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ABSTRACT
Time is important in modeling dynamic aspects of the world, and
particularly in the temporal databases field. Many research
articles about temporal databases assume that complete and
accurate temporal information is available. However, in many
real applications temporal information is imperfect and we need
to find some way of handling it. The two main commonly used
temporal ontological primitives are point and interval. Often a
temporal point is indeterminate, which means that an interval of
possible values for the point is given, and the probability mass
function for that interval can be defined. An indeterminate
temporal interval is represented as a pair of indeterminate points
denoting the start and the end of the interval.

Sometimes there is a need to know relations between temporal
intervals, as for example, in query processing. When intervals
are indeterminate, it is almost impossible to derive a certain
relation between them. This paper presents an approach to
estimate the uncertain relation between two indeterminate
temporal intervals by calculating the probabilities of Allen’s
relations. The relation between two indeterminate intervals is
represented using four relations between their indeterminate
endpoints. Using the information about the endpoints, we derive
four uncertain relations between them, and then calculate the
probabilities of Allen’s relations by the proposed formulas. We
present an example of the behavior of the proposed  mechanism
regarding calculation complexity using different input data. We
also consider an example illustrating a possible application of the
approach.

1. INTRODUCTION
Time is important in modeling dynamic aspects of the world.
Even though representation and reasoning about temporal
information has already achieved significant results to some
extent, there still exist topics which require and deserve further
research attention. Temporal formalisms are applied, for
example, in natural language understanding, planning, process
control, and temporal databases, i.e. in the areas, where the time
course of events plays an important role.

In temporal databases each event is associated with a timestamp
that indicates when the event has occurred. Many research
articles about temporal databases assume that complete and
accurate temporal information is available. Generally, the
proposed approaches give little or no support for situations in
which temporal imperfection exists. However, in many real
applications temporal information is imperfect and we need to
find some way of handling it.

One kind of imperfect information is indeterminacy, which
means that it is known only approximately when a particular
event happened, for example, we may know that “it happened
during last week” or “between 8 a.m. and 9 a.m.”. Indeterminacy
can arise from different sources, such as suggested in [6]:

- granularity mismatch (when an event is measured in one
granularity, and is recorded in a system with a finer granularity);

- clock measurements (every clock measurement has some
imprecision);

- dating techniques (many dating techniques are inherently
imprecise);

- unknown or imprecise event times (in general, occurrence times
could be unknown or imprecise);

- uncertainty in planning (projected completion dates are often
inexactly specified).

Motro [8] suggests that imperfect information can also result
from unreliable sources, such as faulty sensors, input errors, or
the inappropriate choice of representation. Kwan et al. [7]
mention a number of sources of uncertainty and incompleteness
in databases used in scientific applications. For example, some
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data is recorded statistically and so is inherently uncertain, whilst
other data is deliberately made uncertain for reasons of security,
and some data can not be measured accurately, due perhaps to
some mechanical effect.

Point and interval are the two main temporal ontological
primitives proposed in the literature. For an indeterminate point
a closed interval of possible values is defined together with the
probability mass function defining the probabilities of these
values. An indeterminate interval is represented as a pair of
indeterminate endpoints denoting the start and the end of the
interval.

Often there is a need to know the relation between two temporal
intervals, as for example, in query processing. The relation
between two temporal intervals can be represented in two main
ways: using Allen’s interval relations [1], and using four
relations between the endpoints of the intervals. The
representation of the relation between two temporal intervals
using Allen’s relations is desirable in many applications and it is
more expressive compared to the representation using the
relations between the endpoints. Often the information about
Allen’s relations between two intervals is not readily available,
however, the information about the endpoints of these intervals is
almost always present, but in many situations in real applications
this information is indeterminate. In this paper we propose one
way to derive Allen’s relations from the information about the
endpoints of two indeterminate intervals.

