
Design & Implementation
Of

XML-RDBMS Interface

Vibhore Kumar
(B.Tech III yr.)

Department of Computer Science & Engineering,
Institute of Technology, BHU, Varanasi, India

Ph: +91-522-369867
e-mail: vibhore_k@hotmail.com

Abstract

XML has now established itself as an extremely versatile
language capable of labeling the information content of diverse
data sources such as relational databases, object repositories,
structured and semi structured documents. It has developed into a
standard for exchanging data on the World Wide Web. However,
relational databases will continue to act as storage for most of our
data. Consequently, if XML is to fulfill its potential, some
mechanism is needed to publish relational data as XML
documents. It also becomes equally important to devise a method
that can serve to condense an XML document into relational
database.

The aim here is to design and implement algorithms that can
serve as XML-RDBMS interface. The standard approach of
dealing with XML data relies on semi structured query engines in
which XML documents are treated as data sources. What we
propose here is a development of an interface that accepts XML
documents and stores them into relational database. Besides
providing this facility, the interface is also be capable of
generating results of a query in the form of XML document that
conforms to a provided DTD. To this end, we have developed
algorithms and implemented them as a prototype that can make
relational tables out of a given DTD, accept XML documents
conforming to the DTD, and store them into relational tables. The
system is also capable of generating XML documents conforming
to a given DTD when a query is fired onto the relational database.
The system has been evaluated using a wide variety of test data
and it was found to work for the well-formed XML documents
and valid DTDs. The interface returns suitable error messages for
illegal inputs.

Index Terms – Schema, DTD, Parser, SAX, DOM

1.Introduction

Extensible Markup Language (XML) has now well established
itself for the purpose of data transfer over the web. The reason for
this wide acceptance of XML documents is the fact that XML
data is self-describing. This means the program receiving an
XML document can interpret it in multiple ways, can filter it and
can structure it to suit its needs.

XML has been primarily used to enhance the capability of remote
applications to operate and interpret upon data fetched over the
web. As the application of XML becomes dominant for the
purpose of data transfer, it has become almost necessary to
provide an interface between XML and existing established
databases. However this raises many exciting possibilities,
various approaches have been adopted for design of such
interfaces but an ideal solution is still awaited.

One of the most widely accepted approach is to treat XML
documents as semi structured data sources. The approach uses
semi structured query engines to fire a query over a set XML
documents and get the result, at first glance this seems to be quite
a rational approach. But the fact is that most of our data is being
stored in relational databases and a lot of research has been put
into developing this model which has well established itself.
Another suggested approach is to use XML documents for the
purpose of data transfer and use an interface which establishes a
link between XML and existing database. This approach has the
advantage of not undoing the labor that has been put into
development and design of our current databases besides this we
can also use query engines, which already exist.

An RDBMS based XML system is possible because of the fact
that XML documents can be made to conform to a particular
DTD. A DTD is in effect a schema for a set of XML documents
and this is what serves to link XML with RDBMS. The approach
we are going to use here is the following. Given an XML
document and a DTD, the DTD can be processed to generate a
relational schema. Now this schema can be used to store any
XML conforming to the DTD that has been processed. The other
part consists of constructing an XML document from a query
fired over relational database that conforms to DTD supplied by
the source firing the query or it generates a DTD itself for the
XML document if one is not specified.

ADVANCES IN DATA MANAGEMENT 2000
Krithi Ramamritham, T.M. Vijayaraman (Editors)
Tata McGraw-Hill Publishing Company Ltd.
©CSI 2000

The approach we have adopted works but it does not necessarily
imply that it is an ideal solution. This approach has limitations
that it increases the overhead of conversion to and from XML.
This overhead increases as the size of document increases. A lot
needs to be done to reduce this overhead of conversions.

The advantage of using RDBMS based XML system is motivated
by considering the scenario of a ‘Placement Service’ on web that
accepts resumes from various candidates applying for jobs. The
employers are provided with the resumes from various candidates
satisfying their eligibility criteria. In an ad hoc situation, the
applicants can apply in varied formats. This makes it difficult to
categorize and store the relevant information in a manner such
that it can be easily retrieved, depending on desired criteria.

