to the schema
thoughout its lifetime.

The Object Deserialization section gets the objectXML file
and passes the file to a SAXParser (for an example of an
objectXML file, corresponding to the DDL of figure 2, see figure
4). The use of the SAXParser ensures that if the size of the
objectXML file is too large then the program does not crash. The
SAXParser parses the objectXML file tag by tag and makes
decisions either to create the object at parse time or to store
information for deferred creation. The following function in the
SAXparser is of principal interest:

void startElement(const XMLCh* const name, AttributeList&
attributes);

 (Here “name” is the name of the XML tag). This function is

called as soon as a tag is reached in the objectXML file. The
SAXparser traverses the objectXML file serially. At the outset of
parsing information is gathered about each object i.e its
Objectivity database, container, name and typenumber etc. and
after that the Deserializer attempts to resolve the class in the
database schema. If the class is not resolved then the built-in
DOM structure of the schema is searched for the particular object
and the schema of the class is dynamically proposed and created
by the AS API by calling the following function:

void children(DOM_Node parent, Proposed_Class &factory);

Note that the proposed class reference is also passed to the
function. If the schema is present but there are some
inconsistencies between the source and the destination schema,
then the schema is evolved according to the source schema. This
functionality is also possible because of the use of the Active
Schema API.

Once the schema has been populated, control is transferred
back to the SAXParser and it parses the other incoming tags.
(Logically the next tags are either the “Attribute tag” or
“Relationship tag”). At this point the actual data present in the
objectXML file are collected by the following function:

void characters(const XMLCh* const chars , const
unsigned int length)

After collecting the actual data this function, in turn, calls the
following function for populating the database:

void dbHandler();

Here “dbHandler” is a function responsible for the actual
population of the data in the database. It gets the information from
the following:

ObjectXML:
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE ObjectList (View Source for full doctype...)>
<ObjectList>
<Object id="2-2-3-1" typename="APersistanceClass" typnumber="1000000">
<Database id="2-0-0-0" name="ooDefaultDB" typename="ooDBObj" typnumber="1004" />
<Container id="2-2-1-1" name="_ooDefaultContObj" typename="ooDefaultContObj" typnumber="1005" />

<Relations>
<ToOne name="derivedClass_OneToOne">
<ID>2-2-3-7</ID>
</ToOne>
<ToOne name="baseClass1_OneToOne">
<ID>2-2-3-4</ID>
</ToOne>

</Relations>

<Attributes>
<Basic name="DC_BasicAttribute" type="int16">
<BasicElement index="0">10</BasicElement>
</Basic>
<String name="DC_ooVString" type="ooVString">
<StringElement index="0">ooVString</StringElement>
</String>

</Attributes>

</Object>

</ObjectList>
Figure 4. An objectXML file for the DDL example shown in figure 2.

• The objectXML file

• The schema DOM structure in the memory or

• Dynamically from the schema through AS API.

6.2 Usage scenarios
The currently implemented XML Deserializer can be used to

populate the database in the following ways:

• Populate the Schema XML

• Populate the XML of an object.

• Populate the XML of an object and the objects linked to it,
up to a specified level

• Populate the XML of an object and the whole web of the
objects linked to it.

7. XML-BASED DATA INTERCHANGE
BETWEEN CMS DATABASES

This section describes examples where the
Serialization/Deserialization tools of WISDOM are relevant to the
CMS experiment at CERN, and advantages gained from the XML
de/serialization tool are identified . In general, these applications
are characterized by a highly distributed and heterogeneous
environment and the need to move data between databases in a
database-independent format.

7.1 The CRISTAL Project
The construction of the CMS detectors is a complex process

taking place in multiple laboratories or institutes located
worldwide, over long timescales and it significantly extends
understanding in engineering processes, in computer science and
in physics. The CMS physicists require that the position,
production process and characteristics of each detector part be
captured in a database system. The CRISTAL project [11], [12]
manages the production over geographically separated
manufacturing centres of CMS components. A detailed
description of this can be found in [13]. In summary CRISTAL

has a single Central System which manages a collection of
distributed manufacturing centres, each running versions of
defined production processes and each gathering up to a Terabyte
of construction-specific data.

In the CRISTAL Central System physicists specify what is to
be built and how it is to be built, using a model which spans
design to production. The physicists create product types, activity
types and outcome data types and this information is distributed to
all the manufacturing centres. The design of the CRISTAL
prototype was dictated by the requirements for adaptability over
extended timescales, for system evolution, for interoperability and
for complexity handling and reusability. In adopting a
description-driven design approach to address these requirements,
a separation of object instances from object descriptions instances
was needed. This abstraction resulted in the delivery of a two
layer architecture - a model plus an associated meta-model,
described in [13].