The structure of the paper is the following. In Section 2 we
present the main concepts used in the paper. The notion of the
probability mass function and its sources are discussed in
Section 3. Section 4 presents an approach to estimate uncertain
relations between two indeterminate temporal points. We
compose the probabilities of Allen’s relations between two
indeterminate intervals using the four uncertain relations
between their endpoints in Section 5. Section 6 presents an
example of the behavior of the mechanism regarding calculation
complexity using different input data. Section 7 includes an
example of the estimation of Allen’s relations in the temporal
database. The discussion about the related research is included in
Section 8, and, finally, in Section 9 we make conclusions.

2. MAIN CONCEPTS
In this section we present the main concepts used in the paper.

The ontology of time used in this paper is below defined
similarly to the one proposed in [6]. The various models of time
that have been proposed in the literature are often classified as
discrete, dense, and continuous models. We use the discrete
model, which is commonly used in the temporal database
research field. Temporal points, as the main ontological
primitives, are isomorphic to natural numbers, i.e. there is the
notion that every point has a unique successor. The time between
two points is known as a temporal interval. A chronon is an
indivisible time interval of some fixed duration. A time line is
represented by a sequence of chronons of identical duration. We
do not specify the particular chronon size, but let it vary

depending on the application. A temporal point is determinate if
it is exactly known during which particular chronon it is located.
Often it is not known exactly, but an interval of chronons, during
which this point can be found, is given.

Definition 1. An indeterminate temporal point a is a temporal
point such that a∈ [al,au], where al (lower bound) is the first
chronon of the interval [al,au], au (upper bound) is the last
chronon, al ≤ au, and it is attached with a probability mass
function (p.m.f.) f(a).

Definition 2. Let an uncertain relation between two
indeterminate temporal points a and b be represented by a vector
(e<,e=,e>),  where the value e< is the probability that a<b, the
value e= is the probability that a=b, and the value e> is the
probability that a>b. The sum of e<, e=, and e> is equal to 1, since
these values represent all the possible basic relations between
points  a and b.

Definition 3. Let an indeterminate temporal interval A be
defined as a pair of indeterminate temporal points s and e,
specifying the start and the end of the interval A. The starting
point s from the interval [sl,su] should be before the end point e
which belongs to the interval [el,eu], so that the endpoints s and e
do not overlap, i.e. su<el.

There are two main approaches to represent the relation between
two temporal intervals. One approach is to use the thirteen
interval relations proposed by Allen [1]: “equals” (eq), “before”
(b), “after” (bi), “meets” (m), “met-by” (mi), “during” (d),
“contains” (di), “overlaps” (o), “overlapped-by” (oi), “starts” (s),
“started-by” (si), “finishes” (f), and “finished-by“ (fi) (Figure 1).
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Figure 1. Allen’s interval relations.



Another approach suggests that the relation between two
temporal intervals can be represented using four relations
between the endpoints of these intervals. Figure 2 presents the
uncertain relation between two indeterminate intervals A[s1,e1]
and B[s2,e2] using the relations r11, r12, r21, and r22, which can
take the values “<”, “=”, and “>”.

It is convenient to represent the relation between two temporal

intervals using the matrix ℜ  =
r r
r r A B
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In the next section we briefly discuss the notion of the probability
mass function and its sources.

3. PROBABILITY MASS FUNCTION
In this section we present a discussion about the notion of the
probability mass function, which is mainly drawn from the article
by Dyreson and Snodgrass [6], but heavily relates to the topic of
this paper and is essential for further understanding of the
material.

In many applications the chronons within the interval for an
indeterminate point may not be equally probable. It is reasonable
to take into account the probabilities of these chronons by
defining the probability mass function.

In some application domains the middle value from the interval
may have the highest probability. For example, if it is known,
that the temperature outside is in the interval [+10,+30] degrees,
then it is natural to guess that the most probable value of the
temperature is about +20. In other domains the chronons inside
the interval may have equal probabilities, and then the interval is

considered as a set of consequent equally probable values.