However, if all candidates are provided with a fixed DTD and
they are required to submit their resumes as XML documents
conforming to it, the task simplifies. The conformance of all
resume to fixed DTD makes it easy to store the XML document
into a pre-existing relational DBMS or any database system using
XML-RDBMS interface. Now whenever some employer requests
for candidates having certain qualifications, the database can be
searched for and the result published as an XML document in a
format which suits the employer’s existing database. Here the
company can specify the format of XML document by supplying
the ‘Placement Service’ with a DTD that matches their database.

1.1 Related Work

A lot of work has been going on in the field of XML, much of the
research in this area has been focussed on the development of
special purpose query engines for semi-structured data. However,
our aim here is to exploit the similarities between XML and
RDBMS based systems. Our work is quite similar in its approach
to the work [1] but here we are concentrating not on development
of interface that converts semi-structured queries to relational
queries. Our approach here is to fire a relational query on a
database along with a DTD and to get the result as an XML
document, which conforms, to the given DTD. However if no
DTD is provided the result is an XML document along with a
DTD for the same.

Most of the proposed techniques for DTD to Relational Schema
conversion are such that they tend to lose any similarity to the
original DTD. The algorithm that we have proposed tries to
overcome this drawback.

1.2 Roadmap

The rest of the paper has been organized as follows. An overview
of XML documents, schemas and DTD is given in Section 2. A

 XML Data Stream

Figure 1. Proposed XML-RDBMS Interface.

Parser &

XML/RDBMS
Converter

DTD Collection

Relational
Database

Query
Source
(Client)

RDBMS/XML
Converter

Update requests for
RDBMS

Query fired
To RDBMS

DTD for the output

XML Document

discussion of the proposed DTD to Schema conversion algorithm
is contained in Section 3 along with the implementation issues.
Section 4 describes the process of storing of XML documents to
relational tables. Section 5 deals with the firing of queries and
retrieval of XML documents from relational results. Section 6
finally concludes by discussing the brighter aspects and the
drawbacks of the proposed interface, besides giving a list of areas
where there is a scope of further improvement.

2.An XML Primer

We give a very brief overview of XML documents, schemas and
DTDs in this section. More information can be obtained from the
references.

2.1 XML Documents

XML (eXtensible Markup Language) may be defined as a
simplified subset of SGML that is meant to be used on the Web.
XML incorporates the features of both SGML and HTML. It
includes those pieces of SGML that were heavily used but leaves
out all the optional features that held SGML back. Because of
this, it retains the power and flexibility of SGML without the
complexity. XML is more powerful than HTML because it is
extensible. Users can define new tags and attributes and are
not limited to the finite set that never seems to satisfy anyone.
An XML document consists of nested element structures, starting
with a root element. Table 1 shows an XML document that
represents a typical Resume of a candidate. In this example there
is a ‘Resume’ element which contains a number of sub-elements.
Further information can be found in References [3,4].

<?xml version="1.0"?>
<!DOCTYPE Resume SYSTEM "resume.dtd" [
]>
<Resume Height=‘6 feets’ Marital_Status =‘no’>
 <Name>
 Ankur
 </Name>
 <Age>
 20
 </Age>
 <Sex>
 M
 </Sex>
 <Address>
 <Addr_Current>
 <Street>
 Rajpur Road
 </Street>
 <City>
 Dehradun
 </City>
 <PIN>
 226024
 </PIN>
 </Addr_Current>
 <Addr_Permanent>
 <Street>
 Rajpur
 </Street>
 <City>
 Lucknow
 </City>
 <PIN>
 226024
 </PIN>
 </Addr_Permanent>
 </Address>
 <Qualifications>
 <Qualification>
 <Degree>
 X
 </Degree>
 <Year>
 1996
 </Year>

 <Division>
 I
 </Division>
 </Qualification>
 <Qualification>
 <Degree>
 XII
 </Degree>
 <Year>
 1998
 </Year>
 <Division>
 I
 </Division>
 </Qualification>
 </Qualifications>
 <Experience>
 <Exp>
 none
 </Exp>
 <Exp>
 1yr
 </Exp>
 </Experience>
 <Projects_Undertaken>
 <Proj>
 abc
 </Proj>
 </Projects_Undertaken>
 <Hobbies>
 <Hobby>
 Chess
 </Hobby>
 </Hobbies>
</Resume>

XML document representing Resume
“Resume.xml”

Table 1.

