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ABSTRACT

Algorithms for association rule mining first discover all fre-
quent itemsets before producing the association rules. Effi-
ciency of discovering frequent itemsets depends on the can-
didate generation method. Candidate generation of most
of the previous studies, such as Apriori and Pincer Search,
adopt Join and Prune procedures. This paper proposes No
Pruning Method (NPM), and a new algorithm called All
Frequent Itemsets Generation with No Pruning (AFIG_NP).
NPM combines the top-down and bottom-up searches of the
itemset lattice, and discovers where exactly all the unclas-
sified itemsets are present. AFIG_NP algorithm generates
exact number of candidate itemsets without pruning. Fur-
thermore, the proposed candidate generation method itself
is a fast one. Extensive experiments have been conducted to
study the performance of the proposed algorithm. The pro-
posed algorithm is compared against the Apriori and Pincer
Search algorithms. Results show that the proposed algo-
rithm is more efficient and scalable than the other two, for
mining both long and short frequent itemsets.
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1. INTRODUCTION

Association rules have been recognized as an important kind
of knowledge that can be extracted from transaction-like
data. The problem was initially formulated in the context
of market basket analysis [1]. A market basket is a collection
of items purchased by a customer in a single transaction. An
association rule miner discovers the association among the
items such that the presence of a set of items X implies the
presence of another disjoint set of items Y. An example of
such a rule is “95% of customers who buy Bread and Butter
also buy Jam”. The following is the mathematical model of
the problem [2],

Let I = {i1,42,13.....in } be a set of items. Let D be the
set of transactions, where each transaction T' € D is a set of
items from I. A set of items is called an itemset. An item-
set of cardinality k is called a k-itemset. Items in an itemset
are assumed to be sorted in increasing order. A transaction
T is said to contain an itemset X, if X C T. The support
of an itemset X is the percentage of transactions in D that
contain X. An association rule is an implication of the form
X =Y, where X,)Y C I and XNY = ¢. The support of a
rule X = Y is the support of itemset X UY. The confidence
of the rule X = Y is the ratio of the support of itemset XUY
to the support of itemset X. Now the problem is to iden-
tify all association rules that have support and confidence
not less than user-specified minimum support (MinSup) and
minimum confidence (MinConf), respectively.

The discovery of association rules consists of two steps.
The first step identifies all frequent itemsets (itemsets whose
support is not less than MinSup). The overall performance
of mining association rules is determined by this step. The
second step generates association rules from these frequent
itemsets. This paper addresses the first step.

Motivation: The heuristic to generate the candidate set
(set of itemsets that can potentially be frequent) is cru-
cial to the performance of the first step. Most of the pre-
vious studies [2, 3, 5, 6, 7] for this task adopt Join and
Prune procedures. These procedures perform a large num-
ber of membership' test computations. In particular, when
a database contains large number of long frequent itemsets,

In the generation of Cyi; (set of candidate (k+1)-
itemsets), Apriori Join takes every pair of elements from
Ly Sset of frequent k-itemsets) and tests for a match of first
(k-1) elements. This equality test is considered as a special
case of membership test.



Prune requires more membership tests than Join. Further-
more, the prune operation is an expensive one. Therefore, if
an algorithm reduces the number of membership tests, and
does not require any pruning (but still produces the right
candidate itemsets), the performance can substantially be
improved. ¢

This paper proposes No Pruning Method (NPM), and an
algorithm called All Frequent Itemsets Generation with No
Pruning (AFIG_NP). NPM constructs a lattice for the item-
sets. It combines the top-down and bottom-up searches
of the lattice. It discovers where exactly all the unclassi-
fied itemsets are present. Based on this method, a proce-
dure called Candidate Itemsets Generation with No Pruning
(CIGNP) is proposed to generate the bottom-up candidate
itemsets (Ciy1). This procedure is not based on or an ex-
tension of any known procedure. CIG_NP builds the can-
didate itemsets very effectively, and thus reduces the CPU
time significantly. It does not require any pruning but still
produces the right candidate itemsets as Apriori or DHP.
Another procedure called Top-most Border Itemsets Gener-
ation (TBIG) is also proposed. It is an extension of MFCS-
gen procedure proposed for Pincer-Search [5]. The main aim
of TBIG procedure is to avoid redundant support computa-
tion of some top-down candidate itemsets, thereby reducing
the I/0 overhead considerably. Extensive experiments have
been conducted to study the performance of the proposed
algorithm. The proposed algorithm is compared against the
Apriori and Pincer Search algorithms. Results show that the
proposed algorithm is more efficient and scalable than the
other two, for mining both long and short frequent itemsets.

The rest of the paper is organized as follows. Section 2
presents the related work, and an overview of two existing
algorithms. Section 3 describes the No Pruning Method,
AFIG NP algorithm and a variant algorithm of AFIG_NP.
This section also includes two complete examples that il-
lustrate AFIG NP algorithm, in addition to some partial
examples. Section 4 verifies the correctness of the proposed
algorithm. Section 5 reports the performance analysis of
algorithms. Section 6 concludes the paper.

