Multi-Feature Query by Multiple Examples in Image
Databases

*
Surya Nepal
Department of Computer Science,
RMIT University, GPOBox 2476V,
Melbourne VIC 3001, Australia

Nepal@cs.rmit.edu.au

ABSTRACT

Query by example(QBE) image are supported in Content-
Based Image Retrieval (CBIR) systems, such as QBIC and
Virage. We are addressing the problem of processing user
queries of the form “retrieve images similar to I, Is, ..., I
based on color and texture”. We refer to such a query as
MF-QBME (Multi-Feature Query By Multiple Examples).
Such user queries are supported in the CHITRA prototype
CBIR system we are implementing. Users can define high
level concepts such as SUNSET and MOUNTAINS which
can later be used in queries such as “retrieve all images that
have SUNSET and MOUNTAINS”. Answering such queries
also requires processing of MF-QBME. We have defined and
introduced the concepts of inclusion property and clustered
query. Processing MF-QBME queries involves dealing with
multiple points in multiple feature spaces. We define the
exact low level semantics MF-QBME, and provide the cor-
responding processing strategies. The experimental perfor-
mance results are also presented.

Keywords

CBIR queries, query processing, query optimization, multi-
media query processing

1. INTRODUCTION

Advances in storage and processing technologies have made
multimedia databases (comprising large collections of im-
ages, video and sound) possible. Images are widely used
in multimedia collections such as in medical imaging, geo-
graphic information systems, and photo galleries. Content

*The author is now at CSIRO Mathematical and Informa-
tion Sciences, Locked Bag 17, North Ryde NSW 1670, Aus-
tralia. Email: Surya.Nepal@cmis.csiro.au

ADVANCES IN DATA MANAGEMENT 2000
Krithi Ramamritham, T.M. Vijayaraman (Editors)
Tata McGraw-Hill Publishing Company Ltd.

(© CSI 2000

M.V. Ramakrishna
School of Computer Science and Software
Engineering, Monash University
Caulfield South 3145

rama@csse.monash.edu.au

Based Image Retrieval (CBIR) systems are required to uti-
lize such collections. Many CBIR. systems such as QBIC,
Virage, VisualSEEk, NETRA and MARS have been devel-
oped recently. In this paper, we are addressing the issues of
MF-QBME query processing in CBIR systems. The ideas
developed are being implemented in the CHITRA prototype
CBIR system we are developing (CHITRA means picture in
“Sanskrit”).

Unlike exact match in traditional databases, query pro-
cessing in CBIR systems involves similarity search. The
problem is to identify a set of database vectors which are
“closest” to the given query feature vectors. The result of a
query in traditional databases is always complete and satis-
fies the user’s requirements. However, the CBIR query re-
sult is not fixed and depends on the user perception. Similar
to traditional databases, efficient query processing in CBIR
systems is essential to handle very large image databases.

A common method of querying in CBIR system is “query
by example image”. The system provides a set of images
and features; the user picks relevant images and features,
and requests other images with similar features. The query
is constructed using corresponding feature vectors. For ex-
ample, if a user wants to retrieve images of “sunset” from
a database, he/she can compose a query by selecting an ex-
ample image of a sunset. The user then expects to retrieve
images of a sunset. Such querying mechanism is supported
in CBIR systems such as QBIC, Virage, NETRA, and Vi-
sualSEEk. It is logical for users to expect better results by
giving more example images of the same concept (sunset).
Hence, we decided to support Query By Multiple Example
(QBME) images in CHITRA. CBIR systems such as Virage
and QBIC do not support such queries.

In this paper, we are addressing the problem of process-
ing MF-QBME queries of the form “retrieve ¢mages similar
to I, I», .., I, based on color and terture”. All or none
of the example images in the query may be present in the
database. Even if all the example images are present in the
database, it is quite possible that all the example images
are not present in the retrieved set of images by the query
processing algorithm. To capture these, we have defined the
concept of inclusion property. The retrieved result is also
dependent on the relative placement of the query images in
the feature spaces. We have defined the concept of clustered
query to describe such a property of the query.

The MF-QBME are implicitly encountered in processing



concept queries and relevance feedback, as described below.

User Queries: The graphical user interface in CHITRA
supports the user to select more than one example im-
age and feature while posing queries [5, 8]. The user
can also give images that are not in the database as
examples to the system, whereupon the relevant fea-
tures are extracted on line. Other ways of composing
MF-QBME in CHITRA are by selecting inter-image
features, inter-image object features, or intra-image
object features.