2.2 DTDs & Schema

A Document Type Definition describes the legal elements and
attributes that can be used to markup a document. This is
essentially a contract between the application and the user of the
markup language - if the user marks up a document in a certain
way, then the application can be relied upon to respond
accordingly. The additional advantage of a DTD is that they are
defined on a rigorous syntax, which means that it becomes
possible to 'validate' (i.e. check) a document against its DTD to
see whether it conforms to the letter of the contract.

XML schemas can be considered as extensions of DTDs.
Schemas allow typing of values and they also allow us to set size
specifications. XML schemas are yet to become standard and if
they become, it will allow us to create tables with integer
attributes rather than just using strings.

3 Generating Relational Schema out of DTD
and constructing Tables
The DTD describes a model of the structure of the content of an
XML document. This model says what elements must be present
which ones are optional, what their attributes are, and how they
can be structured in relation to each other. In this section, we
discuss the generation of relational Schemas from XML DTDs.
This section has been divided into three parts, each of which
corresponds to the three major issues that are going to be dealt
with (a) Simplification of DTDs and extraction of relevant
information (b) Carving out tables from the information gathered
in preceding section and (c) Resolving conflicts, dealing with
attributes and special cases.

3.1 DTD Simplification

A DTD, whether external or internal , is generally the most
complex part of an XML family. To our advantage methods
exist that can simplify complex DTDs to simpler ones and still
the resulting Schema developed from simplified DTD is capable
of storing any XML document conforming to the given DTD. The
guiding factors while generating a relational Schema are that the
tables created out of it must be able to store any conforming XML
document and that any XML semi-structured query must be
transformable to an equivalent relational query so as to produce
similar results.

In a DTD the sub-elements that constitute XML elements are
specified using the various operators provided for the purpose
*(set with zero or more elements), +(set with one or more
elements), ?(set optional), and |(or). These specifications add to
the complexity of the DTD. Algorithms exist for simplification of
DTDs and these are good enough so as not to reduce the
effectiveness of queries over documents conforming to DTD. One
of the algorithms as was proposed in [1] is described by the
transformations given in table 2.

These transformations can be applied to any DTD in a step by
step manner for the purpose of simplification. Let us for example
consider an element defined as
X((a?,(b*,c**,d*?)?)*,(a|b)*,(c|d*)?). Now, by using the above

Table 2. Transformation Table

(a)
(X1,X2)* ⇒ X1*,X2*

 (X1,X2)? ⇒ X1?,X2?
 (X1|X2) ⇒ X1?,X2?
(b)
 a** ⇒ a*
 a*? ⇒ a*
 a* ⇒ a*
 a?? ⇒ a?
(c)
 … a*,… .,a*,… ⇒ a*,…
 … a*,… ,a?,… ⇒ a*,…
 … a?,… ,a*,… ⇒ a*,…
 … a?,… ,a?,… ⇒ a*,…
 … a,… ,a,… ⇒ a*,…

transformations this element can be evaluated and expressed as a
simplified element. The given element simplifies to
X(a*,b*,c*,d*).Before proceeding with these transformations ‘+’
operators are transformed to ‘*’. It may be worth noticing that
simplification may at times change the relative ordering of the
elements but this can be retrieved from XML documents
conforming to DTD.

Once the DTD has been simplified we can proceed with the pre-
processing which is required for generating the Schema. In this
pre-processing, we extract the information from DTD. All the
elements which are directly used to store information (i.e.
elements defined as (#PCDATA) or ANY) are stored in a
‘variable list’. The next step requires us to identify those elements
followed by *,?,+ and these are stored in a ‘exception list’

3.2 Construction of Relational Tables

The construction of relational tables from a given DTD is
motivated by the fact that in a relational model one table can be
related to the other by having an unique identifier which links the
two table. The proposed algorithm has the disadvantage of
constructing an appreciable number of tables but the fact that it
preserves the basic structure of the DTD negates this
disadvantage. The algorithm has been designed keeping in mind
that it must produce tables that are capable of storing any
XML document conforming to the DTD. Further it must be able
to accept any query (when converted to required format) that is
meaningful when fired over the relevant XML document.

