A Resource Broker for Optimal Site and Query Scheduling
in a Distributed Relational Database System

Vijayakumar B.
Computer Science and
Engineering Department
Regional Engineering College
Tiruchirappalli, India

vijay@rect.ernet.in

ABSTRACT

In this paper, a Resource Broker is proposed over a dis-
tributed query processor for handling queries from different
client sites in an efficient manner. It is distributed in oper-
ation and takes optimal decisions with regard to site allo-
cation and query scheduling. When a query is submitted
for execution, it is first checked for correct syntax and then
broken down into operation_schedules or atomic oper-
ations. The Resource Broker proceeds to construct the
operation_schedule tree which specifies the sequence in
which the atomic operations are performed. It also balances
the load at the different sites by interaction with it’s peer
resource brokers at these places and by using dynamic
system parameters. The system has been tested successfully
with multiple servers and clients and it’s performance has
been analyzed.

1. INTRODUCTION

In a distributed query processing environment, it is nec-
essary to devise strategies for exploiting concurrency while
executing multiple queries which are initiated from the client
sites. The host systems in the network should use appro-
priate admission and allocation policies for handling the
queries efficiently. It is also essential to decide the sites at
which various atomic operations such as select, project,
independent predicate execution, etc. are to be performed.
In this paper, a Resource Broker is proposed over a Dis-
tributed Query Processor (RBDQP) for efficient han-
dling of queries from different client sites. This module
acts as a manager of resources for competing operations in
a distributed environment and takes optimal decisions with
regard to site allocation and query scheduling.

ADVANCESIN DATA MANAGEMENT 2000
Krithi RamamrithamT.M. Vijayaraman(Editors)
TataMcGraw-Hill PublishingCompary Ltd.

© CSI2000

Gopalan N.P.
Computer Science and
Engineering Department
Regional Engineering College
Tiruchirappalli, India

gopalan@rect.ernet.in

2. RELATED WORK

The concept of query scheduling derives it’s origin from
operating system scheduling where the emphasis is on mea-
suring an algorithm’s efficiency based on it’s average turn-
around, response and wait times. The idea of intra and
inter query concurrency is discussed in [3], [10], [11]. Mar-
tin, Lam and Russel [8] suggested four different strategies
for site allocation viz., Branch and Bound, Simulated An-
nealing, Local Search and Greedy. The use of global query
completion times and query initiation delays as per-
formance metrics in this context are discussed in [6]. The
use of a Resource Broker for a centralized database envi-
ronment with multiple users and mized workloads is dealth
in greater detail in [1], [5]. The present work generalises this
concept for a distributed environment.

3. DEFINITIONS

3.1 IndependentPredicates

Independent Predicates are predicates which have con-
ditions defined over a single relation [12]. For example,
R;.A; <= a constant is an independent predicate
whereas, R;.A; <= Rj.A; is not independent because
this involves more than one relation. Here R; and Ry are
relations, A; and A; are attributes and i, j and k are inte-
gers.

3.2 Chain Query

A Chain query is a special type of query for which the
general acyclic hypergraph is a chain; (i.e.) for that hyper-
graph, it’s edges can be listed in an order R;,Rz3..., R, such
that the only non-empty intersections are between R; and
Riy1 for 1<=i<n. Also, the relation to be reduced is at
one end, say Ry (3], [11].

3.3 Operation_Schedule

An Operation_Schedule represents the smallest schedu-
lable unit in a query which can be executed independently.
The length of an operation_schedule is defined as the num-
ber of steps required to compute it’s result.

Table 1 shows the valid operation_schedules and their
corresponding lengths:

Table 1
Operation_Schedule | Length
- — — _—
Select | 1
- — — -
Project | 1
- — — _—
Send/Receive |
Fragment (Relation) I 1
- — — _—
Merge Fragment | 1
- — — -
Independent Predicatel
Execution | 1
-= -1
Join | > 1

The length of the Join Operation_Schedule is greater
than 1 since it involves a sequence of steps to constitute the
candidate relations before performing the join operation.

3.4 Multi-Pr ogramming Level

In the context of a DBMS, Multi-Programming Level
(MPL) is defined as the number of light-weight co-operating
processes which are involved in operation_schedule exe-
cution, executing concurrently in the System [5]. As and
when an operation_schedule enters(leaves) the system,
the MPL value is incremented(decremented) according to
it’s length.