The probability mass function (p.m.f.) f(a) for an indeterminate

point a, which belongs to the interval [a l
1 , au

1 ], defines the

probabilities of the chronons within this interval so, that

( )f a

a a

a

l

u

=
∑ =1 . The requirement that the sum of all the

probabilities of the chronons is equal to 1 results from the
definition of time ontology, according to which, a temporal point
occurs exactly during one particular chronon. We do not consider
situations when the probabilities defined by the p.m.f. are joint
or dependent.

Figures 3 and 4 present two examples of the p.m.f.s for the
endpoints s1 and e2 from Figure 2.

In the interval for the point s1 all chronons have different
probabilities with the maximum one in the middle of the
interval. In the interval for the point e2 almost all chronons are
equally probable.

We assume that a p.m.f. is given when an indeterminate point is
created. Generally, the p.m.f. stems from the sources of
indeterminacy, such as granularity mismatch, dating and
measurements techniques, etc. When the granularity mismatch is
the source of indeterminacy the uniform distribution is a useful
assumption. For example, if an event is known in the granularity
of one hour then in a system with the granularity of one second it
is indeterminate, and we have no reason to favor one second over
another. Some measurement techniques or instruments can have
fixed trends in measurements, for example, the normal
distribution of a variable. In some situations, the analysis of past
data can provide a hint to defining the p.m.f. For example, we
may know that a particular type of event in a particular situation

s l u
2 2 s B

s2 e2

ue2
le2

s1 e1

us1
ls1

ue1
le1

A

r12
r21

r22

r11

Figure 2. The uncertain relation between indeterminate
intervals A[s1,e1] and B[s2,e2].
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tends to occur during the last chronons of the interval.

Several other means of determining the p.m.f. were suggested by
Dey and Sarkar [3]. Also Dyreson and Snodgrass [6] point out
that in some cases a user may not know the underlying mass
function because that information is unavailable. In such cases
the distribution can be specified as missing, which represents a
complete lack of knowledge about the distribution. In our
approach we suppose that the distribution is already and totally
known. In the case when the distribution is not specified, one of
the above mentioned means of defining the p.m.f. can be applied.

In the next section we propose formulas for the probabilities of
the basic relations between two indeterminate temporal points.

4. UNCERTAIN RELATIONS
BETWEEN INDETERMINATE TEMPORAL
POINTS
In this section we present an approach to estimate the uncertain
relation between two indeterminate temporal points by
calculating probabilities of the basic relations between them. The
discussion is based around two indeterminate points s1 and e2

from the intervals [ s l
1 , su

1 ] and [ el
2 , eu

2 ] correspondingly

(Figure 2). We also take into account the p.m.f.s for these points
f1(s1) and f4(e2), which are defined by Figures 3 and 4.

One approach to estimate the uncertain relation between s1 and
e2 is a simple comparison of all possible values of s1 and e2. This
approach is very time consuming in the case when the intervals

[ s l
1 , su

1 ] and [ el
2 , eu

2 ] include many chronons. A more advanced

way is to compare only those chronons that are located inside the
common part of the intervals. We distinguish between two main

cases: 1) the intervals [ s l
1 , su

1 ] and [ el
2 , eu

2 ] do not overlap, and

2) the intervals overlap. When the intervals do not overlap and,
hence, have no common chronons, the relation between them can
easily be estimated by comparing the values of the endpoints

su
1 , el

2 , eu
2 , and s l

1 . When su
1 < el

2  the relation between s1 and

e2  is “<”. When eu
2 < s l

1  the relation between s1 and e2  is “>”.

In the second case the intervals overlap, which means they have
at least one common chronon. The common chronons are
included in the common part interval, the endpoints of which are

a (starting point) and b (end point), where a = max ( )s el l
1 2,  and

b = min ( )s eu u
1 2, . Let us consider the composition of the formula

for the probability  e< (Figure 5).

Figure 5 includes the items that are used to compose the

probability e<. The intervals [ s l
1 , su

1 ] and [ el
2 , eu

2 ] are divided

by filled brackets into subintervals, which distinguish the
common part of the intervals. For each pair of possible values of

s1 and e2 taken from the intervals [ s l
1 , su

1 ] and [ el
2 , eu

2 ]

correspondingly, we find out the joint probability of the pair as
f1(s1)×f4(e2).