The system architecture within a manufacturing centre, like
most modern distributed systems, is 3-tier as opposed to
monolithic or simple client/server. Java user interfaces (thin
clients) provide workflow interfaces to operators and access C++
CORBA server objects, which contain the business logic of the
system. Business logic in CRISTAL is the interpretation,
execution and management of workflows. These server objects in
turn access an Objectivity/DB database through a C++ binding.

In each distributed manufacturing centre, data are collected
from instruments and transferred from the instrument to the local
Objectivity/DB in XML format. Each centre is autonomous and
continues to collect data even if the link to the Central System is
unavailable. When availability allows, the database is transferred,
serialized, in an XML format between the remote manufacturing
centres and the CERN-based Central System (see Figure 5). Using
serialized XML provides for standardised data transfer and allows
the use of industry-provided parsers/de-parsers for XML
generation and interpretation. In addition, use of XML provides
database-independence so that data can be moved to and from
different database implementations.

Local Centre1: (Rome, SIC, ...) Local Centre2: (CERN, IPNL, ...)

Local Data Base Local Data Base

Central DB: Construction Data

Instrument1 Instrument1

Instrument2

HPSS

Operator 1 Operator 1Instrument3

Central Storage: CERN

Data Data

Parts

Part Orders &

Production

Specifications

Part Orders &

Production

Specifications
XML XML

XML

Figure 5. The movement of data between CRISTAL centres using XML.

7.2 The CMS Event Data Model
The current CMS event data model foresees different types

of data being collected by the completed CMS detector from 2005
onwards. Initially data which are produced by the detector have to
go through a trigger system where data are filtered by dedicated
hardware and software. This is done to reduce the amount of data
to be stored. The data written after the trigger system are called
raw data or events and amount to over a Petabyte of data per year.

Basically, there is a hierarchy of objects to be stored in a
large event object store. The raw data event is the lowest level in
the hierarchy. A reconstruction function takes raw events as input,
produces new objects called reconstructed event data objects and
puts the newly created objects back into the object store. Further
analyses of reconstructed objects can be carried on demand. The
objects produced can also be called event summary data or
analysis object data. These are the actual objects which are used
for final analysis by the physicists. The smallest data type that can
be distinguished is the so-called ‘tag data’ that stores summary
information about raw, reconstructed, event summary and raw
data objects.

Currently Objectivity/DB is deployed for storing event data
objects [14]. The smallest unit of physically stored objects is an
Objectivity/DB database that is mapped to a physical file.
Furthermore, the smallest granularity for replication is such a file
[15]. Assuming that the file size will be about 2 GBs, there will be
significant network traffic for transferring single files over the
network. For certain kinds of physics analysis it is assumed that
only small parts of the file are interesting to the physicist.

It is not intended to use XML as a means of bulk data
transfer between two physics analysis sites (see Figure 6). It is
clear that ASCII (or even unicode) data has much more overhead

than binary data stored in an object database. For example,
consider objects of size 800 bytes (a class with eight VArrays of
100 uint8). If only 10 of these objects (8.000 bytes) have to be
transferred to a remote site it is more efficient in terms of network
traffic to do this with an XML file. Note that the XML file will
have a certain overhead for metadata that describes the data
objects. It still has to be studied when the overhead of an
Objectivity/DB database file is bigger than that of an XML file.
Only when a small number of objects need to be replicated, is
there a case for dumping object data into an XML file. A possible
compression factor for both XML and Objectivity/DB files can
also be included in the comparison.

Another advantage of using the XML file is that the
requested data can also be viewed with an XML viewer and the
physicist does not have to use a programming language for a
quick view of a very small set of data objects. Although a small
set of objects can have many associations, these associations can
be directly mapped to the XML representation by using logical
object identifiers of the object oriented database management
system. Thus, it is easy to store all the links and also the linked
objects in one XML file.