3.5 MPL _Threshold

MPL_Threshold specifies a ceiling on the MPL value
of a system. Scheduling of requests cannot exceed this limit,
so as to avoid deadlocks for resources among any number of
competing queries.

3.6 SafelLimit

Safe_Limit corresponds to a particular MPL value be-
yond which the system reroutes client queries. Opera-
tion_Schedule requests will be accepted but not
full queries.

3.7 Distrib uted Multi-Pr ogramming Level

In a distributed database system with M sites,
Distributed Multi-Programming Level (DMPL) is de-
fined as the sum of MPL values at each site i, wherei = 1,
2, ..., M. DMPL = " MPL;, at any instant when the
measurement is carried out. The DMPL value is stored at
each site and is updated by the resource broker as and when
the MPL value changes at any given site.

DMPL_Threshold specifies the maximum limit on the
value of DMPL in the overall distributed database system.

3.8 Queuelength

For any given sitei (i = 1, 2, ..., M),
the Queue_Length defines the number of queries /
operation_schedules waiting in a queue for subsequent ex-
ecution. It is incremented (decremented) by 1 when a query
/ operation_schedule enters (leaves) the queue.

3.9 Initiation Delay

Initiation Delay [6] is defined as the time spent by a
query / operation_schedule in the queue before it is
scheduled for execution.

3.10 Global Query Completion Time

The Global Query Completion Time [6] refers to the
time interval between the arrival of the first query and the
completion of the last query measured across the distributed
system.

4. ASSUMPTIONS

There are M sites and the global schema maintains in-
formation on identification of the sites, the names of the re-
lations and their attributes and the predicates over which the
horizontal fragments are created. FEach site contains the
same copy of global schema. The queries are assumed to
be in standard SQL format.

5. RBDQP SYSTEM ARCHITECTURE

The proposed system RBDQP is intended to meet the
following requirements:

e Design efficient policies for admission and alloca-
tion in query scheduling.

e Design a suitable site allocation scheme incorporating
parallelism in the query ezecution plan and load bal-
ancing at the various sites.

The various components of the RBDQP System (cf. Fig-
ure 1) are explained below:

5.1 Distrib uted SystemDataManager(DSDM)

The DSDM exchanges the various distributed database
parameters between the sites periodically and finds the op-
timal order of the join predicates. The parameters con-
sidered are:

Statistical Data : cardinality of the relations and domain
range of the join attributes.

Dynamic Data : creation of new indezes, loads at different
sites and a global image of the available memory resources
(Primary and secondary memories).

5.2 ResouiceBroker

A Resource Broker acts as a manager of resources for
competing operations in a distributed environment. When
a query is submitted for execution, it is first checked for cor-
rect syntax and then broken down into Operation_Schedules
(atomic operations) like Independent Predicate Execu-
tion, Merge Fragment, Join and so on. The Resource
Broker proceeds to construct an
Opeartion_Schedule tree which specifies the sequence in

SQL Que$ | Operation_Schedule

Queue

SQL Query / Operation_Schedule

Distri L
istributed System Statistical an

Data Manager Dynamic Dai

Resource
Broker
Interaction with
Peer Resource
Request
a Brokers

) Distributed Execution
Dynamic System Updates| wanager for interactipn

with Peer Servers

Figure 1: RBDQP System Architecture

which the atomic operations are performed. Instead of ex-
ecuting all the atomic operations in the same server which
will naturally increase it’s load, they are distributed to other
servers for execution based on load details provided by the
dynamic resource broker residing at every server. The
resource broker always tries to make an efficient utiliza-
tion of resources available at the various sites. It also in-
teracts with peer resource brokers present at these sites and
exchanges their MPL values.

5.3 Distrib uted Execution Manager (DEM)

The DEM receives the following types of requests :

1. Requests from the clients for query execution.

2. Operation_Schedule Requests from another server for
partial execution of the query, such as

e Independent Predicate Execution.

e Shipping a fragment of a relation.

o Merging the fragments of a relation.

e Join Operation at the local site or at a remote site.

It issues commands to perform elementary operations such
as select, project, merge and join.