Item 1 represents the probability of the pairs of s1 and e2, where

s1 is taken from the subinterval [ s l
1 ,a-1], and e2 belongs to the

interval [ el
2 , eu

2 ]. Since ( )f e

e e

e

l

u

4 2

2 2

2
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=
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only by a sum of all the values of s1 within the subinterval

[ s l
1 ,a-1], i.e. item 1 = ( )f s

s s
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l
1 1

1
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−

∑ . Item 2 is obtained similarly.

Some combinations of the values of s1 and e2 within the closed

subintervals [ s l
1 ,a-1] and [b+1, eu

2 ] are represented twice across

items 1 and 2. The sum of probabilities of these combinations,
which is represented by item 3, needs to be subtracted from  e<.

Next, we consider the common part [a,b] of the intervals

[ s l
1 , su

1 ] and [ e l
2 , eu

2 ]. Here we follow the trivial approach, i.e.

a simple comparison of all possible combinations of values of s1

and e2 within [a,b], since no useful heuristics can be applied.
Item 4 is composed of the combinations that support  the relation
“<”  from the common part.

Finally, the probability e< is composed of all four items from
Figure 5:

Figure 5. Items of the probability e<.
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Similarly we can obtain the formula for e>:
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we take into account only those pairs of values of s1 and e2 that
belong to the common part [a,b], since only these values can be
equal. Using the proposed formulas we can estimate the
uncertain relation between any two indeterminate temporal
points.

5. PROBABILITIES OF ALLEN’S
RELATIONS BETWEEN
INDETERMINATE INTERVALS
In this section we propose formulas for the probabilities of
Allen’s relations between two indeterminate temporal intervals.
The formulas are composed using the notion of conditional
probability, where the basic events are the possible values of the
relations between the endpoints of the intervals.

The relations r11, r12, r21, and r22 can take the values “<”,”=”,
and “>”. Totally there exist 81 combinations of different values
of these four relations, among which only 13 combinations
correspond to valid Allen’s relations, because the rest of the
combinations contradict the definition of the temporal interval.
This means that we are dealing with a system of dependent
relations. Let us define a set of events
Ω 1={r r r r r r r r r11 11 11 12 12 12 21 21 21

< = > < = > < = >, , , , , , , , , r r22 22
< =, , r22

> }, where
each event represents the situation when one of the four relations
between the endpoints takes some particular value. For each
event from the set Ω 1 we define the possible values of the
relations r11, r12, r21, and r22 (Table 1).

Twelve columns of Table 1 represent 12 events from the set Ω 1.
For each case we define possible values of the relations r11, r12,

r21, and r22. For example, in the case “ r11
< ” the values of the

relations r12, r21, and r22 are “<”, “?”, and “?” correspondingly.
The question mark “?” means that the value of the relation is a
disjunction of the three basic relations. The dependency cases are
derived from the definition of temporal interval.

Table 1. Dependencies between r11, r12, r21 and r22

r11
< r11

= r11
> r12

< r12
= r12

> r21
< r21

= r21
> r22

< r22
= r22

>

r11 ? > > < < ? ? ? ?
r12 < < ? < < ? < < ?
r21 ? > > ? > > ? > >
r22 ? ? ? ? > > < < ?

The important concept which is used further in the text is the
notion of conditional probability. The conditional probability
P(A|BCD) denotes the probability of the event A, calculated
under the assumption that the events B, C, and D occurred. If the
event A does not depend on any of these events, then the
conditional probability P(A|BCD) is transformed into an ordinary
probability P(A) of the event A.

To calculate the probabilities of Allen’s relations we need to
know the probabilities of the relations between the endpoints.
Since we are dealing with a system of dependent relations, the
probability of the relation between two endpoints should take
into account the possible values of three other endpoint relations.
In other words, the probability of each of the relations r11, r12,
r21, and r22 is the conditional probability of this relation under
some particular values of the other three relations. These
particular values are the combinations that correspond to Allen’s
interval relations.

