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ABSTRACT
Data distribution statistics are vital for database systems and
other data-mining platforms in order to predict the running time
of complex queries for data �ltering and extraction. State-of-the-
art database systems are in
exible in that they maintain his-
tograms on a �xed set of single attributes, each with a �xed
number of buckets regardless of the underlying distribution and
precision requirements for selectivity estimation. Despite many
proposals for more advanced types of "data synopses", research
seems to have ignored the critical tuning issue of deciding on
which attribute combinations synopses should be built and how
many buckets (or, analogously, transform coe�cients, etc.) these
should have with a given amount of memory that is available for
statistics management overall.
This paper develops a method for the automatic tuning of

variable-size spline-based data synopses for multidimensional attri-
bute-value frequency as well as density distributions such that an
overall error metric is minimized for a given amount of memory.
Our method automatically uses more space for distributions that
are harder or more important to capture with good precision. Ex-
perimental studies with synthetic and real data demonstrate the
viability of the developed auto-tuning method.

1. INTRODUCTION
All database systems and many data-mining platforms

keep statistics about their underlying data for a variety of
purposes:

First, query optimizers rely on statistics for estimating the
selectivity of certain operators. These selectivities matter in
the costs of di�erent execution plans for a given query; so
accurate estimations are needed for the query optimizer to
�nd a plan with costs not too much above the optimum.

Second, in many situations it is not su�cient to rank di�er-
ent execution plans in the proper order, but it is necessary
to predict the absolute sizes of intermediate results and the
absolute running times of queries with reasonable accuracy.
This is relevant, especially in an OLAP or data-mining envi-
ronment, to assign proper priorities to long-running queries,
ensure that the extracted result data is of proper size that
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subsequent analysis tools can deal with, avoid queries that
would monopolize a server, or even to reconsider whether a
long-running data-extraction query is worthwhile at all.

Third, for initial data exploration it may be su�cient for
the database system to provide an approximative result for
a resource-intensive query, typically for aggregations over
huge data sets and ideally with a speci�ed con�dence inter-
val. Such approximations could be computed from the data
statistics alone rather than scanning all data.

Traditionally, database systems keep statistics only in the
simple form of so-called equi-depth [24] histograms with a
�xed number of buckets. However, this has widely been
recognized as insu�cient for reasonably accurate selectivity
estimations and other uses of data statistics. In the last
decade, a plethora of approximation techniques have been
proposed as representations for a database system statistics.
These proposals range from advanced forms of histograms
(especially V-optimal histograms and including multidimen-
sional variants) [27, 14, 17], sampling [8, 16, 12], and para-
metric curve-�tting techniques [32, 10] all the way to highly
sophisticated methods based on kernel estimators [7], Wave-
lets and other transforms [21, 20] for range-selectivity es-
timation, methods based on sampling for approximation of
foreign-key joins [3], and other data-reduction techniques [6].
Gibbons et al. have coined the term data synopsis as the
general concept that abstracts from the variety of all these
di�erent representations [13].
All the prior work takes a local viewpoint in that they aim

at the best possible synopsis for a single data attribute or
multidimensional attribute combination with a given amount
of memory (i.e., number of buckets or transform coe�cients,
etc.). From a global viewpoint, a major problem that has
been disregarded so far is how to decide on which attributes
or attribute combinations one should build synopses and
how much memory should be allocated to each of them with
a given total amount of memory that is available for statis-
tics management overall.

1.1 Contribution
The only prior work that has addressed this important

tuning problem is [9]. However, this work merely considered
the issue of selecting the attributes on which one-dimensional
histograms should be kept based on the relevance of such
statistics for the decisions of the query optimizer. So a
histogram was considered irrelevant if its existence did not



make a di�erence with regard to the optimizer's choice of ex-
ecution plans. In contrast, our work presented here aims at
accurate predictions of the absolute running times, a much
more ambitious goal. Also, we substantially generalize the
simple yes-or-no decisions of [9] where the same, a priori
�xed number of buckets is allocated for each histogram, by
allowing a variable number of buckets for the various syn-
opses and tuning these numbers so as to minimize a global
error metric.
Our approach is based on the type of linear spline syn-

opses that we studied in [19], but it also would be applica-
ble to standard forms of histograms. Linear Spline synopses
reconcile the versatility of histograms with the adaptivity
of simple curve �tting limited to linear curves within each
bucket (with possible discontinuities at bucket boundaries).
The synopsis for a given attribute is constructed from a set
of observed (value, frequency) points by a dynamic program-
ming algorithm that determines the optimum partitioning of
the data-value domain into a given number of buckets and
a least-squares linear �tting within each bucket to minimize
the overall approximation error. The algorithm obtains its
input points as feedback from the executed queries with a
statistical bias on the observed points according to the work-
load pro�le, or from an unbiased sampling or full scanning
of the actual data.
The current paper generalizes the approach of [19] by

allowing di�erent, independent partitionings (i.e., bucket
boundaries) for capturing the frequency and the density
distribution of an attribute. Furthermore and most impor-
tantly, the number of buckets is not a priori �xed for neither
of the two distributions and not even for the entire statis-
tics of the attribute. Rather the number of buckets for each
attribute and for the two approximations per attribute are
automatically determined by a new dynamic programming
procedure so as to minimize the overall error. The underly-
ing error metric is a weighted sum of the errors for di�erent
classes of estimation problems with weights in proportion to
their fractions in the overall workload. Our current method
considers estimation errors for range queries, projections and
groupings in conjunction with range selections, as well as
equijoins over selected value ranges. For the latter class, a
special kind of join synopsis is added to the repertoire of
synopses.

1.2 Notation
Throughout the paper, we adopt the notation used in [27].

The domain D of an attribute X is the set of all possible
values of X, and the value set V � D;V = fv1; : : : ; vng
is the set of values actually present in the underlying rela-
tion R. The spread si of vi is de�ned as si = vi+1 � vi
(sn = 0). The density of attribute X in a value range from
a through b, a; b 2 D, is the number of unique values v 2 V
with a � v < b. The frequency fi of vi is the number
of tuples in R with value vi in attribute X. The cumula-
tive frequency ci of vi is the number of tuples t 2 R with
t:X � vi. The data distribution of X is the set of pairs T =
f(v1; f1); (v2; f2); : : : ; (vn; fn)g. The cumulative data distri-
bution of X is the set of pairs T C = f(v1; c1); : : : ; (vn; cn)g.
The extended cumulative data distribution of X, denoted by

T C+ is T C extended over the entire domain D by assigning
zero frequency to every value in D � V. For the sake of a

simple, uniform notation, we extend T by an arti�cial �nal
tuple (vn+1; 0) with vn+1 > vn. Finally, a d-dimensional
data distribution in X1 � � � � � Xd is a set of d+1-tuples
Td = f(v1;1; : : : ; vd;1; f1); : : : ; (v1;n; : : : ; vd;n; fn)g. Its' cu-
mulative extensions are analogous to the one-dimensional
case.
The rest of the paper is organized as follows. Section

2 brie
y reviews our earlier work on linear spline synopses
and �tting procedures [19] as a basis for the generalizations
and extensions of the current paper. Section 3 presents the
�tting procedure for capturing density distributions with
bucket boundaries that are independent of those of the same
attribute's frequency synopses. Section 4 introduces the
combined error metric for frequency and density approxima-
tions and presents the paper's key contribution, the dynamic
programming algorithm for tuning the number of buckets of
each synopsis. Section 5 extends this framework by a spe-
cial class of join synopses. Section 6 discusses the CPU
costs of our synopsis construction procedures. Section 7
shows how our methods can be carried over to multidimen-
sional distributions. Section 8 presents experimental results
that demonstrate the viability of the developed auto-tuning
methods for statistics management.