2. RELATED WORK

Most of the frequent itemset computation algorithms [1, 2,
3, 6, 7] operate in a bottom-up breadth-first search manner
and is referred as Bottom-Up approach [5]. These algorithms
start the process with the generation of frequent l-itemsets
and continue till all the maximal length frequent itemsets are
generated. A well-known algorithm of this kind is Apriori
[2]. Apriori is the first algorithm that uses the property -if
an itemset is infrequent (itemset whose support is less than
MinSup), all its supersets will be infrequent- for pruning the
candidate itemsets. Also note that if an itemset is frequent,
all its subsets will be frequent. DHP [6] enhances Apriori
with a hashing scheme. It generates small candidate sets
and trims the transaction database effectively. This algo-
rithm collects the upper-bound support for (k+1)-itemsets
in pass k. This upper-bound support is used to prune the
candidate itemsets. DIC [3] counts the support of candidate
itemsets of varying cardinality in the same pass, thereby re-
ducing the number of database scans. It builds a candidate
itemset shortly after all its subsets have been determined as
frequent, rather than waiting for the current pass to com-

plete. All the above algorithms make multiple passes over
the database. Partition algorithm [7] minimizes the I/O
cost by making memory-sized partitions of the database. It
scans the database only twice. The first scan identifies all
local (with respect to the partition) frequent itemsets. The
frequent itemsets are computed using Apriori. The second
scan identifies all actual (global) frequent itemsets.

The approach that operates in a top-down breadth-first
search manner is referred as Top-Down approach [5]. The al-
gorithms start with n-itemset, where n is the total number of
items, and continue in the downward direction to determine
the border for infrequent itemsets. The itemsets that are
at the border are maximum frequent (none of its superset is
frequent and every subset of it is frequent), above the border
are infrequent and below the border are frequent. Zaki et al.
[9] couples itemset clustering with lattice traversal model to
generate maximum frequent itemsets.

The third approach is to combine the Top-Down and Bottom-
Up approaches. An algorithm of this kind Pincer Search
[5] makes multiple passes over the database and generates
Maximum Frequent Set (M FS, a set containing maximum
frequent itemsets). Another algorithm that follows this ap-
proach was reported by Zaki et al. [8, 9]. It couples item-
set clustering with lattice traversal model to generate MF'S.
Next two subsections briefly explain Apriori and Pincer Search
algorithms.

Recently, Han et al.[4] has proposed an entirely different
approach to discover the frequent itemsets. This method
scans the original database exactly twice. The first pass
discovers all the frequent items. In the second pass, after
reading every transaction, the frequent items corresponding
to this transaction are incrementally stored into a tree called
FP-tree. Then, it develops a method called FP-growth to
discover the frequent itemsets.

2.1 Apriori Algorithm

Apriori algorithm [2] works as follows. Let Cj denote the
set of candidate k-itemsets and Ly denote the set of frequent
k-itemsets. The process starts with k =1 and C, = {{i} |
i € It. The following steps are repeated till C;, becomes
empty.

e Find the support for every itemset in Cj.

e Compute Ly = {X | X € Cr and Support(X) >
MinSup}.

e Generate Ciy1 from Lj using Apriori-Join and Prune
procedures. Apriori-Join joins every two elements in
Ly, if they have the same (k — 1)-prefix. Prune removes
a (k+1)-itemset generated in Join step, if any of its k-
element subset is not in Ly.

e Increment the value of k by 1.

2.2 Pincer Search Algorithm

Pincer search [5] combines the Bottom-Up and Top-Down
approaches to generate M F'S. It introduces a top-down can-
didate set called Maximum Frequent Candidate Set (M FCS).
MFCS is a set of itemsets satisfying two conditions,

1. Frequent C {Y | Y €2* and X € MFCS}
2. Infrequent N{Y | Y €2X and X € MFCS} = ¢



where Frequent and Infrequent stand respectively for the set
of all frequent and infrequent itemsets identified so far.

The algorithm works as follows. Let S be the set of infre-
quent k-itemsets, i.e, Sy, = {X | X € C and Support(X) <
MinSup} and MFS be the set of maximal frequent item-
sets, i.e, MFS = {Y | Y € MFCS and Support(Y) >
gMinSup}. The process starts with k = 1, MFCS = {{I}}
and C1 = {{i}} | ¢ € I}. In each pass, the support for
itemsets in MFCS and Cy, is computed. Lg, Sy and MFS
are immediately identified from Cy and M FCS. Now the
top-down candidate set, M FCS is updated in such a way
that no element in M FCS contains any infrequent itemset i-
dentified in the bottom-up approach, i.e, if X € M FCS and
Y € S, then X 2 Y. Since this algorithm aims to generate
all maximum frequent itemsets, it deletes all k-itemsets that
are subsets of new maximum frequent itemset from L. This
is to avoid the generation of candidate (k + 1)-itemset that
is a subset of some maximum frequent itemset. Bottom-up
candidate set, Cr41 is generated from Ly, MFCS and MFS
using Apriori-Join, Pincer Recovery and Prune. Apriori-
Join is same as the Apriori-Join explained in the previous
subsection. Pincer Recovery recovers two groups of miss-
ing candidate (k+1)-itemsets. The candidate itemsets are
missed due to the removal of some of the frequent itemsets
from L; after their supersets are identified to be maximum
frequent. The missing itemsets are recovered in the follow-
ing ways,

e Restore all k-itemsets that are subsets of every maxi-
mum frequent itemset.
Perform join with the L; elements, i.e, a restored k-
itemset and a Lj element are joined.

e Restore all k-itemsets that are subsets of every maxi-
mum frequent itemset.
Perform join if both the itemsets are not in the same
maximum frequent itemset.
Note: Otherwise the new (k+1)-itemset will be fre-
quent.

After the recovery, the prune procedure removes an itemset
from Cpy; if it is not a subset of any MFCS itemset.