Now, let us compose the formula for the probability P(eq) of the
Allen’s relation “equals”. The probability of this relation is a
multiplication of the four conditional probabilities of the

relations r11, r12, r21, and r22 when the events r11
= , r12

< , r21
> ,

and r22
=  from the set Ω 1 take place simultaneously:

P(eq) = P r r r r11 12 21 22
= < > =



 ⋅P r r r r12 11 21 22

< = > =



 ⋅

⋅P r r r r21 11 12 22
> = < =



 ⋅P r r r r22 11 12 21

= = < >



  = e11

= ⋅e22
= .

According to Table 1, the value of the relation r11 does not

depend on the events r12
< , r21

> , and r22
= . This means that the

conditional probability P r r r r11 12 21 22
= < > =



  is transformed into an

ordinary probability ( )P r11
= , which is equal to the probability

value e11
=  from the matrix ℜ . Similarly, P r r r r22 11 12 21

= = < >



 =

= e22
= . In the conditional probability P r r r r12 11 21 22

< = > =



  the value



of the relation r12 depends on the event r11
= , and can only take

the value “<”. Therefore, the probability P r r r r12 11 21 22
< = > =



  is

equal to 1. Similarly, the conditional probability

P r r r r21 11 12 22
> = < =



  is also equal to 1. In a similar way we can

compose the probabilities of other Allen’s relations (Figure 6).

P(eq)= e11
= e22

= ;

P(b)= e11
< e21

< ; P(bi)= e11
> e12

> ;

P(m)= e11
< e21

= ; P(mi)= e11
> e12

= ;

P(d)= e11
> e12

< e22
< ; P(di)= e11

< e21
> e22

> ;

P(o)= e11
< e21

> e22
< ; P(oi) = e11

> e12
< e22

> ;

P(s)= e11
= e22

< ; P(si) = e11
= e22

> ;

P(f) = e11
> e12

< e22
= ; P(fi) = e11

< e21
> e22

= .

Further we prove that the sum of the above probabilities is equal
to 1, since Allen’s relations are the only thirteen basic relations
that can hold between two intervals.

Let the set of all possible basic events for Allen’s relations
between intervals be Ω 2 ={eq,b,bi,m,mi,o,oi,d,di,s,si,f,fi}, where
each element of the set defines the situation when a particular
relation holds between the intervals. According to Definition 2
(Section 2), the sum of the probability values e from the vectors
from the matrix ℜ  is equal to 1:

e11
< + e11

= + e11
> =1, e12

< + e12
= + e12

> =1, e21
< + e21

= + e21
> =1,

and e22
< + e22

= + e22
> =1.

The sum of the probabilities of Allen’s relations is transformed
by taking into account the above equations:

P a
a

( )
∈
∑

Ω 2

= e11
= e22

= + e11
< e21

< + e11
> e12

> + e11
> e12

< e22
< +

+ e11
< e21

> e22
> + e11

< e21
> e22

< + e11
> e12

< e22
> + e11

< e21
= +

+ e11
> e12

= + e11
= e22

< + e11
= e22

> + e11
> e12

< e22
= + e11

< e21
> e22

= =

= e11
= ( e22

= + e22
< + e22

> )+ e11
> e12

< ( e22
< + e22

> + e22
= )+

+ e11
< e21

> ( e22
> + e22

< + e22
= )+ e11

< e21
< + e11

> e12
> + e11

< e21
= +

+ e11
> e12

= = e11
= + e11

> e12
< + e11

< e21
> + e11

< e21
< + e11

> e12
> +

+ e11
< e21

= + e11
> e12

= = e11
= + e11

> ( e12
< + e12

> + e12
= )+

+ e11
< ( e21

> + e21
< + e21

= )= e11
= + e11

> + e11
<

 = 1. •

In Section 7 we will consider an example of using the proposed
formulas when estimating Allen’s relations between
indeterminate temporal intervals in the temporal database.
Before that, let us consider an example of the behavior of the
proposed estimation mechanism regarding computational
complexity, which we present in the next section.