Concept Queries: CHITRA supports queries based on con-
cepts such as “sunset” and “mountains”. The user can
define concepts using multiple example images and fea-
tures. Such concepts are stored in the database and
the user can later apply them to compose complex con-
cept queries. The user can compose concept queries
such as “retrieve images of sunset” and “retrieve im-
ages of sunset and mountains” [10]. Processing such
queries requires handling of MF-QBME at the system
level.

Relevance Feedback: Text retrieval systems use relevance
feedback where users can select the relevant documents
and refine the original query. Experimental evidence
suggests that relevance feedback improves the query
results. Relevance feedback techniques are also used
in CBIR systems to refine the user’s queries, and is
supported in CHITRA [7]. The user can pose a query
to the system and retrieve the similar images. If the
user is not satisfied with the retrieved images, he/she
can select the images from the retrieved set that are
meaningful and give to the system as feedback. CBIR
systems such as QBIC and Virage also support rele-
vance feedback with a single image. MARS supports
relevance feedback with multiple example images [15].
Handling relevance feedback requires processing of MF-
QBME at the system level.

The rest of the paper is organized as follows. Various
CBIR query processing strategies are reviewed in Section 2.
In Section 3 we introduce and define the inclusion property
and clustered query and discuss the processing of MF-QBME
queries. Experimental results are reported in Section 4 fol-
lowed by conclusions.

2. BACKGROUND

The query processing literature of our interest can be sum-
marized in terms of the four queries shown in Figure 1.

2.1 Processing of Single Example Queries

We refer to a query containing a single feature vector such
as @1 as a simple query. Processing such queries involves
retrieving the k nearest images in the feature space, where
nearness is defined by the similarity measure using search
algorithms [16].

We call queries such as )2 involving more than one feature
as complex queries. The processing ) involves retrieval
from indexes on color and texture features, and combining
them appropriately. Such conjunctions of atomic queries
forms an important class of CBIR queries. Fagin defined the

semantics of such queries using fuzzy logic and has proposed
an algorithm to combine the results of atomic queries [3]. Fa-
gin’s algorithm has been implemented in the IBM’s Garlic
project to combine multiple systems within the same frame-
work [2]. Nepal and Ramakrishna have carried out an anal-
ysis of Fagin’s algorithm, and proposed a multi-step algo-
rithm [9]. The multi-step algorithm performs better than
Fagin’s algorithm for fuzzy combining functions which sat-
isfy certain bounding properties. Ortega et al. proposed
a complex query processing algorithm based on a demand
driven approach [12]. Their algorithm retrieves one element
at a time for the atomic queries instead of retrieving & el-
ements as in Fagin’s approach. Thus, the number of ele-
ments that are retrieved for each atomic query depends on
the combining functions used.

2.2 Processing of Single Feature QBME (Qs)

Single Feature QBME are supported in CBIR systems
such as MARS [15] and MindReader [4]. Porkaew et al.
present two approaches of processing such queries [15]: Cen-
troid Expansion Search (CES) and Multiple Expansion Search
MES). In MES, the k nearest neighbors for n query points
are determined by iteratively retrieving next nearest neigh-
bors for each query point. Thus, in order to obtain the top
k images, MES incrementally evaluates the nearest neigh-
bor for each of the example images until there are at least
k images in the result. Efficient strategies of implementing
MES overcoming the problem of making n k-nearest neigh-
bor calls are also proposed in [15]. The key idea is to traverse
a multidimensional index structure such that the best & ob-
jects are retrieved from the data collection without having to
explicitly execute k nearest neighbor queries for each point
in the query.

Query point movement attempts to move the query rep-
resentation in the direction where relevant objects are lo-
cated [13]. At any instance, the query point is represented
by a single point in each feature space. When the user uses
multiple examples to construct the query, the centroid is
used as the single point query. When the user interacts with
the system, he/she marks the relevant images and poses the
relevance feedback query. Then, the weighted centroid of the
relevant images is used as the single query point. The user
can also provide different levels of relevance. The weights
are obtained from the relevance levels provided by the user.

Ishikawa et al. proposed a method for handling multiple
example queries in a single feature space [4]. This method
tries to find an appropriate distance function and a query
point using the examples returned as feedback by the user.