3. NO PRUNING METHOD (NPM)

This section explains the working principle of NPM. NPM
combines the top-down and the bottom-up approaches, and
comes up with the following features,

1. Discovers where exactly all the unclassified itemsets
(itemsets identified neither as frequent nor as infre-
quent) are present.

2. Generates the candidate set Cjy; efficiently ( with no
pruning).

3. Avoids redundant support computation of top-down
candidate itemsets.

3.1 Discovering Unclassifiedltemsets

Consider a lattice of all possible itemsets from the set of
items I. An itemset A in the lattice is covered by an itemset
B, if A is a proper subset of B. NPM combines the top-down
and the bottom-up searches of the lattice. In each direction,

the algorithm maintains one candidate set - TDCS(Top-
Down Candidate Set) for the top-down direction and Cj, for
the bottom-up direction. The information gathered in one
direction is used to generate the candidate itemsets in the
other direction.

Each pass of the algorithm computes the support for item-
sets in TDCS and Cj. The infrequent itemset information
obtained in the bottom-up direction is propagated to the
upward direction of the lattice, and all its supersets will be
considered as infrequent itemsets. The new TDCS is gen-
erated based on this information. Similarly, if an itemset is
frequent (maximum frequent) in the top-down direction, the
information is propagated to the downward direction of the
lattice so that their subsets will not be considered for the
candidate itemsets generation. These subsets are directly
put into the set of frequent itemsets, and their support is
computed.

Before explaining how the top down and bottom up can-
didate itemsets are generated, we define the required sets.
Maximal Itemset: An itemset X in a collection C of item-
sets is called mazimal itemset if none of its subset is also
present in the collection.

Maximum Frequent Itemset: An itemset X is maximum
frequent if all its subsets are frequent and all its supersets
are infrequent.

Maximum Frequent Set (MFS): A set is said to be MFS
if all its elements are maximim frequent itemsets.

Top Down Infrequent Set (TDIS): TDIS is a set of top
down infrequent itemsets for which none of their subset is
identified as infrequent.

Top Down Candidate Set (TDCS): TDCS is a set of
maximal unclassified itemsets.

Top Down Border Set (M): The union of TDIS, MFS
and TDCS sets is said to be top down border set.

Cit1: Cp4q is defined to be the difference of the set of all
(k+1)-subsets of every element in TDCS UTDIS and the
set of all (k+1)-subsets of every maximum frequent itemset.

Now, we shall explain how the top down and the bottom
up candidate itemsets are generated. First, we have to i-
dentify the top most border for the search space of frequent
itemsets. The top most border set denoted by M contains
all maximal itemsets from the collection of itemsets that are
not identified as infrequent in the bottom-up direction.
Remarks: Strictly speaking, the top-most border should
contain the set of maximum itemsets from the itemsets that
are not identified as infrequent, in either top-down or bottom-
up directions. If we do so, the run-time efficiency is reduced
heavily during the initial stages. Hence the top-down in-
frequent itemsets continue to be in the border set till the
bottom-up direction identifies them as infrequent.
Example: Consider TDCS = {{1,2,3,...... ,2000}} and
Ci = {{1},{2}....., {2000}}. The pass 1 identifies L1 = Ci
and {1,2,3,...... ,2000} as infrequent. Now, our algorith-
m takes all the k-element subsets of every itemset in M,
for the generation of C;. From {1,2,3,..... , 2000}, all 2-
itemsets (2000C; = 1999000 itemsets) are generated only
once. On the other hand, assume all the 1999-subsets of
{1,2,3,...... , 2000} as the top most border itemsets (M), s-
ince {1,2,3, ...... ,2000} is infrequent. The number of such
1999-itemsets are 2000. Still, the same candidate set is gen-
erated, i.e, number of different itemsets generated are the



same. But the number of itemsets that have been actually
generated are 2000 x 1999C, ( 1999000 x 1998). This is 1998
times bigger than the former method. o

Every element in the set M is such that none of its proper
subset is infrequent. All the itemsets in M that are neither
frequent nor infrequent, constitute the top-down candidate
itemsets (T'DCS).

The bottom-up candidate itemsets are generated from the

itemsets that are in the sub-lattices. These sub-lattices are
induced by the itemsets in M. The sublattice induced by an
itemset X of M consistes of all itemsets that are subsets of X
including X. Note that if a sublattice contains an infrequen-
t itemset, then it will be the top element of the sublattice.
Any (k+1)-itemset that is a proper subset of some item-
set in M is either frequent or unclassified itemset. If this
(k+1)-itemset is covered by any maximum frequent item-
set, it is a frequent itemset. Otherwise it is an unclassified
itemset. The set of these unclassified (k+1)-subsets should
constitute Cgy1. This explains the definition of Cry1 given
above. Note that Cr41 does not include the (k+1)-subsets
of maximum frequent itemsets (identified so far). They are
considered as identified frequent itemsets and directly put
into Ly41. This is the reason for difference operation. The
procedure proposed in the next subsection handles this dif-
ference operation efficiently.
Example The Figure 1 shows the lattice of itemsets, from
the set of items {1,2,3,4,5}. The relation cover is not rep-
resented using normal lines to maintain the clarity. Assume
that the algorithm is at pass 2. In pass 1, algorithm identifies
{1}, {2}, {3}, {4} and {5} as frequent itemsets and {12345}
as infrequent itemset. Since none of the subsets of {12345}
is identified as infrequent in the bottom-up direction, all the
2-subsets of {12345} is considered as candidate 2-itemsets.
In pass 2, {15} is identified as infrequent in bottom-up di-
rection. It is represented by circle. Since {15} is infrequent,
all its supersets are taken as infrequent. This is shown in the
figure. The itemsets denoted by the box represent the fre-
quent itemsets. The itemsets marked by the cross indicate
that they are identified as infrequent in both the directions.
The unmarked itemsets are the unclassified itemsets. No
itemset is identified as maximum frequent itemset, so far.