6. COMPUTATIONAL COMPLEXITY
In this section we present the results of the simulation of the
proposed estimation mechanism. The time required to calculated
the probabilities of Allen’s relations was measured under
different input data. We study how the number of chronons
within the intervals for the endpoints and the overlapping of
these intervals affect the calculation time.

The calculation time mainly depends on the computational power
of the processor that is used, but it also depends on the input
data. Our estimation mechanism uses the values of the endpoints

of the intervals [ s l
1 , su

1 ], [ el
1 , eu

1 ], [ s l
2 , su

2 ], [ e l
2 , eu

2 ], and the

p.m.f.s for these intervals as input data. The algorithm of
estimation is so that, firstly, the four relations r11, r12, r21, and
r22 between the endpoints s1, e1, s2, and e2 are estimated, and
then the probabilities of Allen’s relations are calculated using the
values from the obtained vectors. The second part of the
estimation does not depend on input data and is always
performed in a fixed amount of time. Hence, the estimation of
the four relations between the endpoints is the main time
consuming operation, which depends on the input data. The time
required to estimate each of the four relations depends on two
factors:

• The number of chronons within the intervals [ s l
1 , su

1 ],

[ el
1 , eu

1 ], [ s l
2 , su

2 ], [ e l
2 , eu

2 ]. Generally, the more chronons

there are within these intervals, the more time is needed to
estimate the relations between the endpoints, and hence
between the indeterminate intervals.

• The number of common chronons within the intervals for the
endpoints s1 and s2, s1 and e2, e1 and s2, and e1 and e2. This
factor stems from the composition of formulas presented in
Section 4, according to which we calculate the joint
probability only for those possible values of the endpoints
that are located inside the common part of the intervals. This
means that the more common chronons two intervals for the
endpoints have, the more time is needed to calculate the
probabilities of the basic relations between them.

The mechanism for estimation of Allen’s relations between
indeterminate temporal intervals was implemented using the
“C++ Builder 4.0” programming environment. Using the
developed software several tests were conducted, where the time

Figure 6. Probabilities of Allen’s relations.



Time
(sec.)

required to calculate the probabilities of Allen’s relations was
measured. A desktop computer Pentium II 330 MHz with 64 Mb
of memory was used to measure and collect the results of the
simulation.

Four series of tests with 10 cases in each series were conducted.
The series are distinguished by the number of chronons the
intervals for the endpoints: 100, 1 000, 5 000, and 10 000. For
simplicity we assumed that all four intervals for the four
endpoints include the same number of chronons. The different
cases represent 10 different situations of overlapping of the
intervals for the endpoints, which are distinguished by the
percentage of common chronons in these intervals. These
percentages take the values from 10 to 100. So, the case ”50” in
the series “100” means that the intervals for the endpoints
consist of 100 chronons each and overlap with 50% of the
common chronons. For example, the indeterminate intervals
A[1-100, 501-600] and B[51-150, 551-650] satisfy this condition.
The relations between them is estimated in about 160
milliseconds. The calculation time for all series and cases are
presented in Table 2.

Table 2.  Time (sec.) required to estimate Allen’s relations

100 1 000 5 000 10 000

10 0,06 0,55 13,7 50,15

20 0,06 1,87 57,7 202,29

30 0,06 4,67 110,79 456,76

40 0,11 7,96 193,78 798,73

50 0,16 12,69 326,59 1266,37

60 0,22 18,04 418,75 1822,26

70 0,27 24,93 565,24 2477,74

80 0,33 32,18 742,41 3241,76

90 0,44 40,92 940,88 4099,15

100 0,5 50,75 1143,71 4657,51

Figure 7 illustrates the obtained results and presents the surface
graph along three dimensions: percentage of common chronons,
number of chronons, and the calculation time (sec.).

It is quite obvious that the percentage of common chronons is the
most influencing factor on the calculation time. The obtained
value for the series “100” is about 835 times less than that for
the series “10000” in case “10”, at the same time the difference
between these series in case “100” is about 9315 times.