2. APPROXIMATION OF THE ATTRIBUTE-
VALUE FREQUENCIES

To approximate a given value-frequency distribution T ,
we partition the value set V into m disjoint intervals, called
buckets, bi = [vlowi ; vhighi) in the following manner, where
lowi and highi denote the subscripts of the values from V
(i.e., not the actual values) that form the left and right
bounds of the (left-side closed and right-side open) value
interval covered by the bucket:

8i 2 f1; 2; : : : ;m� 1g :

highi = lowi+1, low1 = 1, highm = n+ 1. (1)

Unlike histograms, we approximate the frequency in an in-
terval by a linear function, resulting in a linear spline func-
tion [11] over the m buckets. This leads to an improve-
ment in accuracy, depending on the linear correlation [29]
of the data within a bucket. First, we de�ne �v[low;high) :=

1
high�low

P
high�1

l=low
vl as the average attribute value within

[vlow; vhigh); analogously, we de�ne the average frequency
�f[low;high) := 1

high�low

P
high�1

l=low
fl. The linear correlation

for bucket bi is then de�ned as

r[lowi;highi) :=

highi�1P
l=lowi

(vl � �v[lowi;highi))(fl �
�f[lowi;highi))s

highi�1P
l=lowi

(vl � �v[lowi;highi))
2

s
highi�1P
l=lowi

(fl � �f[lowi;highi))
2

(2)

For each interval bi, r[lowi;highi) 2 [�1; 1]. In traditional
histograms, the frequency in a bucket bi is approximated by
�f[lowi;highi). Using the least-squares �t as an error metric,
this results in the overall error

f err[lowi;highi) =

highi�1X
l=lowi

(fl � �f[lowi;highi))
2. (3)



In a spline-based synopsis, this error becomes :
spline err[lowi;highi) = (1� r[lowi;highi)

2) � f err[lowi;highi).
(4)

Summing the error over all buckets in the synopsis, the over-
all error becomes:

ov spline err =

mX
i=1

�
(1� r[lowi;highi)

2) � f err[lowi;highi)
�
.

(5)

In the following subsections we will develop algorithms for
constructing a spline-based synopsis with m buckets for the
n observed data-value frequencies in T , aiming to minimize
the overall error according to formula 5. This goal involves
identifying them�1 most suitable boundaries between buck-
ets and the �tting for the linear approximation within each
bucket.

2.1 Fitting the Frequency Function within a
Bucket

For the derivation of this basic building block suppose
that the boundaries of a bucket are already �xed. For each
bucket bi = [vlowi ; vhighi) we need to calculate the linear
approximation frqi(x) = a1�x+a0 of the attribute frequency
that minimizes the squared error

spline err[lowi;highi) =

highi�1X
l=lowi

(frqi(vl)� fl)
2. (6)

This de�nition of the error over a bucket is equivalent to
de�nition 4 [29]; however, to evaluate formula 4, the coef-
�cients a1 and a0, which are the unknowns of the �tting,
do not have to be known. This is the basis for the greedy
algorithms introduced in Section 2.3.
Using de�nition 6, �nding frqi becomes a problem of lin-

ear least squares �tting [29]; i.e., we have to �nd coe�cients

a0; a1 s.t.
@spline err[lowi;highi)

@a0
=

@spline err[lowi;highi)

@a1
= 0.

This problem can be solved using Singular Value Decompo-
sition, for details see [19].

2.2 Optimal Partitioning of V
We are now interested in a partitioning such that the over-

all error (formula 5) is minimized. When arbitrary partition-
ings and continuous splines of arbitrary degree are consid-
ered, this is known as the optimal knot placement problem
[11], which { due to its complexity { is generally solved only
approximatively by heuristic search algorithms. In our case,
however, only linear splines are used and only members of
V are candidates for bucket boundaries. Since the value for
each highi is either lowi+1 or vn+1 (see de�nition 1), we only
need to determine the optimal lower bucket boundaries to
compute:

f opt err :=

min
(low2;::: ;lowm)2Vm�1

low1�low2�:::�lowm

mX
l=1

(1�r[lowl;highl)
2) �f err[lowl;highl)

(7)

Because the resulting spline function is allowed to be discon-
tinuous over the chosen intervals b1; : : : ; bm, �tting the data
in a bucket can be addressed separately for each bucket bi.
The main improvement in e�ciency does, however, result

from the fact that the following principle of optimality (also
known as the Bellman principle) holds for our partitioning
problem:
Theorem 1. If for l � 2: (lowl; lowl+1; : : : ; lowm) 2

Vm�l+1 is an optimal partitioning of [vlowl�1
; vhighm) using

m � l + 2 buckets, then (lowl+1; lowl+2; : : : ; lowm) 2 V
m�l

is an optimal partitioning of [vlowl ; vhighm ) using m� l+ 1
buckets (the proof can be found in [19]).

Because of this property, the problem of �nding an opti-
mal partitioning becomes a dynamic programming problem.
This allows us to formulate a rede�nition of formula 7: De-
�ne

f opt errlow; �m := optimal overall error for �tting

[vlow ; vn) by �m buckets.

err[low;high) := approximation error spline erri for

buckets bi = [vlow; vhigh).

Trivially, f opt erri;1 = err[i;n). Then the overall error pro-
duced by the optimal partitioning for buckets 1 through m
is

f opt err1;m = min
l2f1;2;::: ;ng

err[1;l) + opt errl;m�1: (8)

By keeping track of the partitioning, this equation can be
used to compute an optimal partitioning in O(m � n2) time,
using O(n2) space. We refer to this algorithm as OPTIMAL.

2.3 Greedy Partitioning
Even if a spline-based synopsis were to be recomputed

only occasionally, the cost for computing an optimal parti-
tioning could be unacceptable when n is large. Therefore,
we have also developed two greedy methods of partitioning
of V, which result in a partitioning that is close to optimal
while being much more e�cient.
The �rst technique starts out with a large number (e.g., n)

of trivial buckets (e.g., each interval between two adjacent
observed data values leads to one bucket), and then grad-
ually merges the pair of adjacent buckets, that causes the
smallest increase in overall error. This is repeated, until we
arrive at the desired number of m buckets. We will refer to
this algorithm as GREEDY-MERGE .
The second greedy partitioning-algorithm takes the oppo-

site approach: Initially, all tuples are grouped in one bucket.
Now, we will compute the split that leads to the greatest
reduction in the overall error (formula 5) and execute it,
resulting in an additional bucket. This is repeated, until
(after m � 1 splits) m buckets remain. This algorithm is
called GREEDY-SPLIT. Both heuristics require O(n) space
and compute a close to optimal partitioning in O(n log2 n)
operations (GREEDY-MERGE ) or O(m � n log2 n) opera-
tions (GREEDY-SPLIT ).