Now, the algorithm has to construct the top-most border
candidate itemsets. It identifies {1234} and {2345} as new
top-most border itemsets (M). All the unclassified 3-itemsets
are considered as candidate 3-itemsets. They are nothing
but the union of all the 3-subset of every itemset in M. Note
that no maximum frequent itemset is identified so far. ¢

3.2 Effticient Generation of Candidate Item-
sets

This subsection proposes a new procedure called CIG_NP

(Candidate Itemsets Generation with No Pruning), for bottom-

up candidate generation. CIG_NP is completely a new pro-
cedure, that is not based on or an extension of any known
procedure used in algorithms such as Apriori or Pincer-
Search. This procedure does not require any pruning. The
candidate itemsets are generated directly from the topmost
border itemsets.

The topmost border itemsets M is divided into three sets,
1) MFS - the set containing the maximum frequent itemsets
2) TDIS - Top-Down Infrequent Set (the set containing
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identified in bottom-up direction

Q Indicate the Infrequent Itemsets
identified in bottom-up direction

>< Indicate the Infrequent Itemsets
identified in both the directions

Unmarkes Itemsets Indicate the Unclassified Itemsets

Figure 1: The lattice, after pass 2 counting phase.
M will be {{1234},{2345}}. C3 = Union of all the
3-subsets of every itemset in M. No maximum fre-
quent itemset is identified so far.

infrequent itemsets from M) 3) TDCS - the set containing
the top-down candidate itemsets. Every itemset in M is such
that no proper subset of it is infrequent.

Consider the itemsets in the sub-lattices that are induced
by the itemsets in M. A (k+1)-itemset in the sub-lattices
is put into Cj41, if the itemset is not covered by any max-
imum frequent itemset. If a (k+1)-itemset is covered by
any maximum frequent itemset, then it is directly put into
Li41. The remaining elements for Ly are added, after the
support for Cr41 is computed.

Let A denote the set of all (k+1)-subsets of every itemset
in (TDIS U TDCS) and B denote the set of all (k+1)-
subsets (proper) of every itemset in MFS. Then, Cpyq is
defined as A— B. Ly 41 = BU {Frequest Itemsets in Cyy1}.

The procedure works as follows. It takes a L element
(say X) and tests if it is a subset of any itemset (say Y')
in MFS. If X is a subset of Y, the index (say j) where
match for k" element of X occurs in Y, is found out. Then,
the procedure adds all the elements in Y that are having
indices greater than j, as singleton itemsets, into a set® Pj.
The same test is done for all the itemsets in M FS, and the
resulting elements are added into P; in a similar manner.

The same method is repeated for the same Lj; elemen-
t with all the itemsets in (TTDIS U TDCS), instead of
MFS. The resulting singleton elements are added into a
set Q1. Let R1 be Q1 — Pi. Now X is extended with every
element in R;, and the extended itemset is added into the
set Cp41. Also, X is extended with every element in Py, and
the extended itemset is added into the set Lyy1. The entire
procedure is repeated for all the elements in L.

Example : Let TDIS = {{1234569},{3456 8}},
MFS = {{2345679}} and TDCS = ¢.
Consider an itemset {3 4 5}, which is an element in Ls.

2The procedure CIG_NP maintains 3 temporary variables
representing the sets P, Q1 and R;. Each set contains set
of singleton itemsets.



Now, {3 4 5} is tested against the maximum frequent item-
set {234 56 7 9}, the match occurs at index 4. The items
that are having indices greater than 4 are added into P;.
P, becomes {{6},{7},{9}}. {3 4 5} is also tested against
all the itemsets in TDIS. Q1 becomes {{6},{9}}, after
{3 4 5} is tested against {1 2 3 4 5 6 9}. Finally, {3 4 5} is
tested against {3 4 5 6 8}, Q1 becomes Q1 U {{6},{8}}
= {{6},{8},{9}}. There is no further change in Qi, s-
ince TDCS = ¢. Now, Pr = {{6},{7},{9}} and Q1 =
{{6}, {8},{9}}. R: will be {{8}}. Every element in R; is
extended (merged) with {3 4 5} to produce some candidate
itemsets, Cr41 = Cr41 U{{3 45 8}}. The elements in P, are
extended with {3 4 5} to produce some frequent itemsets,
Lipi = Lpsr U{{3456},{3457},{34509}}.

Procedure : Candidate Itemsets Generation with No Pruning (CIG_NP)
Input : TDCS, TDIS, MFS, Ly, Output : Cpyq, Dpyq

1P o= ¢ Q1 = ¢
2. for all itemsets | € Ly

/* singleton itemsets */

3. for all itemsets m € MFS and |m > k+1

a ifl C m /* Suppoese m.item; = Litemy */

5 for i = j+1 to | m |

8 Py = P; U {m.item;}

7. for all itemsets m € TDCSUTDIS and | m >k +1
8 if 1 Com /* Suppose m.item; = Litemy */
9 for i = j+1 to | m |

10. Q1 = Q1 U {m.item;}

11. R = Q — P

12. for i=1to | Ry |

13. Chg1 = Crt1 U {I U {Ry.item;}}

14. fori=1to | Py |

15. Ligy1 = Lgpy1 U {1 U {Py.item;}}

END.