A set of general rules may be defined to facilitate the conversion
of DTD to Schema. The term ‘variable’ in our terminology stands
for any element that has no sub-elements (i.e. one defined as
(#PCDATA) or ANY), rest all elements will be referred to as
‘non-variables’. The various combination of elements in a
parenthesis can be mapped to corresponding create table
statements using the Table 3.

Table 3. Conversion Table

T(var1,var2,var3,… ,varN) ⇒ Table(ID,var1,var2,var3,… ,varN)

T(vara1*,… ..,varaM*,var1,… ,varN)⇒ Table(ID,r_ID,var1,… ,varN) + vara1_Table(ID,vara1) +… … +varaM_Table(ID,varaM)
 (here Table.r_ID=vara1_Table.ID=… ..=varaM_Table.ID)

T(non-var1,… .,non-varM,var1,… ,varN) ⇒ Table(ID,r_ID,var1,… ,varN)+Tables for non-var’s
 (here Table.r_ID=ID column value in table for non-var’s)

T(non-var1*,… ,non-varM*,var1,… ,varN) ⇒ Table(ID,r_ID,var2,… ,varN)+Tables for non-var’s
 (here Table.r_ID=ID column value in table for non-var’s)

T(non-var*) ⇒ Table for non-var

T(… … … .)+attribute list(at1,at2,… ,atN)⇒ T(ID,at1,at2,… ,atN,… … …)

 T(var*) ⇒ Table(ID,var)

• It may be noted here that these conversions are to be applied after simplification of the DTD and that here * can be replaced by ?

• These conversions hold good irrespective of the position of the variables and non-variables in the parenthesis.

Table 4. A typical DTD representing Resume of a candidate. “Resume.dtd”

<!ELEMENT Resume (Name, Age, Sex, Address, Qualifications, Experience, Projects, Hobbies)>
<!ATTLIST Resume Height CDATA
 Marital_Status CDATA
>
<!ELEMENT Address (Addr_Current, Addr_Permanent)>
<!ELEMENT Addr_Current (Street, City, PIN)>
<!ELEMENT Addr_Permanent (Street, City, PIN)>
<!ELEMENT Qualifications (Qualification*)>
<!ELEMENT Qualification (Degree, Year, Division)>
<!ELEMENT Experience (Exp*)>
<!ELEMENT Projects (Proj*)>
<!ELEMENT Hobbies (Hobby*)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Age (#PCDATA)>
<!ELEMENT Sex (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT PIN (#PCDATA)>
<!ELEMENT Degree (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Division (#PCDATA)>
<!ELEMENT Exp (#PCDATA)>
<!ELEMENT Proj (#PCDATA)>
<!ELEMENT Hobby (#PCDATA)>

Using the transformation given in Table 2 we can convert a DTD
to a set of statements which when executed will result in tables
for the specified DTD. Let us for example consider the Document
Type Definition (DTD) given in Table 4. The DTD maps to the
set of tables shown in
figure 2 .

3.3 Resolving Conflicts & dealing with special
cases

 While implementing the above algorithms, the
following factors need to be kept in mind. The members of the
‘exception list’ always have a table corresponding to them. The
members of ‘variable list’ appear as column names in a table

4. Storing XML documents in Relational
Tables

 In this section we will deal with the issue of storing
XML documents into relational tables. This section has been
divided into two parts in the first part we discuss the algorithm for
storing XML documents into relational tables. In the next part of
the section the implementation of the same has been discussed.

4.1 Extracting data out of an XML document
conforming to relational tables

 On a close examination of any XML document, the
following observations are worth noticing

Figure 2. A Schematic representation of Tables formed for Resume DTD

Projects

 Resume

ID r_ID Height Marital_status Name Age Sex

 ID r_ID

Permanent_Address

Temporary_Address

Address

Qualification

 Hobbies

 Experience

 ID Exp

 ID Street City PIN

 ID Street City PIN

 ID Proj

ID Degree Year Division

 ID Hobby

a. If an XML document is read in sequential manner from start to
end we encounter as many opening tags as the closing tags.
b. At any given position inside an XML document more than one
tag may not have been closed.
c. Only one tag is active tag at any instant and that the active tag
is the one that has been most recently opened.