Since object databases are used at multiple sites possibly
spread around the whole world within the CMS collaboration, it is
very unlikely that all the analysis centres will have the same
hardware. When binary files in the form of Objectivity/DB
database files are transferred to such heterogeneous machines,
data may not be readable by a particular platform. XML has an
outstanding feature for providing data in a format independent of
the underlying hardware. Consequently, the XML file which will
be produced by extracting data from an object database at
platform x can be easily integrated to an object database on
platform y.

tag data

physics analysis
data

reconstructed data

raw data

replicate only particular

event data

objects of the available

Figure 6. Replication of objects using XML in the CMS Event Data Model

7.3 An Objectivity Query Facility
Currently work in CMS is ongoing in the development of a

query facility for the Objectivity database (see [16]). A query
facility is a tool, making use of a query language, that interprets a
set of user commands constraining the search of data in a
database. In relational systems, users make use of the Standard
Query Language (SQL), while in object-based systems, the Object
Query Language (OQL) is the main query tool. Both SQL and
OQL are declarative languages which provide notations for
deriving information from relational and object-oriented
databases, respectively. In both languages, the user issuing the
query must necessarily know the schema of the database to be
able to issue a query. In object-oriented databases, the query must
know the class names and attributes, at the very least.
Consequently, query facilities tend to be domain-driven with the
domain schema already loaded into the tool. With different
domain schemas, it is very unlikely that the same query facility
can be re-used for a different domain.

The Objectivity AS facility is a tool which can help in the
creation of a generic query facility for Objectivity databases. A
generic query facility for Objectivity databases can use the
Objectivity AS facility to load and interrogate the database
schema dynamically, thereby not restricting the query facility to a
particular domain specification.

Figure 7. An XML-Based Generic Query Facility

XML can facilitate the creation of a generic query facility.
The database schema, regardless of the database technology used
in creating the schema, can be serialized into a text file, as shown
by the work reported in this paper. The query facility can then
read the XMLized database schema text file, and can execute
queries accordingly. The query facility does not need to make
assumptions about the database technology used, as it becomes
transparent through the use of XML in providing a standardized
language for describing data and objects, and having a common

representational view. The generic query facility, with the help of
XML and a generic active schema facility, can provide a powerful
tool (the Domain Handler, DH [17]) that is not only useful for all
domains but is also re-usable. As database querying is an essential
functionality in any database management system, the provision
and creation of a generic query facility provides a re-usable
mechanism for the management and inter-operation of many
domains.

The use of a generic query facility, regardless of the domain
in use, or the database technology applied, provides a useful
guideline in the design of an update facility. An update facility
will utilize the generic query facility in the interrogation of the
database schema and database elements. The update facility can
likewise follow the approach the query facility has taken by not
making assumptions on the structure of the database. The update
facility should not have any domain-specific semantics within its
code. Typically, the update facility invokes the query facility to
gain access to the database schema and its objects. For a
language- and platform independent database facility, the input
and output of the update facility are XML files. This implies that
the output of the query facility is serialized into an XML file, i.e.
the update facility works with XML strings and not with database
objects. Consequently, the output of the update facility is an XML
file which passes a Deserializer to transform it back to its object
form. Figure7 illustrates this scheme. Such a setup provides a re-
usable mechanism for accessing, interrogating and updating any
database system in CMS.

8. FUTURE WORK
The aim of the WISDOM project is to provide general tools

which will be used in a number of applications. The initial tools
enable data schema from an Objectivity/DB database to have an
equivalent representation in XML. Hence it is possible to swap
between the two equivalent representations.

This has been extended so that the software can be used to
serialize any Objectivity/DB federation and its scope can be
reduced to serialize a specific Database, Container or Object
within an Objectivity/DB Federation. With some care multiple
federations can also be serialized. The following remarks can be
made about the design of the software.

8.1 Serializable Objects
An object can have the capability to serialize itself, by adding

an additional method for this purpose to the object. This is a
powerful approach and does not need a schema for producing
XML, as the object ’knows’ its state and model. Various
languages like Java support such objects, which can serialize
themselves. Objectivity/DB objects can also be given a serializing
capability. However, the current (WISDOM) project is not
targeted to any specific database and is rather a general tool for
any database. In WISDOM a general approach is being followed
that can serialize any type of object from any Objectivity/DB
federation.

8.2 Selection of the DTD
There can be many possible DTD choices for an

Objectivity/DB database. As the objects are inter-linked and
contained in containers and databases in an Objectivity/ DB, one
could envisage a hierarchical or nested structure in which an
object contains all the objects related to it. Alternatively, one can

serialize object to string deserialize string to object

Query Facility

XML

DH

Databases

envisage an object in which all container objects are nested and
then each container object nests all "basic" objects in it. This may
be convenient to give a complete overview of the structure of the
database, but if only few objects are taken individually from the
XML it will be difficult to identify its position in the database. In
WISDOM individual objects are being addressed and each object
has its own identity in the XML file and can be individually
processed. Also the WISDOM approach does not put any
restriction on the scope of the database serialization which may be
the case in the alternative approach discussed above.