3. MULTI-FEATURE QBME

We first introduce some functions and properties for our
discussion on the semantics and processing of MF-QBME.
We assume that the system has all the relevant features ex-
tracted and stored in appropriate index structures. The sys-
tem supports k-nearest neighbor search, range search, and
the following function calls.

GetNextK(fy,, k) : The subsystem returns the most sim-
ilar k& elements based on the similarity of those ele-
ments with query feature vector f,. When an algo-
rithm makes a GetNextK () call for the first time, the



based on color’’.

Q2 (multi-feature single example)
on color and texture’’.

Qs (single feature QBME)
color’”’.

@4 (multi-feature QBME)

color and texture’’.

@1 (single feature single example) : ‘‘Retrieve images similar to Iy
: “‘Retrieve images similar to I, based

: “‘Retrieve images similar to I,..I, based on

: “‘Retrieve images similar to Ii,..I, based on

Figure 1: Four types of queries

subsystem returns the top k£ elements based on the
similarity. The subsystem then starts to yield elements
from k+ 1 most similar images in the subsequent calls.

GetSim(Z, f,) : The subsystem returns the similarity of
image I with query feature vector f,. As against the
above two functions, which requires the use of the fea-
ture index, GetSim() only needs to use direct access.

3.1 Some useful properties

Some or all of the example images in the MF-QBME may
not be present in the database. It is also quite possible
that, even if all the example images are in the database,
the result may not include some or all the example images.
If the user does not see the example images in the query
results even though they are in the database, the system
looks unfriendly and the user will be annoyed. We define
some properties to capture these. Let Qs be the set of ex-
ample images Qs = {I1,.., Ir}, and DB the set of all images
in the database. The query Q4 becomes,

Qu: retrieve k images similar to Qs based on color and tex-
ture.

DEFINITION 1. inclusive query: A query such as Qu
is said to be inclusive if all the example images are in the
database.

Qs C DB

DEFINITION 2. inclusive algorithm: If for every inclu-
sive query @, and k > n, the result returned by an algorithm
contains Qs then the query processing algorithm is said to
be inclusive.

For every query Q whose Qs C DB, NNg D Qs

where NN(’f, is the result returned by the algorithm (set of k
most similar images).

For the systems to be user-friendly and provide greater
user satisfaction, the query processing algorithms should be
inclusive. The performance of query processing algorithms
depends on the distribution of query points in the corre-
sponding feature spaces. For example, if the user wants
to retrieve snow-covered mountain images, he/she specifies
one or more such mountain as examples. For some concepts,
the feature vectors of all the images may be close to each
other. In other concepts, they may be on a straight line for

example as illustrated in Figure 2(b) for hypothetical two
dimensional feature vectors. The choice of an algorithm is
dependent on these properties. Some algorithms in the liter-
ature [15, 14] appear to assume that the distribution will be
similar to that in Figure 2(a). We define k-clustered query
to capture this property of the feature spaces.

DEFINITION 3. k-clustered query: A query such as Q4
1s said to be k-clustered query if Qs is contained in the (n+k)
nearest neighbor in the database of every example image I,.

VI, € Q. : NN} * 5 Q,

where NNI"T‘H“ is a set of (n + k) most similar images with
image I.

3.2 Semantics and Processing Algorithms

The query Q4 is illustrated for a (hypothetical) two di-
mensional feature space in Figure 3. There are five query
points, one corresponding to each example image, in each
of the two feature spaces. The closeness of the features of
example images depends on the nature of the feature values.
We define two possible semantics of MF-QBME queries and
propose the corresponding processing strategies.

DEFINITION 4. A Multi-Feature Multiple Example
queries MFQBME =< m,n,Qs, F,d > consists of im-
ages Qs = {I1, Is, .., I}, features F = {f1, .., fi, .., fm}, and
a distance function d that given two images, returns the dis-
tance between them based on feature f;. We say m x n is
the size of the MFQBME.