3. APPROXIMATION OF VALUE DENSITY
Accurate approximation of the density distribution is of

critical importance for estimation of all queries involving
grouping/aggregation. Therefore, we approximate value den-
sities in V independently from value frequencies, such that:
(1) the approximation captures the same number of values as
the V (although it should require less values to represent V)
and (2) the squared deviation between the actual attribute



values vl 2 V and their approximated counterparts v̂l is
minimized. Analogously to the approach for frequency dis-
tributions, we partition V into m0 disjoint intervals which
we refer to as density buckets dbi = [vdlowi ; vdhighi ), with
dlowi and dhighi denoting the subscripts of the values from
V that constitute the bucket boundaries. Analogously to
formula 1, for all i 2 f1; 2; : : : ;m0 � 1g we have: dhighi =
dlowi+1 and dlow1 = 1, dhighm0 = n + 1. Note that the
number of buckets, m0, can be chosen independently from
the number of buckets, m, for the frequency distribution of
the same attribute.
Using the squared deviation of attribute values, the error
within bucket dbi is

density err[dlowi;dhighi) =

dhighiX
l=dlowi

�
vl � v̂l

�2
. (9)

In order to estimate the value distribution within a bucket,
we assume that the values are spread evenly over the bucket's
width. This means, that the j-th value in a density bucket
db = [dlow; dhigh) containing D values is approximated as

v̂ = vdlow + (j � 1) �
vdhigh�vdlow

D
. Thus, denoting the num-

ber of values in bucket dbi by Di, the error of the bucket
becomes:

density err[dlowi;dhighi) =

Di�1X
l=0

�
vdlowi+l �

�
vdlowi +

�
l �
vdhighi � vdlowi

Di

���2

. (10)

To minimize this error we treat the interval's right-end
side as a control variable, denoted v opti, whose value should
be chosen optimally. Note that the best value of v opti may
be di�erent from both the highest attribute value that falls
into the bucket and the next higher occurring value, and
it may even be smaller than the highest value within the
bucket if the density distribution is skewed towards values
closer to the interval's lower boundary. The formula for the
resulting bucket error then is obtained from equation 10 by
simply replacing vdhighi with vopti :

density err[dlowi;dhighi) =

Di�1X
l=0

�
vdlowi+l �

�
vdlowi +

�
l �
v opti � vdlowi

Di

���2

. (11)

The parameter vopti should be chosen such that the bucket's

error is minimized, i.e.
@density err[dlowi;dhighi)

@vopti

= 0. Com-

puting the derivative and solving this equation for vopti
yields:

vopti =

vdlowi �
�
Di

2 � 1
�
� 6

�Di�1P
l=0

l � vdlowi+l

�
2 �Di

2 � 3 �Di + 1
.

The optimal density error for a bucket can now be com-
puted by substituting vopti into equation 11. The overall
optimal error for the entire attribute-value density synopsis
then is the sum of the errors over all buckets 1, : : : , m0:

d opt err1;m0 =

m
0X

i=1

density err[dlowi;dhighi). (12)

Finding an optimal partitioning of V and computing the
optimal control parameters vopti is mathematically equiv-
alent to the partitioning and per-bucket parameter �tting

problem for frequency distributions that we already solved
in the previous section. Thus we can apply the same dy-
namic programming algorithm or, alternatively, one of the
greedy heuristics to compute an optimal density synopsis
with a given number of buckets. We refer to the resulting
error as d opt err1;m0 .

4. MEMORY RECONCILIATION

4.1 Reconciling Frequency and Density Syn-
opses for one Attribute

So far we have shown how to minimize the error for each
aspect separately, but assumed that the number of buckets,
m for frequency and m0 for density synopses, is �xed and a
priori given for each synopsis. To reconcile both synopses
for an attribute, we face the problem of how to divide the
available memory space between them, i.e., how to choose
the values of m and m0 under the constraint that their sum
should not exceed a given constant M . Intuitively, we are
interested in allocating the memory in such a way that the
aspect that is more di�cult to approximate is given a higher
number of buckets. This means minimizing the combined er-
ror of both approximations. However, to make sure that we
do not compare apples versus oranges (i.e., value frequencies
versus actual data values), we have to take into account that
the two approximations refer to domains with possibly radi-
cally di�erent scales. Therefore, we �rst normalize the error
metrics for the two classes of synopses and de�ne a relative
error for each aspect. As the normalizing factor, we use
the highest possible approximation error for each domain,
i.e. the maximal di�erence between the actual value fi (or

vi) and it's approximation f̂i (or v̂i respectively), when the
respective domain is approximated using one bucket only.
Intuitively, these factors represent the "di�culty" of approx-
imating each domain. We refer to these factors as f domain
and v domain; the relative error for a single value vi then

becomes
�

vl�v̂l
v domain

�2
= (vl�v̂l)

2

(v domain)2
. The relative error for

a single frequency is
�
fj�frq(vj)

f domain

�2
=

(fj�frq(vj))
2

(f domain)2
, respec-

tively.
In addition to this normalization it is desirable to consider

the possibly di�erent relative importance of the two syn-
opses. With a query workload that is dominated by range
or exact-match queries, frequency estimations are obviously
the key point. On the other hand, with a workload that re-
quires many estimations of the result size of projection and
grouping queries, the density synopses become more impor-
tant. This consideration is taken into account by attaching
a relative weight to each synopsis, i.e., constants wf and wd,
which are derived from online statistics about the workload
and the resulting estimation problems (as discussed in Sec-
tion 3). Then the combined error for both synopses is the
weighted sum of their relative errors.
To divide the available memory, we exploit the fact that

computing the optimal partitioning of either approximation
type for j buckets by the dynamic programming algorithms
of Sections 4 and 5 also generates the optimal partitionings
for 1; : : : ; j�1 buckets at no additional computational cost.
The same holds for the GREEDY-SPLIT heuristics; and for
GREEDY-MERGE the additional output can be generated
at very small extra cost (with j additional merge opera-



tions). Thus, with a given amount of memory for a total
of M buckets, we compute the optimal partitionings and
resulting relative errors for each approximation with up to
M�1 buckets, and then divide the available memory in such
a way that the sum of the combined relative error terms

f d err = wf

f opt err1;m

(f domain)2
+ wd

d opt err1;m0

(v domain)2
(13)

is minimized under the constraint that m � 1, m0 � 1 and
m+m0 =M . This is a trivial combinatorial problem, solv-
able in O(M) steps.

4.2 Reconciling Synopses for Multiple Attributes
The problem of dividing up the memory between the syn-

opses for multiple attributes, either within the same relation
or across multiple relation, is an extension of Section 4.1.
Assume that we want to approximate the frequency and
density distributions of k di�erent attributes using a total
ofM buckets. In the following we use the same formalism as
before and add superscripts in the range from 1 through k to

indicate which attribute a term belongs to (e.g., low
(j)

i
is the

left border of the i-th bucket in the frequency distribution
of the j-th attribute). Having k attributes means that there
are 2k approximations, each of which could be stored in 1
to M�2k+1 buckets, assuming that each approximation is
given at least one bucket. As before, we compute the parti-
tioning for each approximation for up toM�2k+1 buckets.
In order to be able to compare the relative errors from dif-
ferent distributions, we again perform the normalization via
the factors f domain or v domain. We also incorporate
attribute- or synopsis-speci�c weights to re
ect the di�er-
ent levels of importance of the various estimation problems.
Denoting the weights of the jth attribute's frequency and

density synopses by w
(j)

f
and w

(j)

d
and the corresponding

numbers of buckets by m(j) and m0(j), and enumerating the
2k synopses from 1 through 2k such that the synopses with
numbers 2j-1 and 2j refer to the frequency and density of
attribute j, we have the following error for the l-th synopsis
with ml buckets 1 through ml:

syn errl;ml
=8>>>><

>>>>:
w
(j)

f

f opt err
(j)

1;mj

(f domain(j))2
for l = 2j � 1 for some j; 1 � j � k

w
(j)

d

d opt err
(j)

1;m0
j

(v domain(j))2
for l = 2j for some j; 1 � j � k

Now, dividing the available memory between all 2k approxi-
mations means �nding the memory allocation (m1; : : : ;m2k),

with
P2k

i=1mi =M such that the overall error

ov syn err :=

2kX
l=0

syn errl;ml
is minimized. (14)

Fortunately, this problem can also be expressed as a dynamic
programming problem. De�ne

opt syn erri; �m := optimal overall error for �tting

approximations 1 through i, by �m buckets.