3.3 FrequentltemsetRecovery with No Prun-
ing (FIR _NP)

Once Ci41 becomes empty?, there may be some M F'S item-
sets whose size is greater than (k+1). The algorithm has to
find the support for the subsets (size > k+1) of these max-
imum frequent itemsets. The FIR_NP procedure is used to
generate only L4, from MFS.

Procedure : Frequent Itemsets Recovery with No Pruning (FIR_NP)
Input : Ly, MFS Output : Ly

1. for all itemsets f € Ly

2. for all itemsets m € MFS and | m |> k41

3 if f C m /* Suppose m.item; = f.itemy */
4 for i = j+1 to | m |

5. Py = P; U { m.item;}

8 fori =1 to | Py |

7. Lgp1 = Lgp1 U {5 U {Pr.item;}}

END

3.4 Avoiding Redundant Support Computa-
tion of Itemsets

This subsection proposes a new procedure for top most bor-
der itemset generation(TBIG). This procedure is an exten-
sion of MFCS-gen procedure proposed in Pincer-Search [5].
MFCS-gen procedure leads to redundant support computa-
tion of certain itemsets. We identify the situations where
the redundant computation takes place, and propose mod-

3 At this point, all the maximum frequent itemsets have been
found out. And TDCS =TDIS = ¢

ifications to avoid the unnecessary computation, thus im-
proving the performance significantly. Intuitively speaking,
the redundant computation takes place while dealing with
the itemsets that are closer to or at the convergence point
(the point where the bottom-up and top-down approaches
meet). Since all the maximal length frequent itemsets are
not of same length, redundant generation takes place at dif-
ferent points in time. Hence, they are classified with respect
to the current pass k.

The topmost border itemsets generation procedure works
as follows. Consider an itemset (say @ € M) of size m whose
subset (say R € Si) is infrequent in the bottom-up direction.
Now the itemset () is replaced by k or lesser than k different
itemsets that are proper subsets of ). Each such subset (say
X) is of size m-1, has all the items except one of the items in
R and no proper superset of X is present in M. This action
corresponds to lines 1-9 of the algorithm. The operation of
lines 1-9 is as same as MFCS-gen algorithm in Pincer-Search
[5]. Lines 10-16 are new, and avoid the redundant support
computation of itemsets.

At this point of the algorithm (after line 9), the set M
contains some new as well as old border itemsets. The old
border itemsets in M are either frequent or infrequent item-
sets. The new border itemsets in M are either frequent or
unclassified itemsets, since the new border itemsets are the
maximum itemsets from the collection of itemsets that are
not identified as infrequent. See the Figure 1. Now, con-
sider any new border itemset (say P) of size k. Since the
algorithm has completed the counting phase of pass k, it
has the information about all the itemsets of size k. Each k-
itemset is classified either as frequent or as infrequent item-
set. Since P is a new border itemset and of size k, P will
be a frequent itemset. Since P is a border itemset, it is a
maximum frequent itemset. Hence, every such k-itemset is
put into M FS. The similar argument also applies for new
border itemsets of size (k-1). These itemsets are also put
into M F'S. The remaining new border itemsets are put into
TDCS. This change is incorporated in lines 10 to 12 of the
TBIG procedure. In Pincer-Search[5], the support for these
k and (k-1) itemsets will be computed in the next pass, and
they will be added to M F'S.

Consider an infrequent itemset (say Q) of size (k+1) in
M. By the definition of M, none of the subsets of Q is in-
frequent in the bottom-up direction. Since the algorithm
has completed the counting phase of pass k, all the proper
subsets of Q are frequent (identified in bottom-up process).
Since Q is infrequent and all its subsets are frequent, every
k-subset of Q is a maximum frequent itemset, provided the
k-itemset is not covered by any other itemset in M. Hence, Q
is replaced by all such k-subsets of Q. The similar argument
also applies for the infrequent itemsets of size k in M. Hence,
all such k-itemsets are replaced by their (k-1)-subsets. Al-
1 these (k-1)-subsets are maximum frequent itemsets. The
change is incorporated in lines 13 and 16 of the TBIG algo-
rithm. In Pincer-Search, Q will be considered by Cr4; and
support will be computed in the next pass [(k+1)]. At pass
(k+1), all the subsets of Q will be added into TDCS and
counted in pass (k+2), for the second time. Many a times
this redundant computation alone leads to two more passes
for Pincer-Search.



Example : Let M = {{1 2 3 4 5}} and a S2 element be
{1 5}. Now, {1 2 3 4 5} is replaced by two itemsets that
are of size 4 in such a way that {1 5} is not a subset in
any of these two itemsets. These itemsets are {1 2 3 4} and
{2345}

Example : Let M = {{4 56 7 8 9}} and a S element
be {4 5 7}. Now, {4 5 6 7 8 9} is replaced by three item-
sets that are of size 5 in such a way that {4 5 7} is not a

subset in any of these three itemsets. These itemsets are
{66789}, {46789} and {4568 9}.

Procedure : Topmost Border Itemsets Generation (TBIG)
Input : TDIS, MFS and Infrequent Set Sp,

Output : TDIS, MFS and TDCS.