6. ALGORITHM : RBDQP

The following algorithm is for site i and is executed when
a client makes a SQL query request or a peer server makes
an Operation_Schedule request:

Input : SQL query from a client site or an Opera-
tion_Schedule Request from a peer server,
Maximum Queue_Length, MPL_Threshold.
/* Operation_Schedule corresponds to any one of the op-
erations mentioned in Table 1 */
/* For the experimental setup, Maximum Queue_Length
= 20 and MPL_Threshold = 20 */

Output : Result of the Full Query / Operation_Schedule.
Procedure
begin
1. Accept a request.
2. If the request is for SQL query execution then
begin
If (Queue Length <= (Maximum Queue_Length
- Safe_Limit)) then
Call Add_To_Queue(Request)
else
Reroute this request to another server
with lesser load.
Reject it when rerouting is not
possible.
endif
end
else
/* Operation_Schedule request from a peer
server */
begin
If (Queue_Length <= (Maximum Queue_Length

)) then
Call Add_To_Queue(Request)
else
Hold the request until there is a free
slot in the queue.
Call Add_To_Queue(Request)
endif
end

3. Call the Resource_Broker.

4. Transfer control to the Distributed Execution
Manager.

end.

In order to implement query scheduling, the Resoure
Broker uses two policies namely, Admission and Allo-
cation. The Admission Policy decides the number of
queries / operation_schedules that can operate concurrently
in the distributed database system. For any given query,
the Allocation Policy decides the Processor and allocates
Memory. A query / Operation_Schedule is forced to the
head of the queue irrespective of the policy, if it’s waiting
time exceeds that of the others. This is done to take care
of the indefinite wait problem.

6.1 Add_To_Queue(Request)

begin
Increment Queue_Length by 1.

If the request is an Operation_Schedule then

Increment MPL value by length of Opera-
tion_Schedule

Endif

If the admission policy is FIFO then
Add the request at the rear end of the queue
else
Place the request at the first available empty
location in the queue

endif
end.
6.2 Resource Broker
begin

1. Check the queue status.

2. If the queue is empty or the
(DMPL value > DMPL_Threshold)
then sleep for a finite amount of time and go to step 1.

3. If the admission policy is FIFO then Remove a request
which is at the front end of the queue.

4. If the admission policy is Priority then evaluate the
priorities of all the entries in the queue. Remove the request
having the highest priority from the queue. If a class of
requests has the same priority, then FIFO is used within the
same class.

5. If the admission policy is Heuristic then apply the
Heuristic_Function on all the entries present in the queue.
Select a request that has an optimal heuristic.

6. Call Allocate_Memory for this request.

end.

6.2.1 Heuristic_Function

An Operation_Schedule is executed in the increasing
order of it’s length and is having a higher priority over a
full query. The Operation_Schedule requests are to be
executed immediately to avoid deadlock and indefinite wait
problems.

For a full query, the following heuristics are used:

1. A query having large number of independent predi-
cates is given the topmost priority since it reduces the size
of the intermediate relations. It minimizes the communi-
cation cost and also improves the response time since these
predicates can be executed in parallel at the different sites.

2.A chain query with a lesser number of joins can be
given high priority since this would result in minimum pro-
cessing cost.

Using the above heuristics and the static cardinalities of
the fragments of the input relations obtained from the global
schema, the queries are quantified in the increasing order
of the processing cost.

6.2.2 Allocate_Memory

The Distributed System Data Manager maintains a
global image of the available memory resources (Primary
and secondary memories). A maximum of 16 MB memory
is assumed to be available at each site.

The Global_Maximum_Memory is computed as follows :
Zf‘i 1 Local_Maximum_Memory (), where M represents the
number of sites. An Operation_Schedule is allotted a fi-
nite amount of memory equal to :
(Local_Mazimum_Memory)/(2« M PL_Threshold —
SafeLimit) (1)

It is to be noted that in equation (1), the denominator uses
(MPL_Threshold + (MPL_Threshold - Safe Limit)). This is
done to have at hold some memory which could be allotted
to the immediate operation_schedules. Hence, the fairness is
towards atomic operations. When the memory require-
ment for an operation exceeds the allotted value, it sends
a request to the resource broker which allots memory if
available. Otherwise, the operation is blocked. The wait-
ing time is also included in the global query completion
time.

7. COMPLEXITY

The following parameters are considered in the analysis
of the RBDQP algorithm :
N : number of relations in the query
M : number of sites
n : number of tuples in a relation/fragment
sf; : selectivity factor of the 4** relation, for the selection
operation = number of tuples selected/n
¢ : cost of transmitting a relation/fragment from one site to
another
n; : number of tuples joined at stage i, in the reduction of
the chain
merge : time for merging the fragments of a relation
x |n]|.