Now, opt syn err2k;M =

min
�=1;:::M�k+1

fsyn err1;� + opt syn err2k�1;M��g,

i.e., that the Bellman principle holds, allowing us to com-
pute the optimal memory allocation using O(M2) space and
O(M2 � k) operations. While a good approximative solution
can again be computed using greedy heuristics, it is gener-
ally the case that M � n, and therefore the time for com-
puting the optimal memory partitioning insigni�cant (see
Section 6).
With a simpler version of this technique (i.e. without sep-

arate synopses for value frequency and density) it is possible
to compute an optimal memory allocation for multiple tra-
ditional histograms. Again, it is necessary to compute the
errors resulting from each possible size of each histogram
beforehand; in case of V-Optimal histograms with a di�er-
ent sort parameter than attribute frequency (see [17]), this
information is already provided by the partitioning routines.

4.3 Using the Synopses for Query Estimation
In the following we brie
y describe how to use the re-

sulting auto-tuned synopses for estimating the result sizes
of various types of basic queries or even for approximative
query answering. We focus on the following query types:
projections or, equivalently as far as result-size estimation
is concerned, grouping with aggregation, range queries on a
single attribute, and joins, with projections and joins possi-
bly restricted to a speci�ed value range (i.e., in conjunction
with a range �lter).
Projections (and grouping queries): In order to esti-
mate the number of unique values resulting from a projec-
tion over the interval [a; b), we di�erentiate three cases:

� If [a; b) corresponds to the boundaries of a density
bucket dbi (i.e., a = vdlowi and b = vdlowi+1

), the
resulting value distribution is (using the equi-spread
assumption within the bucket)

V̂ :=
n
vdlowi +

�
l �

vopti
�vlowi

Di

����l = 0; : : : ; Di � 1
o
.

� If [a; b) is completely contained in density bucket dbi
(i.e., a � vdlowi and b < vdlowi+1

), the resulting value
distribution is computed analogously, the only di�er-
ence being that we consider only values between a and
b:

V̂ :=
n
vdlowi +

�
l �

vopti
�vlowi

Di

����
l =

l
(a�dlowi)�Di

dlowi+1�dlowi
+ 1

m
; : : : ;

j
(b�dlowi)�Di

dlowi+1�dlowi
+ 1

ko
.

� Finally, an approximate projection query for [a; b) that
spans more than one density bucket can easily be esti-
mated by clipping [a; b) against the buckets and build-
ing the union of the estimations for the intervals
[a; vlowj ); [vlowj ; vlowj+1

); : : : [vlowj+l ; b). Thus, the es-
timation problem is reduced to the previous formulas.

The result size estimation for this query type then is simply
the cardinality of V̂. Whenever approximating values over
discrete value domains (i.e., integer domains), we can im-
prove upon the estimation by rounding to the next discrete
value.
Range Selections: For this purpose, we de�ne frequency(x)
to denote the function described by the spline function over
V, i.e.: frequency(x) = frqi(x) for lowi � x < highi. To



estimate the query result for a range query with range [a; b),

we compute the approximative density distribution V̂ for
[a; b) using the above technique for projection queries, and
then compute the frequency distribution of the range query
result as F̂ = ffrequency(v̂) j v̂ 2 V̂g.
When only the number of tuples in [a; b), i.e., the query

result size, is to be estimated, the computation can be sped
up by summing up m+m0 + 1 terms (for details see [19]).
Joins: When joining two approximated data distributions
we �rst compute the approximative density distributions
V̂1 and V̂2 and perform the join between them, resulting
in the approximate density distribution V̂join. Then we

compute the join result's frequency distribution as F̂join =

ffrequency1(v̂)�frequency2(v̂) j v̂ 2 V̂joing, with frequency1
and frequency2 being the frequency functions of the two
join attributes. Note that this procedure is, in principle,
general enough to capture not only equijoins (for which the
join of the density distributions degenerates into a simple
intersection) but also other join predicates such as band,
temporal, or even spatial joins. Again, the estimation for
the join result size is simply the cardinality of the approxi-
mative join result.

4.4 Matching Frequency and Density Synopses
While the above techniques allow us to minimize the weight-

ed sum of the approximation error for attribute value den-
sity and frequency, this is not always su�cient to guarantee
a low estimation error for the queries described in the pre-
vious subsection.
In order to illustrate the problem, we examine a value-

frequency pair (vl; fl) from a data distribution T and its
approximation

�
v̂l; f̂l

�
. Since we model frequencies as a lin-

ear spline functions frqi; i = 1; : : : ;m over V, we can write�
v̂l; f̂l

�
as
�
v̂l; frqk(v̂l)

�
for some k 2 f1; : : : ;mg. In our ap-

proximation of attribute-value frequencies, we minimize the
error of formula 6 and thus �t the frequencies at the origi-
nal attribute values v1; : : : ; vn, rather than their approxima-
tions v̂1; : : : ; v̂n. In most cases (when vl and v̂l belong to the
same frequency bucket k, with frqk(x) = �k �x+�k) this still
results in accurate approximation, since the approximation
error

for fl := jfl � frqk(v̂l)j
= jfl � frqk(vl + (v̂l � vl))j
= j fl � frqk(vl)| {z }
minimized by frequency approx.

+�k � (v̂l � vl)| {z }
minimized by density approx.

j

The problem becomes apparent either for large �k (resulting
in a large second term in the above formula) or when vl and
v̂l belong to di�erent frequency buckets. In the latter case
(demonstrated in Figure 1), the frequency of vl ist estimated
as frqk(vl), whereas the frequency of v̂l by frqt(v̂l), t 6=
k. Now, frqk is chosen to �t all points in [lowk; highk),
among them (vl; fl), optimally, thereby reducing the error
jfl � frqk(vl)j. The function frqt is �tted to a di�erent set
of points, not including (vl; fl), and therefore generally a
poor estimator for fl.
To avoid this problem, we use T̂ = f(v̂1; f1); : : : ; (v̂n; fn)g

for approximation of the frequency domain, thereby mini-
mizing the approximation error for the attribute values which
will later be used in estimation. However, T̂ depends on
the number of buckets m0 used for approximation of the
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Figure 1: The need for matching approximations

attribute value density, which in turn depends on the er-
ror f opt err1;m (see formula 8) made when �tting T̂ . A
straightforward solution would be to compute the result-
ing T̂ for all possible M � 2k + 1 values of m0, �t them,
and then determine the optimal combination of density and
frequency error. This, however, would increase the com-
putational complexity of our approach by the factor of M .
Therefore, we use a simpler approach. First, we compute
f opt err1;m for �tting T and use it to determine the cor-
responding numbers of buckets, m;m0, for frequency and
density approximation. Then we compute T̂ for m0, again
compute the optimal approximation of the value frequency,
and use the resulting spline as the �nal synopsis. Thus we
only compute the optimal partitioning of V for value fre-
quency approximation twice, instead of M times. Further-
more, since the f opt err1;m for �tting T and for �tting T̂
are generally quite similar, almost all times both approaches
result in the same values for m andm0 and therefore in iden-
tical approximations.