New border Itemsets

1. Newltemsets = ¢

2. for all itemsets s € S,

3. for all itemsets m € (TDIS U NewItemsets)

a if sCm

5 if (m € TDIS) TDIS = TDIS — {m}

[:} else Newltemsets = Newltemsets — {m}

7. for all items ¢ € s

8 if m — {e} is not a subset of any itemset in M

9 Newltemsets = Newltemsets U {m — {e}}
10. MFS = MFS U{X | X € NewItemsets and | X | = k or k — 1}

11. NewITemsets = Newltemsets - {X|X€E Newltemsets
and | X | = k or k-1 }
12. TDCS = Newltemsets
13. MFS = MFS U {k-subsets of every (k+1)-itemset in TDIS
if k-subset is a maximum itemset for M }
14. TDIS = TDIS — {X|X € TDIS and | X | = k+ 1}
16. MFS = MFS U {(k-1)-subsets of every k-itemset in TDIS
if (k-1)-subset is a maximum itemset in M}
16. TDIS = TDIS — {X | X € TDIS and | X | = k}
END

3.5 All FrequentltemsetsGenerationwith No
Pruning (AFIG _NP)

This subsection presents the complete algorithm of NPM
model that combines the bottom-up and top-down approach-
es. The algorithm starts with TDCS = {{I}} C; = {{i} |
i € It and Ly = ¢. Each pass computes the support for
these sets. The sets MFS and L, are updated according
to the support information. New itemsets are generated for
TDCS, whenever some itemset is identified in the bottom-
up direction (Cf). At each pass, top most border itemset-
s (M) are updated, and the bottom-up candidate itemsets
(Ci+y1) are generated. Along with Cr41, some of the (k+1)-
frequent itemsets that are subsets of the maximum frequent
itemsets, are also generated, and the support is computed
for them in the counting phase. This process ends when
the bottom-up candidate set becomes empty. Then, the fre-
quent itemsets that are subsets of itemsets in MF'S, are
generated and the support is computed for them. The algo-
rithm terminates, when all the frequent itemsets and their
support have been computed.

Algorithm : All Frequent Itemsets Generation with No Pruning (AFIG_NP)

1.k = 1,01 = {{i} i€ I}
2. TDCS = { I}, MFS = ¢, TDIS = ¢
3. while C, # ¢

4. Read the database and compute the support for

itemsets in Cy, L, and TDCS

5 Ly =Lj U {X| X € Cy and Support(X) > MinSup}

6 S = {X | X € Cp and Support(X) < MinSup}

7. MFS = MFS U {X | X € TDCS and Support(X) > MinSup}
8 TDIS = TDISU{X | X € TDCS and Support(X) < MinSup}
9 Call TBIG Procedure

10. Call CIG_NP Procedure

11. k =k + 1

12. endwhile

13. while (L}, # )

14. Read the database and compute the support for itemsets in Lj,.
15. Call FIR_NP procedure
16. k=k+1

17. endwhile
END.

Note that the major problem with most of the top-down
and the combined top-down and bottom-up approaches is
that the support is not computed for all the frequent item-
sets. They aim to produce the MFS. This results in over-
head during the rule generation, since the support needs to
be computed for some frequent itemsets whose support is
not computed before the rule generation. But, AFIG NP
algorithm computes the support for all the frequent item-
sets, like Apriori does. During rule generation, the support
computation is not performed for any itemset.

3.6 Complete Examples

In this subsection, we give two examples. The first exam-
ple illustrates our algorithm, in the absence of maximum
frequent itemsets and the second example illustrates it, in
the presence of maximum frequent itemsets. These two ex-
amples use the same database but different MinSup values.
The following is the database that we take, to illustrate our
examples.

12345
1234
1234
2345

W N~

Example: Consider Table 1 and assume that MinSup is 2
transactions, i.e, 50%.

Step 1:
k= 1, Ci = {{1}7 {2}7 {3}7 {4}7 {5}}
Step 2:
TDCS ={{1 23 45}}
MFS =¢
TDIS =¢
Pass 1
Step 5:
L, ={{1}7 {2}7 {3}7 {4}7 {5}}
Step 6:
S =¢
Step 8:
TDIS={{12345}}
Step 10:
Co = {{1 2}7 {1 3}7 {1 4}7 {1 5}7
(23}, {24}, {25},
{34}, {35}, {45}}

Pass 2



Step b:

L, = {{1 2}7 {1 3}7 {1 4}7
(23}, {24}, {25},
{34}, {35}, {45}}

Step 6:

S, ={{15}}

Step 9:

TDCS ={{1 234}, {2345}}

Step 10:

C3={{123}7 {1 24}7 {134}7
(234}, {235}, {245},{3 451}

Pass 3

Step b:

Ly={{123}, {124}, {134},
{234}, {235}, {245},{3 45}}
{23}, {24}, {25},

{34}, {35}, {45}}

Step 6:

Sr=¢

Step T7:

MFS={{1234}, {2345}}

Step 10:

Ci=¢

Example: Consider Table 1 and assume that MinSup is 3
transactions, i.e, 75%.

