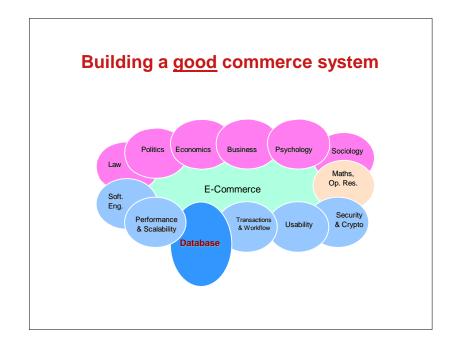
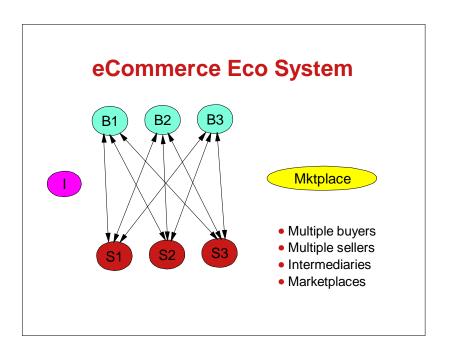
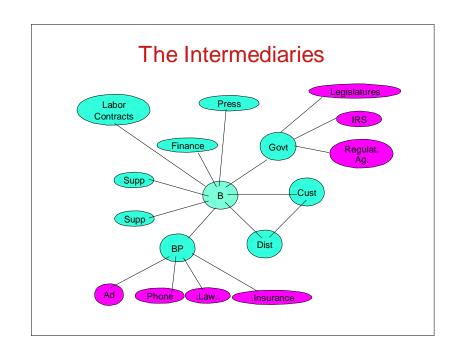
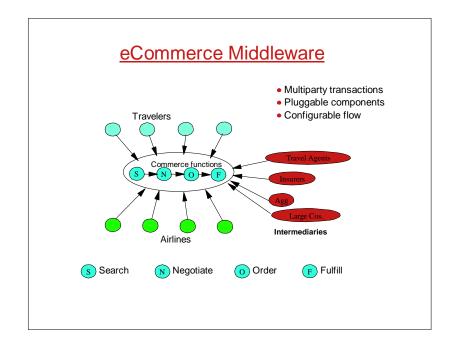

Database support for E-Commerce Applications

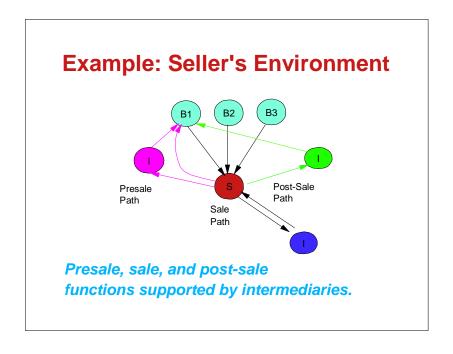
Manoj Kumar, *mkumar@in.ibm.com* Anant Jhingran, *anant@us.ibm.com*

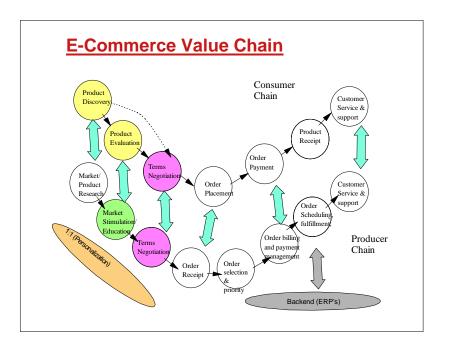

IBM Research Division India Research Lab

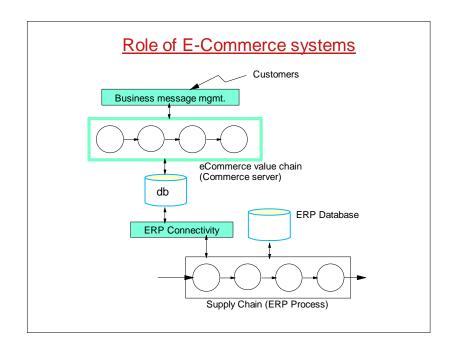

Overview


- Role of Internet and databases in eCommerce
- E-Catalogs
- E-Markets: Auctions, RFQ, Exchanges
- e-Coupons: Sales Promotions
- Personalization

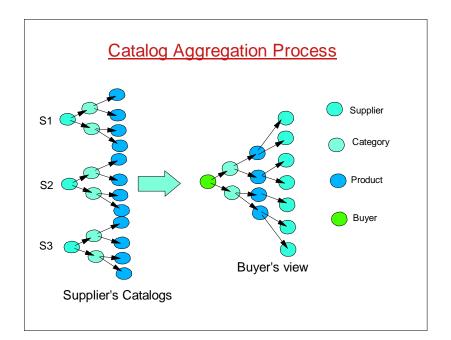

Role of Internet in Business

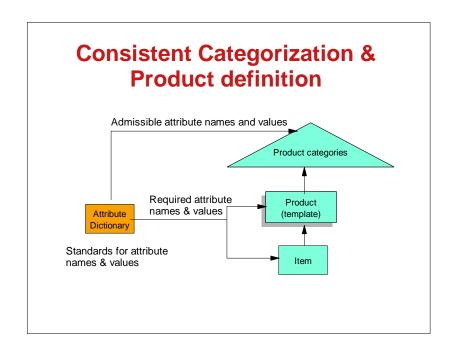

- Marketing
 - Advertising
 - Sales-Promotions
 - Information/Directory services, Catalogs
- Business Transactions
 - Buying/Selling things: Fixed Price model Auctions, Brokerages, Procurement
 - Payments: Credit cards, e-cash and e-banking
- Customer Support & Service
 - Personalization