5. APPROXIMATION OF JOIN RESULTS
The kinds of synopses developed so far also allow us to

estimate the result of an equijoin between two tables with
given frequency and density synopses for the two join at-
tributes. However, the join over two approximated data
distributions is often very di�erent from an approximate
representation (e.g., a sample) of a join of the underlying
complete distributions [8, 3]. Therefore we extend our reper-
toire of data synopses and adopt the idea of [3] to capture
important join-result distributions in a special class of join
synopses. Because the main di�culty in estimating join-
result sizes lies in the accurate approximation of the density
distribution (whereas the frequency distribution can be com-
puted with decent accuracy from the frequency synopses of
the base relations), we introduce special join-density buck-
ets that capture the density (i.e., existing unique values) of
the data values that are common to both join attributes and
are thus present in the join result.

5.1 Join Synopses and their Error Metric
First of all we have to de�ne an error metric for a join syn-

opsis, i.e., the error between a join result J and its approxi-
mation Ĵ . To this end we have to take into account both the
deviation in the individual tuple frequencies and the devia-
tion in the attribute density distribution of the join-attribute
values that are present in the join result (i.e., are not dan-
gling values), and also the fact that the approximated and
the actual join result may contain a di�erent number of



unique attribute values. A priori it is unclear how to match
the the values in the approximated join with the values that
occur in the actual result. Simply matching the i-th value
in each distribution is not satisfactory, even if J and Ĵ con-
tained the same number of values. To illustrate this point,
consider the case where J = f(v1; f1); : : : ; (vn�1; fn�1)g and

Ĵ = f(v2; f2); : : : ; (vn; fn)g, which would incur a large er-
ror if tuples were simply matched pairwise in the above or-
ders, although the join result and its approximation match
perfectly except for one value. Because of this, we match
individual tuples by their join-attribute-value distances to
compute the error between the approximation and the ac-
tual result. For tractability we do this in a greedy fashion:

1. First, match all tuples of equal attribute values, i.e. all
(va; fa) 2 J; (v̂b; f̂b) 2 Ĵ where va = v̂b.

2. Then, match the tuples (va; fa) 2 J; (v̂b; f̂b) 2 Ĵ where
the distance between va and v̂b is minimal. This is
repeated until only tuples from either J of Ĵ remain.

3. Finally jjJ j � jĴ jj unmatched tuples remain. Each is
matched with an arti�cial value with frequency 0, lo-
cated in the center of the active domain of the join
attribute.

Using a merge-based approach, it is possible to compute
this matching e�ciently: Initially, both J and Ĵ are merged
into a single list sorted by the attribute value of each tuple;
in this process, all exact matches are eliminated (step 1).
For each matching in step 2, we only consider the up to 2 �
minfjJ j; jĴ jg distances between tuples adjacent in the result-
ing list, and coming from di�erent sets; these are stored in a
priority queue. Every time a pair of tuples is matched, these
are eliminated from the list, and at most one new distance
needs to be computed. Therefore the computational com-
plexity of the three steps is (with p = minfjJ j; jĴ jg and l =

maxfjJ j; jĴ jg): O(p) (steps 1&3) and O(l log2 l) (step 2). All
steps have to be executed once for each di�erent allocation
of join-buckets, so if M denotes the overall number of buck-
ets and k the number of di�erent attributes in the approxi-
mation, the matching has to be carried out M � 2 � k times,
resulting in the overall complexity of O((M�k)�(p+l log2 l)).
Once we have this matching, we compute the overall er-

ror analogously to the error for frequency and density dis-
tributions, namely, by computing the relative di�erence in
value and frequency for each matching pair of tuples. The
normalizing factors f join domain and v join domain are
computed as before (see Section 4.1), on the basis of one
bucket being used for approximation of the respective do-
main.

join error :=X
all matched tuples (a;b)

�
va�v̂b

v join domain

�2
+
�

fa�f̂b
f join domain

�2

+
X

all unmatched tuples q in J

�
vq�(v

jJj�v0)=2

v domain

�2
+
�

fq�0

f join domain

�2

+
X

all unmatched tuples q̂ in Ĵ

�
v̂q̂�(v

jJj�v0)=2

v domain

�2
+
�

f̂â�0

f join domain

�2

5.2 Integrating Join Synopses into the Auto-
Tuning Method

Integrating dedicated join synopses for selected equijoins
into our framework again means solving the problem of how
to divide memory between all types of approximations. In
the following, we explain how to determine whether a join
synopsis for a particular equijoin J(c;d) between the relations
c and d on their common attribute J is worthwhile to be
added to the overall statistics and how many buckets this
join synopsis should have. As before, we assume that there
is memory for a total ofM buckets. Further, let Vjoin denote
the density distribution of J(c;d).
We assume that we have already solved the problem of

dividing up the memory for the density and frequency syn-
opses for all k attributes (see Section 4.2). So we also know
the optimal partitionings of each attribute and correspond-
ing errors for all numbers of buckets (overall) less or equal
to M . Now we have to compute the error resulting from
computing the join using no additional join synopsis. For
this purpose, we compute the approximate join Ĵ(c;d) using
the techniques of Section 4.3 and then compute the resulting
error, which we refer to as standard syn join err.
Furthermore, for l = 1; : : : ;M � 2k, we compute the join

approximation resulting from using l buckets for an addi-
tional join synopsis as follows. For each l, we compute the
approximate Vjoin using l buckets, and the resulting approx-

imate density distribution V̂l. Then we compute the result-
ing frequency distribution using the frequency approxima-
tion of the base relations when only M � l buckets are used
overall. For each resulting join approximation we compute
its error, which we refer to as join syn join errl. Also, we
de�ne join syn join err0 := standard syn join err.
Since we essentially use the same error metrics for join-

result and base-data distributions, we can directly compare

the error terms. Then, using the relative weight w
(c;d)

j
to

denote the importance of the particular join and its result-
size estimation, the problem of partitioning the available
memory again means �nding l such that the overall error

final syn err :=

opt syn err2k;M�l+w
(c;d)

j
�join syn join errl is minimal.

For considering multiple joins, we extend the optimization
analogously to Section 4.2; the problem of partitioning the
available memory M for 2k density and frequency distribu-
tions and h possible joins is again a dynamic programming
problem, solvable in time O(M2 � (k + h)).