The above observations make it very clear that there exists a
stack like structure somewhere in an XML document. The PUSH
operation can be defined as opening of a tag and closing of a tag
may be referred to as a POP operation. The tag on the top of the
stack may be referred to as the active tag.

Also define a variable ‘tag_level’ which represents the

number of tags that are open when the tag is pushed.

Let us do this study in relation to a simpler XML document

and the corresponding DTD.

<?xml version="1.0"?>
<!DOCTYPE musicians SYSTEM “music.dtd” [

]>
<musicians>

<musician>
<name>
 ankur
</name>
 <instrument>

drum
 </instrument>
</musician>

</musicians>

“music.xml”

<!ELEMENT musicians (musician*)>
<!ELEMENT musician (name,instrument)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT instrument (#PCDATA)>

 “music.dtd”

 On applying the algorithm, discussed in the previous
section, the DTD is transformed to the following set of relational
tables using the conversions.

T(non-var*) ⇒ Table for non-var

So, we get here as a result the table

 musician

The following set of rules may be defined for the

extraction of data from an XML document.

1. Whenever a start tag is encountered push the tag onto the stack
as a string TAG + (+ID +, attributes… , .
2. Any data element encountered is added to string of currently
active tag as STRING + element +, .
3. Any attribute elements for a tag are added after ID elements.
4. If a non-element tag is encountered then an element r_ID is
added after ID if it does not exists to currently active tag and then
the new tag is pushed onto the tag with ID value = r_ID value.
5. Whenever an end tag is encountered the currently active tag
string is terminated by replacing the last ‘,’ by ‘)’ and the string is
written to file with the following exceptions.
(Exception :- If the string contains only two elements then the
element other than ID is written to the stack string of the tag
which becomes active on poping of the current tag. This is done
only when the tag is not a member of exception list defined
earlier.)

 Using these rules and applying them on the
“music.xml” file we get the following strings :

musicians(ID(auto-generated),r_ID(auto-generated))

musician(ID,ankur,drum)

 It may be noticed here that here a string for musicians
table is also created but since the table does not exist it would not
be executed.

4.2 Populating the relational tables

 The strings obtained by following the procedure given
in previous discussion can be used to populate the tables. The
string for inserting data into table should be used only when a
table corresponding to them exists. However for complex DTDs
which have undergone simplification an additional check for
relative ordering of elements has to be introduced.

T(var,var) ⇒ Table(ID,var,var)

 ID name instrument

5. Firing Queries and Retrieval of XML
documents from Relational Tables.

 Till now, we have discussed the part of interface which
deals with the storage of XML documents into Relational Tables.
Once an XML document has been stored into a relational table
some method is needed to retrieve data from such tables in the
form of XML documents. In this section we deal with the part of
interface which corresponds to the retrieval of data in form of
XML document when a query is fired on a relational database.
Here we consider two cases that arise due to the fact that at times
the query maker may want the results to conform to a particular
DTD.

Case 1: A DTD is not given
On firing a query on a set of Relational Tables the resultset we
get is itself a table which contains the columns that were
requested for and records matching the conditions set in the
query, are written to this result set.

When a DTD is not given the results can be framed into an XML
document having more or less a linear DTD. Complications arise
when two columns in different tables have similar names to avoid
these complications the name of duplicate columns is always
post-fixed with an auto-generated number and is then used as a
tag. The results are published as a simple XML document having
a general format.

<Result>
 <record>
 <tag1>
 data
 </tag1>
 .
 .
 .
 <tagN>
 data
 </tagN>
 </record>
 .
 .
 .
</Result>

where N is the number of columns that were requested in the
query.

Case 2: A DTD is given for Results

 Before proceeding, we must specify the assumptions
that are being made in the design of algorithm for this section.

Assmp. 1: The query that is fired along with the DTD must
contain all the columns (tags) that are being referred in the DTD.

Assmp. 2: The tag names must match with those in the relational
tables.