10 20 30 40 50 60 70 80 90

10
0 100

5 000

0

1000

2000

3000

4000

5000

The described above simulation does not pretend to be an
exhaustive study of the computational complexity of the
estimation algorithm, but it provides some hints to understanding
the behavior of the proposed mechanism.

7. EXAMPLE
This section presents an example of the estimation of Allen’s
relations between indeterminate temporal intervals in the
temporal database. Let us consider a temporal database from a
tube manufacturing plant and a database from a warehouse,
which supplies some materials to the plant. Table 3 presents a
fragment of the database from the plant with a granularity of 1
day.

Table 3.  Production of tubes by the plant

Series of
tubes

Production period Defective
tubes (%)

1020 1∼ 2 Jan   5∼ 13 Jan 11

1021 7∼ 8 Jan   19∼ 21 Jan 2

1022 9∼ 11 Jan   22∼ 30 Jan 3

Each produced series of tubes has a unique identity number
included in the column “Series”. The “Production period”
column includes the indeterminate temporal intervals that define
the production periods for series. For example, the production of
the series 1020 started between the 1-st and 2-th of January, and
ended between the 5-th and 13-th of January. The column
“Defective tubes” includes the percentage of defective tubes for
each produced series.

The warehouse delivers steel blanks to the plant, that are used in

Percentage of common chronons

Number of
chronons

Figure 7. Calculation time depends on the number and
the percentage of common chronons.



production. It keeps a database with delivery records, fragments
of which are presented in Table 4.

Table 4.  Delivery of steel blanks by the warehouse

Series of blanks Delivery period
100 4∼ 7 Jan  12∼ 15 Jan
101 10∼ 11 Feb  25∼ 26 Feb
102 1∼ 2 Feb  10∼ 14 Feb

Each series of steel blanks has a unique identity number included
in the column “Series of blanks”. The “Delivery period” column
includes the indeterminate temporal intervals that define the
delivery dates for each series of blanks. The starting point of an
interval defines the date when the series was sent from the
warehouse. The end point of the interval defines the date when
the series of blanks arrived at the plant.

When the percentage of defective tubes for a series is more than
10 we are interested in which series of steel blanks could be used
in the production of this series of tubes. To answer the question
we need to estimate the temporal relation between the production
of tubes date and the delivery of blanks date. We suppose that
blanks could be used in production if they have arrived at the
plant before or on the last day of the production. The temporal
relations “after”, “overlapped-by”, “met-by”, and “finishes”
satisfy this assumption. Using the approach proposed in this
paper we can calculate the probabilities of these Allen’s
relations. The sum of the calculated probabilities is the
probability that the particular series of blanks could be used in
the production of the particular series of tubes.

The series of tubes 1020 from Table 3 has a percentage of
defective tubes equal to 11. Let us estimate, for example, the
relation between the production of the tubes 1020 and the
delivery of the series of blanks 100 supplied by the warehouse.

The relation between the indeterminate intervals A[4∼ 7,12∼ 15]

and B[1∼ 2,5∼ 13] defining the delivery period for the blanks and
the production period for the tubes respectively is represented in
Figure 2 (Section 2).

The values of the p.m.f.s for the indeterminate points s1 (the
starting point of A) and e2 (the end point of B) are presented at
Figures 3 and 4 (Section 3). Let us suppose in this example that
the values of the p.m.f.s for the point e1 (the end point of A) are
the same as for s1. We also suppose that two chronons included
in the period of indeterminacy for the point s2 (the starting point
of B) are equally probable, which means that the values of the
p.m.f. f3(s2) are: f3(1)=0.5 and f3(2)=0.5.

Using the formulas for the probabilities of the basic relations
between two indeterminate points we derive the relations r11,
r12, r21, and r22, the relational matrix

ℜ = 
( ) ( )
( ) ( )
0 0 1 0 8500 0 0750 0 0750

0 0 1 0 0125 0 0875 0 9
11 12

21 22

, , . , . , .