6. RUNNING TIMES
To assess the CPU costs of our algorithms, we measured

the running times of approximating the frequency and den-
sity distributions as well as a self-join result for a single
attribute and di�erent sizes of n andM (and randomly cho-
sen vi and fi values) for execution on a single processor of
a SUN UltraSPARC 4000/5000 (168 MHz), shown in Ta-
ble 1. We measured the CPU time used for partitioning of
the frequency (F-part) and density domain (D-part) for all
partitioning methods (Optimal, Greedy-Merge and Greedy-
Split). Computing the join synopsis also entails computing
the join-error (J-error) for all possible bucket combinations
(see Section 5.1). Finally, M-part gives the time used for rec-



n = 500 1000 4000Method Step
M = 10 50 10 50 10 50

F-part. 0.38 1.99 1.98 10.27 51.16 264.63Optimal
V-part. 0.38 1.00 1.97 5.93 41.35 133.43

F-part. 0.012 0.018 0.023 0.033 0.097 0.141G-Merge
V-part. 0.008 0.009 0.018 0.020 0.084 0.086

F-part. 0.005 0.017 0.012 0.046 0.068 0.268G-Split
V-part. 0.006 0.023 0.016 0.058 0.083 0.271

J-error 0.060 0.681 0.256 1.45 1.21 6.41All
M-part. 0.000031 0.00325 0.000031 0.00325 0.000031 0.00325

Table 1: Running times in seconds

onciling the sizes of all attributes (see Section 4.1 and 5.2).

7. MULTIDIMENSIONAL DATASETS
The result size of complex queries involving multiple cor-

related attributes depends on these attributes' joint data
distribution. While most commercial systems assume indi-
vidual attributes to be uncorrelated and maintain approxi-
mations on individual attributes only, this has been shown
to result in extremely inaccurate result size estimations for
multidimensional exact-match or range queries as well as
join queries [26]. In response, a number of techniques for
approximating distributions over multiple attributes have
been proposed, which can be separated into two categories:
multidimensional histogram techniques and transform-based
techniques.
The latter class approximates multi-dimensional frequency

distribution only, representing either Td or T C+

d via a dis-
crete Wavelet [21] or cosine decomposition [20]. While this
leads to accurate estimations of range-selectivity queries,
these techniques do not approximate the attribute-value dis-
tribution at all and are therefore unsuitable for (complex)
queries involving projections/aggregations or joins.
Multidimensional histogram techniques (which were intro-

duced in [26] and re�ned by [15, 4, 2]) show similar prob-
lems. While accurate for range-selectivity estimation, his-
tograms incur signi�cant errors when approximating pro-
jection and join queries. This is because of the way the
attribute-value domain is represented within buckets: multi-
dimensional histograms assume values within a bucket to
be spread evenly in every dimension, meaning that if the
number of unique attribute values for each attribute l 2
f1; : : : ; dg is denoted by valuesl, then all

Q
d

l=1
valuesl com-

binations of attribute values are assumed to be present;
the cumulative frequency in each bucket is then distributed
evenly over all combinations. This generally results in tremen-
dous overestimation of the number of distinct attribute val-
ues (and correspondingly underestimation of their frequen-
cies). While range selectivity queries may still be estimated
with decent accuracy, all queries dependent on accurate ap-
proximation of the attribute-value domain (i.e. almost all
queries involving joins or projections/aggregations) are not
captured well at all. This e�ect becomes worse with rising
dimensionality, as data becomes more sparse.
A further problem with the use of multi-dimensional his-

tograms is the complexity of computing an optimal par-
titioning of the attribute-value domain for most suitable
error-functions. In case of V-optimal Histograms, which of-
fer the best performance for one-dimensional distributions
and optimize the error de�ned by formula 3, the problem of

computing the optimal partitioning using arbitrary buckets
becomes NP-hard even for d = 2 [23].

7.1 Combining Splines Synopses and Space-
Filling Curves

A straightforward extension of our spline techniques to
multiple dimensions is not a viable alternative as it would en-
counter the same problems associated with histogram-based
techniques. Rather, we use the following approach. First,
an injective mapping � : Rd 7! R is applied to the attribute-
value domain of the base data, reducing the d-dimensional
distribution to a one-dimensional one, which is then approx-
imated by the techniques introduced previously. We store
the resulting approximation; when it is used to estimate a
multi-dimensional query, the approximated data is mapped
back to Rd via the inverse mapping  := ��1. For  , we
use space-�lling curves [30], which are continuous, surjec-
tive mappings  : [0; 1] 7! [0; 1]d. Originally devised in
topology, they have been used for a number of applications,
among them heuristic solutions to the Traveling Salesman
Problem [25] , partitioning problems in VLSI design [5] and
multidimensional indexing [18].
The key for this approach is that distances in R are pre-

served by  (i.e., if a point x and its approximation x̂ are
close in R,  (x) and  (x̂) are close in Rd ) , so that min-
imizing the error in R leads to a low error in approxima-
tion of the original data domain as well. This approach
also leverages the advantages of our spline techniques (e�-
ciency, accurate representation of both attribute-value and
attribute-frequency domains, fast computation). Figure 2
shows the interaction between the spline synopses and space-
�lling curves.

Approximation via Spline Synopses

Approximate Data 2 [0;1)Original Data 2 [0;1)

Original Data 2 Rd Approximate Data 2 Rd

Inverse SFC � SFC  

Figure 2: Combining Space-Filling Curves (SFC)
and Spline Synopses

There are a number of space-�lling curves, most of which
require low computational overhead and some of which can
be extended to arbitrary dimensions d. For our implementa-
tion, we have chosen a variation on a curve construction due
to Sierpi�nski [31]. This particular curve is constructed by
successively partitioning [0; 1]d as shown in Figure 3 and
marking the endpoints of each sub-partitioning with the
corresponding position along the curve in [0; 1) (shown for
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Figure 3: The Sierpi�nski curve for d = 2 and 2, 4,
and 6 iterations of the recursive construction

the �rst two partitionings). A Sierpi�nski curve computed
by t iterations of the curve construction projects n tuples
of the d-dimensional distribution onto the set

�
p

2t
j p =

0; : : : ; 2t � 1
	
.

This curve can be extended to arbitrary dimensions, leads
to  and � functions that can be evaluated e�ciently (the
resulting algorithm can be found in [5]) and furthermore has
three salient properties setting it apart from other space-
�lling curves:

� It contains no "jumps", i.e., for arbitrary x; x0 2 R,
the ranges [x; x+ �], [x0; x0+ �] correspond to pieces of
the curve of identical length.

� It is symmetric (unlike the Hilbert or Peano curve),
i.e. invariant to rotations by multiples of 90 degrees
in the direction of each dimensional axis. This means
that the approximation quality is independent of which
dimension we map each approximated attribute to.

� The resulting projection  preserves distances very
well. For example, in 2-dimensional space the fol-
lowing holds: if we denote the distance of two points
a; a0 2 [0; 1]2 by the Euclidean distance D[a; a0] and of
two points x; x0 2 [0; 1] along the curve by �[x; x0] :=
minfjx � x0j; 1 � jx � x0jg (this is the natural metric
since the curve is a closed loop with  (0) =  (1)),
then

8x; x0 2 [0; 1) : D[ (x);  (x0)] � 2
p
�[x; x0].[25]

The number of iterations t of the recursive partitioning
depends on the data itself. In discrete value domains we
need to make sure that t is large enough so that the curve
passes over every point in the underlying data. Since the
Sierpi�nski space-�lling curve partitions all dimensions sym-
metrically, we only have to make sure that the dimension ~d
with the biggest overall value spread (i.e. total spread ~d :=
max

i=1;::: ;n
v ~d;i � min

i=1;::: ;n
v ~d;i is maximal) is captured correctly.