The distance function d determines the distance between
two images on the feature space defined by f;. Let I; 5; be a
feature vector for the example image ¢ in the feature space
fi. The distance between a database image I in the feature
space from the given example image is given by d(I; 5 v Lavy )
The distance of a database image I, from the Qs is then
given by,

D(Idb! QS) = G(dlli d12’ cey dmn)

where di1, ..,dmn are the distances of the database image
Iap with features I, ,..,In, , respectively. The semantics
is based on the combining function G. There are many pos-
sible ways of defining the semantics for the MF-QBME. We
use the fuzzy framework to evaluate the query. We have
identified two ways of defining semantics for the MF-QBME.



oo o
o, ®© o
0% 4 o ©
o o ©
o
[~y o o
o ° ) oo ©
[u 20 00 9 A3 ©0°1a |5]
o o SN
o o o ©
o © o
o 50
o “o o
o ©
o
0% o
o

@

(b)

Figure 2: An illustration of clustering property in a hypothetical two dimensional space

o o o©
©0° P2
%o © %o
© o
o 7 o o
o
@ o &°
o
o %o ° 13
o ° ° s
o o 5 ©
o o
oo 8 o
1% o o
© o
o);?o
o ° ° . o
o
o
o X 18
o

%o o °
9, ® o %
0 4 o0 ©
° o o
I5 ©
®og © o
o o X o009 ©°U%0,
) o & Lo
o o o
N o o
OOO 14°59° o
o
L o1
&: o
o © °
o

COLOR

TEXTURE

Figure 3: An illustration of multi-feature multiple example query in a hypothetical two dimensional space

Feature Priority (OR-AND) Approach

In this approach, the given query is decomposed into single
feature multiple example queries. Each is then processed
using the appropriate above mentioned algorithms. The re-
sults are combined using an algorithm such as the multi-step
algorithm. The semantic tree for the query is shown in Fig-
ure 5. This approach first performs the OR operation on
the feature and then AND operation, hence its name. This
query tree can be processed using the data driven algorithm
such as that proposed in [12]. In describing the algorithm,
we use standard fuzzy functions Min and Maz to evalu-
ate AND and OR operators, for simplicity. However, the
algorithm remains the same for any other combining func-
tion [3]. The AND and OR operators in our framework are
evaluated as follows.

e AND - maximum of all distances or minimum of all
similarity values.

e OR - minimum of all distances or maximum of all sim-
ilarity values.

Semantics

The low level semantics of the query retrieve k images most
stmilar to In,..,I, based on features fi,..,fm, is interpreted
as follows.

For each database image I compute the final grade G(I)
as,

G(I)=(d11V..Vdni) AN .. A(dim V .. Vdnm)
where d;; is the distance of database image I with example
image I; based on feature f;. The symbols A and V are AND
and OR operators, respectively. The required result is then
the sorted list of images based on G(I).

Processing:

The query semantic tree for Q4 based on the feature priority
approach is shown in Figure 5. ColSim() and TexSim()
return lists of database images based on the similarity values
with color and texture features, respectively. The AND and
OR operators are used to combine the results. The query
semantic tree is then processed using the algorithm shown
in Figure 4.



1. The leaf nodes are processed using a k-nearest neighbor search
algorithm to retrieve most similar k images using the GetnexrtK()
function.

2. The OR and AND nodes are processed as follows.

e For each node i, request the node ¢ to return the next image
z. Thus, each node i outputs the graded set of pairs (z,ui(z)),
where z is an image in the database and p;(z) is the similarity
value of z under <.

e For each image x returned by the node ¢ in the current
iteration, do random access to j using the GetSim() function,
i#j, to find p;(z).

o Compute the threshold grade, t; for this iteratiom, %3 =
t(pg; (i), -, tgm (Tm)). The function t is Min for AND node and
Max for OR node. Here z; is the element retrieved by node ¢
in the current iteration.

e Compute the grade pg(x) = t(ug; (), .. tgm (x)) for each image z
retrieved in this iteration. Update Y, the set containing all
images that have grade pg(x) >ts.

e Repeat the above iteration until the set Y has k images.

e Qutput the graded set {(z,pq(z)|zr € Y}.

Figure 4: An algorithm to process the query tree

Figure 5: The query tree for ()4 based on feature priority (OR-AND) approach



Image Priority (AND-OR) Approach

In this approach, the given query is decomposed into multi-
feature single example sub-queries. Each sub-query is then
processed using algorithms mentioned in the last section.
The results are then combined using the combining func-
tions (such as, Mazx for fuzzy OR). Figure 6 shows the tree
representation of the query semantics. This algorithm first
performs the AND operation and then OR. Here again, the
algorithm is given in terms of fuzzy evaluation functions
Min and Max for AND and OR operators. But the algo-
rithm is valid for any other functions.

Semantics

The low level semantics of the query retrieve k images most
similar to I,..,I, based on features fi,..,fm, is interpreted
as follows.