Step 1:

k=1,Cr = {{1}, {2}, {3}, {4}, {51}
Step 2:

TDCS ={{12345}}

MFS=¢

TDIS =¢

Pass 1
Step b:
L, ={{1}7 {2}7 {3}7 {4}}
Step 6:
Sy = {5}
Step 8:
TDIS={{12345}}
Step 10:
TDCS =¢ TDIS = {{1 23 4}}
Step 10:
C> = {{1 2}7 {1 3}7 {1 4}7
{23}, {24}, {34}}

Pass 2
Step b:
Ly = {{1 2}7 {1 3}7 {1 4}7
{23}, {24}, {34}}

Step T7:

MFS={{1234}}

Step 9:

TDCS =¢

Step 10:

L3={{123}7 {124}7 {134}7
{2 3 4}}

Ca=¢

Pass 3
Step 14:

Read the database.
Step 15:
Lyi=¢

3.7 Variation : Maximum Frequentltemsets
Generationwith No Pruning (MFIG _NP)

The AFIG NP algorithm is modified to give an algorith-
m called MFIG_NP that generates the maximum frequent
itemsets. In addition to generating all the maximum fre-
quent itemsets, MFIG_NP also generates some frequent item-
sets that are not maximum frequent itemsets. These fre-
quent itemsets are generated in the bottom-up direction.
The lines from 1 to 12 of the algorithm AFIG NP, and the
lines from 1 to 13 of CIGNP procedure, will perform this
function. Lines 14 and 15 of CIG_NP are not needed. These
two lines consider the subsets of maximum frequent item-
sets. There is no need for FIR NP procedure, that recovers
the frequent itemsets that are the subsets of the maximum
frequent itemsets. Note that Pincer-Search aims to gener-
ate maximum frequent itemsets. Hence, for the purpose of
fair comparison, we have implemented MFIG NP algorithm
also.

4. CORRECTNESSOF THE ALGORITHM

Lemma 1: Any itemset that is not a subset of some
itemset in M is infrequent.

Proof: Let M = {{X1},{Xz},.....{X;}}. The set of al-
1 possible subsets of itemsets in M is, P, = {Y | Y €
2*and X € M}. The set P; gets affected only when TBIG
procedure is called. This procedure replaces each itemset in
M that contains S € S with different itemsets in such a way
that none will contain S. The number of such different item-
sets is always k, provided any of their superset is not present
in M already. After S is considered by TBIG procedure,
New M = {{V1},{Y2},.....{¥:}}. All possible subsets of
itemsetsin New Mis P, = PL—{Q| Q € PLand Q 2 S}.
Processing all S, elements has the similar effect. Hence the
lemma. ¢

Lemma 2: Cjy; generated at pass k is such that Cr4q1 =
Difference of the set of all (k + 1)-subsets (proper) of every
itemset in (T DIS U TDCS) and the set of all itemsets that
are subsets of any maximum frequent itemset.

Proof : Ci,; is generated by applying CIG_NP procedure.
It is clear from the construction of CIG NP that Cj; sat-
isfies the above assertion. Hence the lemma. ¢

Theorem 1: All itemsets in Cy41 are unclassified and al-
1 unclassified itemsets of size (k+1) are in Cryy UTDCS
itemsets of size (k+1), k > 0.

Proof:

Part 1: All itemsets in (11 are unclassified
Consider an itemset X € Cr4+1. If X is a frequent itemset,
then either X is a maximum frequent itemset or a subset of
maximum frequent itemset. Due to Lemma 2, X can not
be in Cpyi. If X is a infrequent itemset, then X can not
be in Cp41 due to the property of M that all the itemsets
in M are such that none of its proper subset is infrequent.
Therefore, X is an unclassified itemset.



Part 2: All unclassified itemsets of size (k+1) are in Cr41 U
TDCS itemsets of size (k+1).

According to Lemma 1, an itemset that is not a subset of
some itemset in M, is infrequent. Hence, every unclassified
itemset is a subset of some itemset in M. By Lemma 2,
it is assured that Cjy1 does not contain any frequent or
infrequent itemsets identified so far. Hence the theorem. ¢

5. PERFORMANCE EVALUATION

This section reports the experimental results. The experi-
ments were performed on a 450 MHZ Pentium III PC with
64MB main memory and an attached 4.5GB disk, running
on Linux environment. The algorithms Apriori[2], Pincer-

Search[5], AFIG NP and MFIG NP are implemented in C++.

The important data structures used in all the algorithms are
Hash Tree and Hash Table that are described in [2]. We use a
two dimensional array of counters for Pass 2. The use of two
dimensional array, rather than Hash Tree for Pass 2, has a
major performance impact [5, 6]. The synthetic datasets are
generated by the program designed by IBM Quest project
using the procedure given in [2]. Datasets with varying pa-
rameters - in size, average length of transaction, average size
of frequent itemsets and the number of itemsets- are given
as input to the programs. The algorithms are compared in
four aspects,

1. Number of candidates generated, and member-
ship tests performed : Number of candidate item-
sets includes the top-down (if any) as well as the bottom-
up candidate itemsets. In case of Apriori and Pincer-
Search, it is the number of candidate itemsets that
have been generated before pruning takes place. But,
the membership tests include the pruning phase also.

2. Time Taken for the candidate generation pro-
cess (T.y) : Tey = Total time taken for the generation
of top-down (if any) and bottom-up candidate itemset-
S.

3. Execution Time : Run time (total execution time) is
used as the measure. Run time measure is better than
CPU time measure, since CPU time considers only the
cost of the CPU resources.

4. Scalability : The scalability experiments consider the
number of items (50 to 10000), average length of the
transaction (10 to 60) and the number of transactions
(1 million to 10 million).

5.1 Numberof Candidatesgeneratedandmem-

bership testsperformed

Experiments show that Apriori and Pincer algorithms gen-
erate a lot of unnecessary candidate itemsets before pruning.
In initial passes, they generate more than twice the number
of necessary candidates. Generally the problem is very a-
cute in candidate 3-itemset generation. This is due to the
fact that in pass 2, the algorithm generates more frequent
and infrequent itemsets than any other passes which leads to
generation of more number of unnecessary candidate item-
sets. Passl of the Apriori always generates one candidate
less than AFIG_NP. Pass2 of the Apriori generates equal
(if MFS = {{I}}), or one candidate less than AFIG_NP.