The number of distinct values in one dimension captured by
a Spierpi�nski curve constructed by t partitionings is values(t) :=

2
t

d
�1 + 1. Therefore we choose the number of partitionings

t so that the number of distinct points in each dimension is

larger than total spread ~d : ~t :=
l
(
ln(total spread ~d�1)

ln 2
+1) �d

m
.

In continuous value domains, t depends upon the desired ac-
curacy.
Finally, before applying �, we have to map all tuples to

[0; 1]d; this means subtracting the minimal value minp :=

min
i=1;::: ;n

vp;i for each dimension p from all values in that di-

mension and dividing the result by values(~t) � 1: vp;j 7!
vp;j�minp

values(~t)�1
, for p = 1; : : : ; d, j = 1; : : : ; n. Mapping the re-

sulting points to [0; 1) requires O(d � t) operations per point;
so the overal complexity is O(n � d � t + n log2 n) (the tu-
ples have to be sorted after mapping) with t; d being small
constants.
Reconstruction of the original values requires mapping

the approximated values via  onto [0; 1]d and reversing
the normalization described in the previous paragraph. d-
dimensional ranges speci�ed for projections or range selec-
tions have to be mapped to the corresponding ranges in
[0; 1], which involves computing all intersections of the Sier-
pi�nski curve with the surface of the speci�ed range and de-
ciding which of the corresponding intervals are included in
the query range (see [22]). Fortunately, since synopses typ-
ically reside in main memory, even brute-force approaches
that explicitly map all tuples in the approximation back to
the original domain and then discard those not satisfying
the selection criteria are su�ciently fast.

8. EXPERIMENTAL EVALUATION

8.1 Experimental Setup
The Techniques: We compare the spline synopses with
the following existing histogram techniques: equi-width and
equi-depth [24], MaxDi�(V,A) [28], and V-optimal(V,F) [17]
histograms for one-dimensional data and multidimensional
MaxDi�(V,A) histograms constructed via MHIST-2 (which
performed best in [26]) for multidimensional data. The stor-
age requironments are 3 values (number of distinct attribute
values, average frequency and largest attribute value) for a
one-dimensional histogram bucket and 3d+1 values for a d-
dimensional one (overall frequency, and for each dimension:
low and high values and number distinct values in that di-
mension) .
For workloads consisting solely of range selections, we also

examine the accuracy of discrete transform techniques based
either on the Wavelet transform [21], using Haar Wavelets,
and the discrete cosine transform (DCT) [20] (because both
techniques do not approximate the attribute-value density,
they are not suitable for projection and join approximation).
To determine which Wavelet coe�cients to keep for the �rst
technique, we used the �rst thresholding method introduced
in [21], keeping the largestM coe�cients for the experiments
shown here (the other three thresholding methods show only
insigni�cant changes in the approximation accuracy for the
data sets used here). In case of the discrete cosine trans-
form, we select coe�cients by reciprocal sampling, which
was shown to perform best amoung all �ltering methods
presented in [20]. For both techniques we store 2 values for
each kept coe�cient, storing the coe�cient's value and its
index/position (in case of multidimensional data, the multi-
dimensional index is coded as a single value).
These are compared with Spline Synopses computed using

the OPTIMAL, GREEDY-MERGE and GREEDY-SPLIT
partitioning techniques. The storage overhead is 3 values
per bucket for the frequency approximation (lowest value,
coe�cients of the frequency-function) or density approxi-
mation (lowest value, number of unique values, v opt) for
one-dimensional datasets. In case of multidimensional data,



d+1 additional values must be stored to facilitate the map-
ping to and from [0; 1]: values(~t) and minp for p = 1; : : : ; d
(see Section 7.1). We do not tune the spline synopses for
each estimation task, but use constant relative importance

weights wf = 1; wd = 1; w
(1;1)

j
= 1 throughout all experi-

ments.
Datasets: Out of our experiments carried out with one-
dimensional distributions, we present a subset for three rep-
resentative datasets: two real-life datasets provided by the
KDD Data Archive of the University of California [1] and a
synthetic one serving as a stress-test for the di�erent spline
techniques. The two real-life data sets are single attributes
of the Forest CoverType data set (581012 tuples, 54 at-
tributes, 75.2MB data size) of which we use (1) the at-
tribute elevation (1978 unique values, medium distortion of
frequency and density distribution) and (2) the attribute
horizontal distance to hydrology (189 unique values, small
distortion of frequency and density distribution). Finally, we
use a synthetic data set with randomly chosen frequencies
(uniform distribution) and regular density distribution (1000
unique values). Because there is no correlation between ad-
jacent frequency-values, this results in buckets with very
small linear correlation r (see formula 2) and constitutes a
"worst-case" scenario for the frequency approximation by
linear splines. The datasets are visualized in Figure 8.1.
Out of our experiments on multidimensional distributions

we present the results for two data sets: (1) 1970 PUMS
Census data, of which we use the attributes migplac5 and
chborn (661 unique attribute-value pairs, 70817 tuples), again
provided by the KDD Archive [1] and (2) a synthetic stress-
test similar to the one used before, with 400 unique value
pairs, 10000 tuples, and randomly chosen density distribu-
tion and attribute-value frequencies.
Query Workload: For the single attribute data sets we
�rst compute the approximation for the given size, which is
then used for three di�erent estimation tasks: (a) estimating
the size of a self-join, (b) estimating range-selection queries
of the type fX < b j b 2 Vg and (c) estimating the number
of unique values for ranges fX < b j b 2 Vg.
For multi-dimensional data sets we computed (a) the es-

timation error for range and (b) projection queries, both for
ranges f(X1; : : : ; Xd) < (b1; : : : ; bd) j (b1; : : : ; bd) 2 Vdg.
In each case we measure the mean squared error

MSE :=
1

n

X
i=1;::: ;n

(exact sizei � approx sizei)
2,

with n being the number of queries.

8.2 Experiments on One-dimensional data
The results of the �rst two experiments on one-dimensional

data are shown in Figures 5 { 7. For projection and self-
join queries, the optimal spline techniques consistently out-
perform all other techniques, followed closely by the greedy
spline variants (the sole exception being V-Optimal(V,F)
histograms, which outperform spline synopses constructed
via GREEDY-MERGE for self-join estimation on the �rst
dataset). Among histogram techniques, theV-Optimal(V,F)
histograms perform best, for which the partitioning algo-
rithm is of the same asymptotic complexity as the OPTI-
MAL spline partitioning. For range-selections, the spline
techniques are again are more accurate than histograms and

the estimation by Wavelets; however, when 40 or more val-
ues are kept, the DCT technique performs slightly better.
When comparing spline synopses to the DCT/Wavelet

techniques, we have to consider that these techniques are
geared speci�cally to range-selectivity estimation and can
not be used to estimate queries depending on the attribute-
value density of a dataset.
The results for estimating the "worst-case" data are shown

in Figure 8 (we omitted the results for projection estimation
since all techniques capture the density domain accurately).
Again, the optimal and greedy-split spline techniques out-
perform all competitors other than the DCT technique; since
no linear correlation can be exploited, the DCT technique
exhibits major gains in this particular experiment.