, , . , . , .
,

r r

r r A B

  

  













,

and the probabilities of the Allen’s relations: P(bi)=0.0750,
P(mi)=0.0750, P(oi)=0.7650, P(d)=0.0106, P(f)=0.0744. The
probabilities of all other Allen’s relations are equal to 0. The
sum of the probabilities P(bi), P(oi), P(mi), and P(f) is equal to
0.989375, which means that the steel blanks 100 were very
probably used in the production of the tubes 1020.

8. RELATED RESEARCH
Many published research articles deal with imperfect
information. Various approaches to this problem are mentioned
in the bibliography on uncertainty management by Dyreson [5],
in the surveys by Parsons [9] and by Parsons and Hunter [10],
although not many of them consider temporal imperfection.
Formalisms intended for dealing with imperfection are often
distinguished as symbolic and numerical. Among the numerical
approaches the most well known are probability theory,
Dempster-Shafer’s theory of evidence [13], possibility theory [4],
and certainty factors [14]. In this paper we adopted a
probabilistic approach.

Representation and reasoning with uncertain temporal relations
between points was discussed by van Beek [17] and by van Beek
and Cohen [16]. They represented an uncertain temporal relation
as a disjunction of the three basic relations, similar to ourselves.
Also algorithms for reasoning with an uncertain relation were
proposed and their complexity studied. However, no numerical
means for estimating temporal relation was provided, and
temporal points were supposed to be determinate only, which
rarely happens in practical applications.

The probabilistic representation of uncertain relations was
studied also by Ryabov et al. in [12], where an algebra for
reasoning with uncertain relations was proposed. The algebra
includes three operations: negation, composition, and addition,
which make it possible to derive unknown relations in a
relational network combining already known uncertain relations.
That approach can be used together with the one proposed in this
paper, where we stressed the deriving of the uncertain relations
between indeterminate temporal points and intervals.

Barbara et al. [2] have proposed a Probabilistic Data Model
(PDM) intended to represent in a database entities whose
properties can not be deterministically classified. The approach,
however, is applied to relational databases and does not discuss
explicitly the management of imperfect temporal information.
That paper focuses exclusively on discrete probability
distribution functions, but the authors claim that the approach
can be extended to continuous probabilities.

Dyreson and Snodgrass [6] proposed a mechanism supporting
valid-time indeterminacy in temporal databases, which can be
seen as an extension of PDM. They represent indeterminate
temporal points similarly to ourselves in this paper, although
their main stress was on the development of a query language.

Our paper concentrates on the description of different situations
when estimating uncertain relations between indeterminate
temporal points and intervals. The proposed mechanism can be



used in a query language that supports temporal indeterminacy
using probabilities, for example, TSQL2 [15], and hence we did
not conceive as a goal the development of a new query language.

9. CONCLUSIONS
In this paper we proposed one way to estimate relations between
indeterminate temporal intervals. Using the information about
the intervals for the indeterminate endpoints and p.m.f.s for
those intervals we derived the relational matrix and then used it
to calculate the probabilities of Allen’s relations. The approach
assumes full knowledge about the distributions inside the
intervals of values for the indeterminate endpoints, which does
not happen very often in real applications. In the case when the
distribution is unknown, the uniform distribution is a useful
assumption, because we have no reason to favor one chronon
over another. As one direction for further research we consider
the development of some formal means for specifying the
distribution using available indirect information about it.

The probabilistic approach that was adopted in the paper is
actually one of the means for handling uncertainty, as well as
possibility theory, Dempster-Shafer theory, and numerous logical
approaches. The method for handling uncertainty was selected
reflecting our goals of having numerical measures of uncertainty,
and a solid mathematical background behind the method. The
probabilistic approach has also a close relation to statistics which
potentially can be used as one of the means of defining the p.m.f.
by analyzing the past data.

Generally, the proposed representation can be applied to
continuous time model. Certainly there are some domains where
the continuous time model is more natural, but more applications
are those, where the discrete representation is used. The discrete
case is also given more attention in the temporal databases area,
one of the important application areas for temporal
representation and reasoning.
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