Assmp. 3: To avoid conflicts due to co-existence of columns with
similar names when a column has to be referred it is prefixed with
the name of the table it belongs to.

Assmp. 4. The name of the root element is always Result and it is
defined as (record*)

 The procedure to publish results in conformance to
given DTD includes the following steps:

Step 1: Fire the query on the Relational database and obtain the
resultset
Step 2 : From the resultset obtained obtain the names of the
columns that are contained in each record and store them in an
array in the order in which they appear in the resultset.

Step 3 : Get the order of elements in which they appear in the
DTD for a record and rearrange the resultset in the same order
using a redirecting array.

Step 4 : Sort out the variables and the non-variables as given in
section 3.

Step 5 : Starting from root element which is a collection of
records read the specification for record onto a stack and start
reading sub-elements sequentially.

Step 6 : If a variable is encountered then fill in the data from
resultset, and attach a start and end tag.

Step 7 : If a non-variable is encountered attach a start tag and
push the sequence of sub-elements corresponding to non-variable
onto a stack.

Step 8 : fetch sub-element from top of the stack if they are
available. If no more sub-elements are available perform a pop
operation and attach a corresponding end tag. If the stack is
empty jump to step 9 else fetch sub-element from the top and
Repeat from step 6

Step 9 : Increment the resultset cursor. If more records are
available then goto step 5 else stop.

To understand in detail the working of the above
algorithm let us consider an example. The database that user has
to access has the following two tables (fig.3)

Figure 3. Table Schema

ID r_ID Name Instrument

ID age basic_pay

 musician
 ID r_ID Name Instrument
 1 musician1 Ankur Drum

 information
 ID Age basic_pay
musician1 20 0

Now, the client fires the query

SELECT *
FROM musician, information
WHERE ID = 1 and information.r_ID = musician.ID

with a DTD of form:
<!ELEMENT Result (record*)>
<!ELEMENT record (musician.Name, Info)>
<!ELEMENT Info (musician.Instrument, information.age)>

Processing the query step by step in accordance to the algorithm,
we arrive at the following XML document

<Result>

<record>
<musician.Name>

Ankur
</musician.Name>
<Info>

<musician.instrument>
drum

</musician.instrument>
<information.age>

20
</information.age>

</Info>
 </record>
</Result>

This algorithm works well for most of the DTDs but fails when
an attribute is encountered. This is however due to the fact that
specifying value of attribute is not possible in the DTD itself.
However, with some assumptions we are trying to implement
algorithm that can process attributes as well. The algorithm we
have proposed may require some processing to be done on the

client side as well to make the XML fully conform to client
database in terms of column names.

6. Concluding Remarks

In this paper we have proposed the design of an interface which
can serve for the conversion of XML document to relational
tables further the same interface can serve for the conversion of
results obtained from query on Relational Tables to XML
document. The proposed interface has been found to work well
for valid XMLs and DTDs. The overhead of conversion to and
from XML makes it this approach costly in terms of system
utilization for large XML documents and large queries.
Possibilities of future work include studying the impact of
parallelism on the application of proposed algorithms.
Furthermore the interface we have proposed needs to be
optimized to reduce the overheads.

Acknowledgements

This work has been done under the guidance of Prof. N.L.Sarda at
the Department of Computer Science & Engineering, Indian
Institute of Technology, Bombay, as part of summer project. The
author is grateful to the department for extending the facilities to
carry out the work.

References

[1] J. Shanmugasasundaram, Gang H., Tufte K., Zhang C.,

Dewitt D.J. & Naughton J.. Relational databases for
querying XML documents: limtations and opportunities,
Proceedings of the 25th International Conference on VLDB.

 (1999).
[2] McHugh J. & Wisdom J.. Query Optimization for XML,

Proceedings of the 25th International Conference on VLDB.
(1999).

[3] J. Bosak, T. Bray, D. Connolly, E. Malor, G. Nicol, C.M.
Sperberg-McQueen, W3C XML Specification DTD,

http://www.w3.org/XML/1998/06/xmlspec-report.htm.
[4] R. Cover, The SGML/XML Web Page,
http://www.oasis-open.org/cover/xml.html.