8.3 Experiments on Multi-dimensional Data
The results of the two experiments on multi-dimensional

data are shown in Figures 9 and 10. For range-selectivity
estimation the histogram-based techniques consistently out-
performed the multidimensional MaxDi�(V,A) histograms.
Wavelets turned out to be superior to splines for range queries
for one experiment and the DCT based technique was the
winner in the other experiment. However, the winning tech-
nique in one experiment performed very badly in the other
one.
The performance of both transform-based techniques de-

pended very much on the sparseness of the data. With ap-
proximating data via Haar Wavelets, as used in the exper-
iment, very sparse data results in a large number of coe�-
cients of value 0, which can therefore be dropped without
increasing the estimation error. Consequently, the Wavelet
technique results in very accurate approximation for sparse
data. The opposite is true in dense domains, however; here
all other techniques perform better. The two datasets are
examples for this behavior. While the Census data contains
661 unique value pairs in a domain of 715 � 13 = 9295 value
pairs, the synthetic data contains 400 value pairs in a do-
main of 40 � 40 = 1600 value pairs.
Regarding projection estimation, multi-dimensional his-

tograms were consistently outperformed by the spline tech-
niques by very large margins. Further experiments (not
shown here for lack of space) con�rmed this observation and
indicated a trend that this e�ect increases with dimension-
ality.

8.4 Experiments on Memory Reconciliation
These experiments serve to examine how our approach for

dividing the available memory between multiple synopses
can improve estimation accuracy. We used the three one-
dimensional relations with the data distributions shown in
Section 8.1, with a total memory size M available for all
synopses all together. We performed three experiments: (a)
range-queries on all three relations, (b) projections on all
three relations, and (c) self-joins on all three relations. The
operations on the various relations were equally weighted
within each of the three experiments.
We compare the overall estimation accuracy for all three

data sets for di�erent ways of dividing up the available mem-
ory: (i) the synopses reconciliation technique introduced in
Section 4.2, which we refer to as Adaptive Memory Recon-
ciliation, (ii)giving the same amount of memory to every
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Figure 4: The one-dimensional datasets used in the experiments

synopsis, referred to as Equi-Size, (iii)assigning the mem-
ory relative in proportion to the sizes of the underlying data
distributions, referred to as Data-Size, and (iv) assigning
the memory relative in proportion to the number of di�er-
ent attribute values in the underlying data distributions,
referred to as Data-Values. To examine the overall accu-
racy for all three approximations, we measure the error as
a fraction of the actual query result size (relative error :=
jexact size�approx sizej

exact size
) and then compute the average error

the three relations. Figure 11 shows the error for range
queries weighted with equal weights over all three relations.
Especially for small memory sizes M , the adaptive memory
reconciliation technique leads to an impressive reduction of
the overall error. The results were similar for projection and
self-join estimation (which are omitted). In order to show
that adaptive memory reconciliation is not limited to spline
synopses, we repeated the experiment for V-optimal(V,A)
histograms, using the synopses sizes obtained previously.
Again the reconciliation technique clearly outperforms all
others (Figure 11). We repeated these experiments for a
number of di�erent combinations of data sets and workloads,
resulting in similar observations.

8.5 Discussion of our results
In summary our experiments underlined the viability and

salient properties of the advocated memory adaptive spline
synopses. More speci�cally, the following insights were ex-
perimentally substantiated:

� Spline synopses consistently outperformed the best his-
togram techniques, for both one-dimensional and multi-
dimensional distributions.

� For range queries, spline synopses were competitive
with the best specialized1 techniques, namely, Wavelet
or DCT based techniques. Note that among the lati-
tude techniques there was no consistent winner: both
performed excellent in some experiments and badly in
others.

� Like histograms and unlike transform-based techniques,
spline synopses are extremely versatile in that they can

1Preliminary experiments indicate that specializing and op-
timizing spline synopses solely for range selectivity estima-
tion results errors comparable to the best transform-based
techniques. This can be done by interpreting fl as weights to
the approximation of the density err. We then minimize the

function density err[dlowi;dhighi) =
P

dhighi

l=dlowi
fl � (vl � v̂l)

2,

thereby ensuring that frequent attribute values are �tted
better than infrequent ones.

cope with the full spectrum of query types. Also they
are robust in that they yield decent estimates even for
query types and data that are hard to capture, while
performing excellent in most, well-behaved, cases.

� The proposed method for adaptive memory reconcilia-
tion underlined its practical viability by clearly outper-
forming various simple heuristics for dividing memory
among multiple synopses. This method is orthogo-
nal to the actual approximation technique, which was
demonstrated by applying it to both spline synopses
and histograms.

9. CONCLUSION
This paper has aimed to improve the 
exibility of a database

system's statistics management by incorporating frequency,
density, and equijoin synopses with a variable number of
buckets into a common framework. The dynamic program-
ming algorithms developed in this paper allow us to choose
the number of buckets for each of these synopses such that
the overall error for the estimation problems posed by a
query optimizer or query scheduler becomes minimal. The
presented experiments clearly demonstrate the viability of
the developed approach towards auto-tuned statistics man-
agement. Our long-term vision is to unify the plethora
of data approximation techniques that have been proposed
for the purpose of selectivity estimation and approximative
query answering. The practical incentive for this is to en-
hance database systems and data-mining platforms with cor-
responding auto-tuning capabilities, or at least provide ad-
ministrators with explicit guidance on how to reconcile the
various approximation techniques and their resource require-
ments.

10. REFERENCES
[1] The UCI KDD Archive (http://kdd.ics.uci.edu).

[2] A. Aboulnaga and H. F. Naugton. Accurate Estimation of
the Cost of Spatical Selections. In Proceedings of the IEEE
Conference on Data Engineering, pages 123{134, 2000.

[3] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
Join Synopses for Approximate Query Answering. In
Proceedings of the ACM SIGMOD Conference, pages
275{286. ACM Press, 1999.

[4] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity
Estimation in Spatial Databases. In Proceedings ACM
SIGMOD Conference, pages 13{24. ACM Press, 1999.

[5] C. J. Alpert and A. B. Kahng. Multi-Way Partitioning Via
Geometric Embeddings, Orderings and Dynamic
Programming. IEEE Transactions on CAD,
14(11):1342{1358, 1995.



0

5e+06

1e+07

1.5e+07

2e+07

40 50 60 70 80 90 100

M
ea

n 
S

qu
ar

ed
 E

rr
or

Number of values used for storage

Error in Range-Selectivity Estimation: Data Set I

Discrete Cosine Transform
Wavelet Transform

Equi-width Histogram
Equi-depth Histogram

Max-Diff(V,A) Histogram
V-Optimal(V,F) Histogram
Spline Synopsis (Optimal)

Spline Synopsis (g-split)
Spline Synopsis (g-merge)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

40 50 60 70 80 90 100

M
ea

n 
S

qu
ar

ed
 E

rr
or

Number of values used for storage

Error in Range-Selectivity Estimation: Data Set II

Discrete Cosine Transform
Wavelet Transform

Equi-width Histogram
Equi-depth Histogram

Max-Diff(V,A) Histogram
V-Optimal(V,F) Histogram
Spline Synopsis (Optimal)

Spline Synopsis (g-split)
Spline Synopsis (g-merge)

Figure 5: Accuracy of di�erent techniques for range queries on real-life data
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Figure 9: Accuracy of di�erent techniques for multidimensional CENSUS data
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