One cautionary note about DTDs is worthy of inclusion here.
In the work reported in this paper, the Objectivity/DB Active
Schema API has been used to obtain schema information at run
time. So, there is no need to hard code the schema into
applications which require schema information in XML.
Consequently, the DTD that has been designed is for use with
Objectivity/DB schema only. The DTD is not designed for DBMS
independence and further DTDs would be required for databases
other than Objectivity/DB. This continues to be investigated in the
context of the WISDOM project.

8.3 Data Compression
One of the main advantages gained by the usage of XML is

platform-independent data exchange. However, this comes at the
cost of storage. For data intensive transfers over the wide-area
network a minimal bandwidth utilization is required and
consequently a fast data transfer. [18] has demonstrated that XML
files can be compressed very well which yields a reasonable
reduction of the files size and thus bandwidth requirements for
data transfer. As an example, tests have revealed that an
Objectivity database file of 464Kbytes in size can be serialized
into an objectXML file of size 21Kbytes and compressed using
the Xmill compression tool into a file siz eof only 1.55 Kbytes.

9. CONCLUSIONS.
In this paper different data interchange needs of the CMS

collaboration at CERN have been studied. The fact that such a
large collaboration of users is distributed over multiple sites rather
than being located at a single site imposes a challenge on data
management and integration of data/schema from multiple
resources. Based on a commercial object-oriented database
management system (Objectivity/DB) a tool has been developed
that converts schema and persistent data from Objectivity/DB into
a database independent XML format. The tool can be applied to
migrate/replicate data sources between remote, distributed sites
thus facilitating wide-area database-independent exchange of data.

10. ACKNOWLEDGMENTS
The authors wish to acknowledge the support of their

institutes and, in particular, to thank the numerous developers
who have worked on the WISDOM prototypes.

11. REFERENCES

[1] CMS Technical Proposal. The CMS Collaboration, January
1995. Available from ftp://cmsdoc.cern.ch/TPref/TP.html

[2] Objectivity/DB, an object database product available from
http://www.objectivity.com

[3] The WISDOM project, Wide-area database Independent
Serialization of Distributed Objects for data Migration.
CERN CMS NOTE IN-1999/050
http://cmsdoc.cern.ch/~wisdom/Wisdom.htm

[4] W3 Consortium., "Extensible Markup Language (XML)
1.0". World Wide Web consortium Technical Report.
Available from http://www.w3.org/TR/1998/REC-xml-
19980210

[5] The Koala Object Markup language. See:

 http://www.inria.fr/ koala/XML/serialization/xmlindex.htm

[6] Self-Describing XML Data Representation,
http://Casbah.org/

[7] M. Reinhold, "An XML Data-Binding facility for the Java
Platform". Sun Microsystems report. Available from:
http:// web2.java.sun.com/xml/docs/bind.pdf

[8] XML Metadata Object Persistence (XMOP)
http://www.openhealth.org/xmop/XMOP.htm

[9] M Fowler & K Scott: “UML Distilled - Applying the
Standard Object Modeling Language”, Addison-
Wesley Longman Inc., 1997

[10] XML Document Object Model (DOM)
http://www.w3.org/TR/REC-DOM-Level-1/

[11] The CRISTAL project, CMS Workflow Management.
See: http:// cmsdoc.cern.ch/Cristal.

[12] R McClatchey et al., "The Role of Meta-Objects and
Self- Description in an Engineering Data Warehouse".
Proceedings of the 3rd IEEE International Database
Engineering & Applications Symposium (IDEAS’99)
Montreal, Canada. August 1999.

[13] F. Estrella et al., “Handling Evolving Data Through
the Use of a Description Driven Systems Architecture”.
Lecture Notes in Computer Science Vol 1727, pp 1-11
ISBN 3-540-66653-2 Springer-Verlag, 1999

[14]RD45 project, "A persistent Manager for HEP".
See: http:// wwwinfo.cern.ch/asd/rd45.

[15] H. Stockinger, "Data Replication in Distributed
Database Systems", CERN CMS NOTE-1999/046.

[16] C. Koch et al., “Explicit Modeling of the Semantics of
Large Multi-layered Object-Oriented Databases”.
Accepted for presentation at the 19th International
conference on Conceptual Modelling (ER’2000), Salt
Lake City, USA. October 2000.

[17] F. Estrella, “The Design of a Pattern-based Object-
Oriented Three-Layer Description-Driven System”.
PhD thesis, University of the West of England,
September 2000. In final preparation.

[18] H. Liefe, "An Extensible Compressor for XML Data",
SIGMOD Record, Vol. 29, No. 1, March 2000.