For each database image I compute the final grade G(I)
as,

GU)=(di1 A-.ANdim) V..V (dn1 A .. Ndnm),
where d;; is the similarity of I with example image I; based
on feature f;. The symbols A and V represent AND and
OR operations, respectively. The required result is then a
sorted list of images based on G(I).

Processing

The query semantic tree for Q4 based on the image priority
approach is shown in Figure 5. ColSim() and TexSim()
return lists of database images based on color and texture
similarity, respectively. The AND and OR operators are
used to combine the results. The query semantic tree is
then processed using the algorithm shown in Figure 4.

4. EXPERIMENTAL EVALUATION

The execution cost of the algorithms should be measured
in terms of number of disk page accesses, memory uses, CPU
processing costs etc. We use the number of objects accessed
to measure the execution cost E., which serves our purpose
of comparing algorithms [3]. This cost model is not real-
istic since the number of disk accesses required for sorted
access are in general higher than that for direct access. Our
aim here is to compare the relative performance of proposed
query processing algorithms, independent of underlying in-
dex structures. This also avoids the effects of a particular
index structure being used on the execution cost.

The sorted access cost is the number of elements retrieved
by the subsystems in response to GetNextK() call. For
example, if each of the subsystems retrieves 50 images in re-
sponse to each of the five Get NextK () calls, then the sorted
access cost of the algorithm is 250. Each call to GetSim()
to find the similarity value of an image incurs a unit direct
access cost. The ezecution cost is the total number of objects
accessed from the system.

The retrieval performance of MF-QBME query processing
algorithms is measured in terms of precision/recall values
calculated as follows.

Precision is the ratio of the number of relevant images re-
trieved to the total number of images retrieved. The
ideal situation corresponds to 100% precision, when all

retrieved images are relevant.

|relevant N retrieved|
|retrieved|

precision =

Recall is the ratio of the number of relevant images re-
trieved to the total number of relevant images. We
can achieve ideal recall (100%) by retrieving all the
images from the database, but the corresponding pre-
cision will be poor.

|relevant N retrieved|
|relevant|

recall =

Some features give better retrieval performance for a given
collection than others. As our aim is not to achieve the best
precision /recall values, but to measure the relative perfor-
mance of the algorithms. The experimental results should
be judged in terms of relative values rather than the
absolute.

4.1 Experimental Details

There is a lack of a standard benchmark for testing CBIR
query processing algorithms. In accordance with the consen-
sus reached at the SIGIR’98 workshop, we used the Corel
collection of images [17]. A collection of 1000 images was
chosen from two different volumes of Corel photo CDs: travel
destinations and natural scenes. We used the following high
level concepts for our query images: buildings, fishes, flow-
ers, flowerbeds, greenbeds, mountains, people, plants, sea,
and sunset. Each image was prejudged to be relevant or
not for each of the query (so as the experimental results are
unbiased). This process led to the partitioning of the im-
age collection into the query concepts. We considered two
global features: color and texture. Following Carson and
Ogle’s experimental results on human perception of colors,
we used 13 dimensional color feature vectors [1]. For texture
we used 16 dimensional Gabor texture feature vectors gen-
erated using four different scales and two orientations [6].
The feature vectors for all the images were extracted and
stored appropriately.

To evaluate the retrieval performance of MF-QBME queries,
we posed queries of the form Q4. For each concept, we posed
a query using a randomly selected set of five example im-
ages. In each case, the recall/precision values were com-
puted based on the system response and the relevance judg-
ment, as defined above. To measure the relative retrieval
performance, we plot precision values at various intervals of
recall for the two different algorithms. The retrieval perfor-
mance of these algorithms for one set of queries (with sunset
example images) is shown in Figure 7. We observe that the
image priority (AND-OR) approach gives better retrieval
performance for this type of query.

4.2 Evaluation

Tables 1 shows the recall/precision results of the experi-
ments with query Q4, k = 20. The execution costs shown
are the observed number of images accessed in each case.
They also show the effective cost P,, computed using the
CBIR cost model [11]. We use E.; to denote the execution
cost incurred by an algorithm for retrieving ¢ images. Let
the corresponding retrieval performance be R,;. The evalu-



Figure 6: The query tree for ()4 based on image priority (AND-OR) approach

Figure 8: An example query (J4: “retrieve images similar to ¢i,..,¢5 based on color and texture”.

0125 0125 0.128 0128 .12?