The time complexity of the algorithm is given by :
O(s) + N * ((M-1)O(c) + O(merge)) + (N-1)*O(c)
+ Z;N:_ll O(nilogn;) (2)
where O(s) = Maz [O(sfj*mn)] , 1<=j<=N.

300

250

200

150

100

Initiation Delay (in milli seconds)

50

Heuristic
Priority
FIFO --------

Figure 2: Resource Broker Overhead(Maximum Queue_Length = 20,

3000

2500

2000

1500

Time (in milli seconds)

1000

500

Figure 3: Global Query Completion Times(Maximum Queue_Length = 20, MPL_Threshold = 20)

15
Number of Queries

20

25

MPL_Threshold = 20)

30

Heuristic
Priority
FIFO

15
Number of Queries

20

25

30

The first term in equation (2) corresponds to cost of exe-
cuting the independent predicates; the second term cor-
responds to the cost of merging the fragments of the N in-
put relations stored at M sites; the third term corresponds
to the transmission cost for N-1 relations and the last
term corresponds to the join cost for N-1 relations.

8. IMPLEMENT ATION

The M different sites are identified with different IP ad-
dresses and the distributed server runs at each site. When
the server is started, it intializes the local buffer with local
and global schema table values. The client-server model
[7] is used in the implementation of the RBDQP System.
This system has the ability to process requests concurrently
from clients as well as from other distributed servers.
The implementation is carried out on a network of unix
systems. The network protocol used for communication
between the various servers as well as between the servers
and clients is TCP/IP [4], [9]. Since, TCP/IP is widely
supported, this model is extendible easily to hosts spread
across local and wide area networks. The algorithm is
implemented using C.

9. TEST CONFIGURATION

The RBDQP System has been tested successfully under
mixed workload conditions. The input to the system con-
sists of thirty SQL queries on five relations whose fragments
are spread over four sites. The query miz is uniformly dis-
tributed over Single Select, Single Join and Chain Queries.
The Chain Queries themselves include Select and Project
Operations. The database size is varied in the range 20 MB
- 40 MB and the results obtained were qualitatively similar.

10. SITE ALLOCATOR

The query submitted by the client is executed in the fol-
lowing order :
(a) Independent Predicates Execution .
(b) Merging the fragments of the relations.
(c) Performing the join operations in an order as decided
by the Distributed System Data Manager.
The operations within (a) and (b) are done in parallel at
the different sites . The site allocator determines the best
merging site for each relation. The parameters considered
by the site allocator include :
o. Total number of fragments of each relation
e. Number of tuples in each fragment
e. Load Balancing Factor (LBF)
o. Performance Factor of the system .
LBF tries to distribute the Merge Fragment requests for
all the relations uniformly across the sites, thereby increas-
ing the extent of parallelism and minimizing the time taken
to complete the merge phase. For proper load balancing, the
number of relations considered for merging at a site should
not be greater than [N/M] , where N is the number of re-
lations involved in the query and M is the number of sites.
The Performance Factor for any site J is defined as
PF(J) = MPL(J) + Queue_Length(J), 1 <= J <=
M .

Consider N relations whose fragments are distributed over
M sites. Each entry of the matrix CARD_TABLE(I, J)
specifies the number of tuples of Relation I present at Site
J, where (I =1,2,...,N)and (J =1,2, ..., M).

The matrix LOCAL(M, M) has an entry ’0’ for all di-
agonal elements and the remaining elements have a value of
'1’. ’0’ entry indicates that a fragment of a given relation
is present at the local site and does not involve any commu-
nication cost. ’1’ entry indicates that a fragment of a given
relation contributes for communication cost, as it is shipped
to a remote site, for merge operstion.

The performance of any site is represented by a diagonal
matrix PF(J, J), where (J = 1, 2, ..., M). The entries in
the diagonal represent the performance factors of the various
sites as explained earlier.

The communication cost for merging the relation I at site
J is given by the matrix COMM_COST(I, J), where (I
=1,2,..,N)and (J =1,2,..,M).

COMM_COST(I, J) = CARD_TABLE(I, J) * LOCAL(J, J).
The overall cost for merging a relation I at site J is given
as follows :

MERGE_COST(I, J) = (COMM_COST(1, J)) *
PF(J, J), where (I =1,2, ..., N)and (J =1, 2, ...,

From the above matrix, the optimal site for merging a re-
lation is obtained as follows:

MERGE_SITE(I) = MIN(MERGE_COST(I, J)),
where (I =1,2, .., N)and (J =1, 2, ..., M).