Pincer and MFIG_NP generate equal number of candidates
in pass 1 and 2. Table 1 compares the number of candi-
dates generated in other passes. The first row indicates the
pass number. Table 2 compares the number of member-
ship tests performed in the entire run of the algorithm. As
the length and the number of maximal frequent itemset-
s increase, the number of membership tests performed by
the procedure Prune increases heavily, where as a very less
number of membership computations is performed by the
proposed algorithms. Hence, the proposed algorithms can
meet the scale-up properties well. Please note that, Table
1 compares Apriori with AFIG_NP (since both generate all
frequent itemsets), and Pincer-Search with MFIG NP (s-
ince both generate maximum frequent itemsets). However,
Pincer-Search takes more time and performs more number
of membership tests than AFIG_NP. Recall that AFIG NP
algorithm is restricted to generate maximum frequent item-
sets, and named as MFIG_NP algorithm.

Pass No | AFIGNP | Apriori | MFIG NP | Pincer
3 31931 97521 31931 97534
4 22958 62416 22958 62525
5 8731 19138 8690 17739
6 3563 4936 3110 4576
7 2132 3294 1555 1605
8 1033 2334 597 781
9 213 398 51 209
10 85 165 10 48
11 32 52 0 27
12 7 21 0 18
13 0 17 0 0

Table 1: No.of candidates

:: T20.115.D400k

Dataset AFIG.NP | Apriori | MFIG NP | Pincer
T40.135.D200k 42169 618936 30296 300469
T40.130.D200k 25686 504789 19686 446876
T40.125.D200k 19389 258700 16986 214734
T40.120.D200k 6493 82361 5812 74461

Table 2: Membership Test Comparison

5.2 Time Analysis of Candidate Generation

All the algorithms are compared for decreasing values of
MinSup on four different datasets, and the results are pre-
sented in Figure 2 and 3. As the MinSup value decreases, the
number and the size of frequent itemsets increases. Apriori
and Pincer-Search algorithms thus have to do more member-
ship tests. This results in sudden raise in curve for these two
algorithms, where as in AFIG NP and MFIG NP the curve
raises gradually. Note that the candidate generation time
of the algorithms is not directly proportional to the num-
ber of membership tests performed by these algorithms, due
to the unit time for individual membership test. The unit
time varies heavily even within the pass itself for AFIG NP,
MFIG_NP and Pincer-Search algorithms, since they consid-



er the itemsets of different cardinalities (in M) in the same
pass.

5.3 ExecutionTime

Execution times of all the algorithms are compared for de-
creasing values of MinSup on four different datasets, and the
results are presented in Figure 4 and 5. As the MinSup value
decreases, the performance gap between the proposed algo-
rithms and the other two algorithms increase. This shows
that the proposed algorithms are scalable even for small sup-
port values, and hence, can mine the long frequent itemsets
efficiently. Note that even though the number of itemsets
that are compared against the database is slightly more than
Apriori (since Apriori has no top-down process), it does not
affect the performance because of the time that is saved in
candidate generation process.

5.4 Scale-upExperiments

The scale-up experiments are done with respect to the num-
ber of items (50 to 10000), average length of transactions (10
to 60) and the number of transactions (1 Million to 10 Mil-
lion). Asthe number of items decreases considerably and/or
the average length of transaction increases, the average sup-
port for an itemset increases. This results in increasing the
number of frequent itemsets. In situations like these, the
Apriori and Pincer-Search algorithms perform rather poorly;
their curves raise suddenly, whereas the curve for proposed
algorithms raises gradually, as can be seen in Figures 5 and
6. The execution times in Figure 5 are normalized with re-
spect to the times for 1000 items in the first graph, and
10000 items in the second graph, and the execution times
in Figure 6 are normalized with respect to the times for the
average length of transactions 10. The proposed algorithms
also scale well with respect to the number of transactions.
All the algorithms scale linearly. Refer the Figure 7. But
the curves for the proposed algorithms have the least slope.
In Figure 7, the execution times are normalized with respect
to the times for 1 million transactions.

5.5 Comparison With FP-treeBasedMethod

Recently, J.Han et al. has proposed a method based on
FP-tree. This method scans the database exactly twice.
During the second pass, it builds a FP-tree. FP-tree effec-
tively compresses and stores the database. Then, it develops
FP-growth method to discover the frequent itemsets.

In their experiments, it was observed that the size of the
FP-tree is usually small and can fit in memory even for very
large size datasets. While I/O is the biggest overhead in oth-
er studies such as Apriori, Pincer-Search and our method,
this method seems to reduce the I/O overhead to a greater
extent, without causing any other side effects. Hence, we be-
lieve that this method can possibly outperform our method.
Due to the lack of time, we could not do the implementa-
tion. In near future, we plan to implement this method and
perform a comparative study against our method.

6. CONCLUSIONS

This paper has closely examined the Apriori and Pincer
Search algorithms for mining association rules, and showed
that the candidate generation process of these algorithms
can greatly be improved. The proposed method discover-

s where exactly all the unclassified candidate itemsets are
present. AFIG NP algorithm that follows this model, builds
the candidate itemsets effectively, and requires no pruning.
Furthermore, the algorithm avoids the redundant support
computation. Extensive experiments have been conducted,
and the results showed that the proposed algorithm is more
efficient and scalable than the other two, for mining both
long and short frequent itemsets.
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