Figure 9: The best 20 images retrieved by the OR-AND algorithm in response to the query Q4



0.161 0.162

Figure 10: The best 20 images returned by the AND-OR algorithm in response to the query Q4

1.0

0.8

0.6

Precision
>
z
o
o
)

0.4

0.2

00 , .
00 0.2 04

Recall

Figure 7: Performance of MF — QBME processing
algorithms for sunset examples

ation measure P, we have proposed is a combination of E;
and R,; with the appropriate combining function given by,

Pe; = Ec; O Ry, (1)

We use multiplication X with suitable scale factor K as
the combining function.

P.=E.x (1+K x R,) (2)

The retrieval performance R, is defined as a negative double-
exponential function of precision (p).
(1 - Rma.m X exp(ilenxexp(_RCh Xp))
R, = 4 10> (Rimas X exp(~ min xexp(TH Py <
p =
0

-R
if (Rmae X €xp (

(=Rmin Xexp Chxp))) >1

where p is the precision value, Rimaz, Rmin and R, are the
parameters that can be chosen by the users (and hence it is
a parametric approach).

We explain the results shown in the last row of the ta-
ble. To retrieve the 20 best images from the database of
color and texture features, the OR-AND algorithm gives a
precision value of 0.45 (as shown in Figure 7) and incurs an
execution cost of 436 accesses. The corresponding retrieval
performance R, is calculated based on the CBIR model for
p = 0.45 as 0.11 [11]. The effective cost P, for K = 1 is then
given as,

P.=E.x (1+K x R)
P. =436 x (1+1x0.11)



Queries EzecutionCost (E.) Effective Cost (P.)
OR-AND | AND-OR | OR-AND | AND-OR OR-AND AND-OR
/Ry p/R, K=1]K=100 | K=1 | K =100
Buildings 0.45/0.11 | 0.40/0.17 346 1358 384 4152 1588 24444
Fish 0.25/0.56 | 0.25/0.56 418 1036 652 23826 1616 59052
Flowers 0.30/0.39 | 0.40/0.17 399 1088 | 554 | 15960 | 1272 | 19584
Flowerbeds | 0.40/0.17 | 0.35/0.26 619 1444 724 11142 1819 38988
Greenbeds | 0.35/0.26 | 0.35/0.26 420 1366 529 11340 1721 36882
Mountains | 0.30/0.39 | 0.30/0.39 550 1272 764 22000 1768 50880
People 0.25/0.56 | 0.30/0.39 241 1479 375 13737 2055 59160
Plant 0.60/0.03 | 0.60/0.03 247 760 254 988 782 3040
Sea 0.25/0.56 | 0.25/0.56 485 1539 756 27645 2400 87723
Sunset 0.45/0.11 | 0.75/0.00 436 1166 483 5232 1166 1166

Table 1: Effective cost of QBME,,; based on color and texture .

The corresponding values for the AND-OR algorithm are,
R, = 0.00 and P, = 1166. Thus, we conclude that OR-AND
is the better algorithm. If we change the value of K to 100,
the effective P, for OR-AND becomes,

P. =436 x (1+ 100 x 0.11)

which is worse than the AND-OR cost of 1166. Note that the
values of P. for the AND-OR algorithm remain the same,
independent of K. This is due to the high value of precision
(0.75), which makes R, = 0. The user is fully satisfied with
the precision, and there is no penalty of lower precision to
the execution cost. The higher value of K penalizes the poor
retrieval performance more heavily. The query (“sunset”)
and the results obtained for both AND-OR and OR-AND
algorithms are shown in Figures 8,9, and 10.

5. CONCLUSIONS

Much of recent research has focused on processing simple
CBIR queries using high dimensional index structures. In
this paper, we described the motivation for the support of
MF-QBME queries in CHITRA. We defined the two possi-
ble semantics of such queries using fuzzy logic, and provided
the corresponding processing algorithms. Based on the ex-
perimental results, we draw the following conclusions.

e The choice of an algorithm depends on the distribution
of data points and query points in a particular feature
space. The characterisation of the feature space in
relation to query points is left as an open problem.

e In general, the AND-OR algorithm gives a better re-
trieval performance than OR-AND for low recall val-
ues. For higher recall values, the difference in retrieval
performance is not very significant.

e The execution cost of the OR-AND approach to pro-
cess MF-QBME queries is much lower than that of
AND-OR approach.

e Based on the overall performance, we observed that it
is always better to use the OR-AND approach than the
AND-OR approach for processing MF-QBME queries.

e Both AND-OR and OR-AND algorithms are inclusive.