The independent predicates are executed in the first
phase. In the second phase, the Merge Fragment requests
are carried out. In the final phase, all join predicates will
be passed to the DSDM which finds their optimal join
order.

The optimal join order is determined as follows:

1. The given input relations are ordered in the increasing
order of their sizes.

2. For each join operation, estimate the size of inter-
mediate results, assuming that the join selectivity factor is
1; (i.e. the cardinalities of the two relations participating
in the join operation are multiplied). In practical systems,
this factor is usually between 0 and 0.5. Choose a join order
in which the sizes of intermediate results increase gradually.
The resultant relation is finally sent to the client.

11. DISCUSSION

The performance graphs shown in Figure 2 and Figure
3, compares the three query scheduling approaches. From
Figure 2, it can be inferred that the heuristic policy has
more query initiation delay when compared to FIFO or
Priority policies for a fewer number of queries. This is
due to the fact that the heuristic function takes some
time to evaluate all the entries in the queue and select an
entry. As the number of queries increase the performance
of the heuristic policy improves. From Figure 3, it can be
seen that the three policies have nearly equal global query
completion times for a smaller number of queries. This is
because the system has resources sufficient enough to satisfy
all the queries. As the number of queries increase, heuristic
policy gives better global query completion times when
compared to Priority and FIFO policies.

12. CONCLUSIONS

A Resource Broker over a distributed query processor
(RBDQP) for optimal site and query scheduling deci-
sions has been proposed and it’s performance has been an-
alyzed. This model has been tested with multiple servers
and clients successfully. This work can be extended further
to handle replications in distributed relational database,
provide fault tolerance for the distributed servers and in-
corporate concurrency control measures for handling update
queries.

13. ACKNOWLEDGEMENTS

The authors would like to thank Sankaran, Ramprasdh
and Veerakumar for their help in experimental setup and
are grateful to the referees for their helpful comments on
improving this paper.

14. APPENDIX

1 Introduction

2 Related Work

3 Definitions

4 Assumptions

5 RBDQP System Architecture
6 Algorithm : RBDQP
7 Complexity

8 Implementation

9 Test Configuration
10 Site Allocator

11 Discussion

12 Conclusions

13 Acknowledgements

15. REFERENCES

[1] Brown, ”Resource Allocation and
Scheduling for mixed database workloads”,
TR-CS-WISC-1993.

[2] Chiu D.M., Bernstein P.A and Ho Y.C, ” Optimizing
chain queries in a distributed database system”, SIAM
Journal of Computing, Vol 13, No. 1, Feb. 1984, pp.
116-134.

[3] Ceri S and Pelagatti G, ”Distributed Databases :
Principles and Systems”, Mc-Grawhill Book Company,
1985.

[4] Comer D.E. and Stevens D.L, ”Internetworking with
TCP/IP Vol. 3., Client-Server Programming and
Applications”, Prentice Hall of India, 1997.

[5] Davison D.L and Graefe G, ”Dynamic
Resource Brokering for Multi-User Query

[9]

[10]

[11]

[12]

Execution”, ACM SIGMOD 1995, San Jose, CA USA,
pp. 281-292.

Freider O and Baru C.K. , ”Site and Query
Scheduling Policies in Multicomputer Database
Systems”, IEEE Trans. on Knowledge and Data
Engg., Aug. 1994, pp. 609-618.

Khoshafian S., Chan A., Wong A. and Wong HK.T.,
” A Guide to Developing Client/Server SQL
Applications”, Kaufmann Pub., 1992.

Martin T.P, Lam K.H and Russel J.I, “An Evaluation
of Site Selection Algorithms for Distributed Query
Processing”, The Computer Journal, Vol 33, No. 1,
1990, pp. 61-69.

Richard Stevens W, ” Unix Network Programming”,
Prentice Hall of India, 1996.

Tamer Ozsu M. and Valduriez P, ” Principles of
Distributed Database Systems”, Prentice-Hall Inc.,
1991.

Ullman J.D., ”Principles of Database Systems”,
Edition 2, Computer Science Press, INC., 1995.
Vijayakumar B and Gopalan N.P., ”Distributed Query
Optimization using Independent Predicates and
Detachment for the Relational Model”, Proceedings of
the National Conference on Advanced Databases and
Applications, SCSE, Anna University, Chennai, Oct.
1998.