6. REFERENCES

[1] Chad Carson and Virginia E. Ogle. Storage and
retrieval of feature data for a very large online image
collection. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering,
19(4):19-27, December 1996.

[2] W. F. Cody, L. M. Haas, W. Niblack, M. Arya, M. J.
Carey, R. Fagin, M. Flickner, D. Lee, D. Petkovic,

P. M. Schwarz, J. Thomas, M. Tork Roth, and

J. H. Williams and. Querying multimedia data from
multiple repositories by content: the Garlic project.
Third Working Conference on Visual Database
Systems (VDB-3), pages 17 — 35, Lausanne,
Switzerland, March 1995.

[3] Ronald Fagin. Combining fuzzy information from
multiple systems. Proc. Fifteenth ACM Symp. on
Principles of Database Systems, pages 216-226,
Montreal, 1996.

[4] Yoshiharu Ishikawa, Ravishankar Subramanya, and
Christos Faloutsos. MindReader: Querying databases
through multiple examples. In Ashish Gupta, Oded
Shmueli, and Jennifer Widom, editors, VLDB’98,
Proceedings of 24rd International Conference on Very
Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pages 218-227. Morgan
Kaufmann, 1998.

[6] M. Kerr and M.V. Ramakrishna. Design of a graphical
query mechanism for the CHITRA CBIR system.
Technical report, CS Department, RMIT University,
1999.

[6] W.Y. Ma and B. S. Manjunath. Texture features and
learning similarity. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pages 425 — 430, 1996.

[7] Me.E.J.Wood, N.W.Campbell, and B.T.Thomas.
Interactive refinement by relevance feedback in
content-based digital image retrieval. In Proceedings of
ACM Multimedia 98, pages 13—20, Bristol, England,
September 12-16, 1998.

[8] Surya Nepal and M.V.Ramakrishna. A generalized
test bed for image databases. In 10th International
Conference of the Information Resources Management
Association, pages 926-928, Hershey, Pennsylvania,
USA, May 1999.



[9]

[10]

[11]

[15]

Surya Nepal and M.V.Ramakrishna. Query processing
issues in image(multimedia) databases. In Fifteenth
International Conference on Data Engineering
(ICDE), pages 22—29, March 23-26, Sydney, Australia,
1999.

Surya Nepal, M.V.Ramakrishna, and J.A.Thom. Four
layer schema for image data modelling. In Chris
McDonald, editor, Australian Computer Science
Communications, Vol 20, No 2, Proceedings of the 9th
Australasian Database Conference, ADC’98, pages
189-200, 2-3 February, Perth, Australia, 1998.

Surya Nepal and M.V. Ramakrishna. An evaluation
measure for query processing in CBIR systems. In
11th International Conference of the Information
Resources Management Association, Anchorage,
Alaska, USA, May, 21-24 2000. To appear.

M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrota, and
T. Huang. Supporting ranked boolean similarity
queries in MARS. IEEE Transaction on Knowledge
and Data Engineering, 10(6):905-925, 1998.

Michael Ortega, Yong Rui, Kaushik Chakrabarti,
Sharad Mehrotra, and Thomas S. Huang. Supporting
similarity queries in MARS. In Proc. of ACM Conf.on
Multimedia, pages 403 — 413, 1997.

Kriengkrai Porkaew, Kaushik Chakrabarti, and
Sharad Mehrotra. Query refinement for content based
multimedia retrieval in MARS. In IEEE Int.
Conference on Multimedia Computing and Systems
(ICMCS), volume II, pages 25-36, Centro Aftari,
Florence, Italy, 1999.

Kriengkrai Porkaew, Sharad Mehrotra, Michael
Ortega, and Kaushik Chakrabarti. Similarity search
using multiple examples in MARS. In International
Conference on Visual Information Systems,
VISUAL’99, pages 68-75, Amsterdam, the
Netherlands, 1999.

N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In Proceedings of ACM - SIGMOD
Intl. Conference on Management of Data, pages
71-79, June 1995.

Rohini K. Srihari, Zhongfei Zhang, R. Manmatha, and
S. Ravela. Multimedia indexing and retrieval. In 21st
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR98), Melbourne, Australia, August 24 - 28,
1998. Workshop.