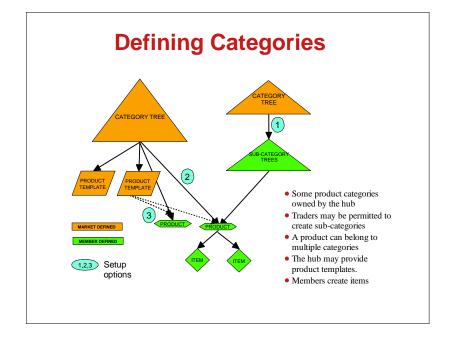




Overview


- Role of Internet and databases in eCommerce
- E-Catalogs
- E-Markets: Auctions, RFQ, Exchanges
- e-Coupons: Sales Promotions
- Personalization


Business function provided by catalog

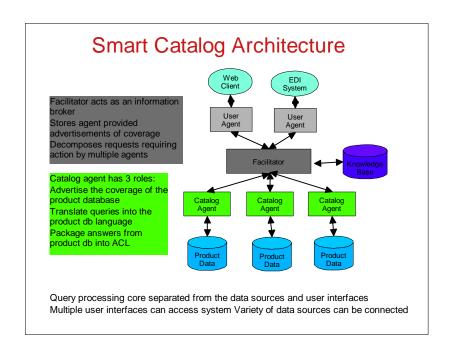

- Browsing
 - Organizing products by categories
 - Dynamic reorganization based on user profile,
 - Dynamic product customization and price quoting
- Search
 - Attribute based search
 - Product advisors
- Delivery vehicle for Coupons/Promotions
- Aggregation
 - Buyer/Distributor Centric Catalogs

Steps in Building a Vibrant Catalog

- Collecting, Cleansing Data
 - Most companies have data spread in proprietary format such as Quark
 - Massive Warehousing Problem
 - * thinking of product attributes (such as color = pink, material = "silk") is a new process
- Categorization (building the catalog hierarchy)
 - Classification using 60,000 attributes! (most are empty)
 - a product may be in several categories
- Aggregation
 - Supplier 1 calls it "tyres", Supplier 2 calls it "tiers"
 - Supplier 1 measures in cm, Supplier 2 in inches
 - Also, discriminate suppliers as the last step
- Providing Different Search Metaphors
 - simple efficient text search and category based browsing
 - more complex -- "salesman" like search
 - * today I am in a mood of surprising my wife -- what do you suggest?

Requirements for E-Catalogs

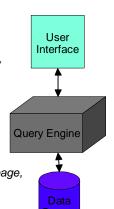
Summary of CommerceNet Catalog Working Group recommendations


- Scaleable and support distributed search
- Provide up-to-date information
- Support variety of search techniques
- Cross-catalog search (e.g. for comparison)
- Open architecture
 - ► Connection of new info sources
 - ► Open standards

Virtual Catalogs

- Current distributor or retailer catalogs are based on:
 - ► Hyperlink approach interaction details lost
 - Integrated approach significant storage and maint cost
- Virtual Catalogs:
 - ▶ Dynamic retrieval of product data
 - ▶ Distributor maintains control over interactions
 - ▶ Built on top of a Smart Catalog infrastructure

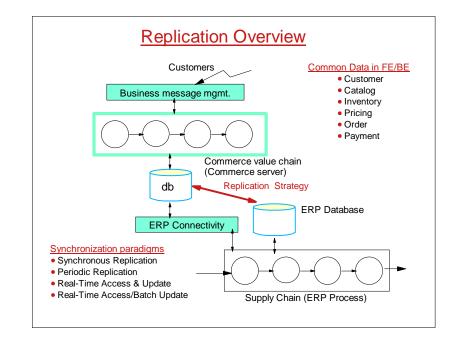
Database research issues in E-Catalogs


- Organization based views
- Business buyers see products authorized by their organizations
- Only products from authorized vendors shown
- Prices negotiated by the buying organization shown
- Reporting and auditing
- Reports generated of purchases from the catalog for each buying organization
- Efficient implementation of alert services
 - Query optimization for catalog shopping domain
- Communication bottlenecks: IP multicast vs. efficient unicast
- Schema integration issues in Catalog aggregation
- Search Technology
 - Text extenders
- Searching via images

Information Integration

Abstraction Hierarchy

- Interface relations
 - ► cars (manufacturer, year, mileage, price, value)
- Base relations
 - classifieds(manufacturer, model, year, mileage, price)
 - ► bluebook(manufacturer, model, year, mileage, value)
- Site relations:
 - nytimes(manufacturer, model, year, mileage, price)
 - ► gm(model, year, mileage, value)
 - ► bmw(model,year,mileage,value)

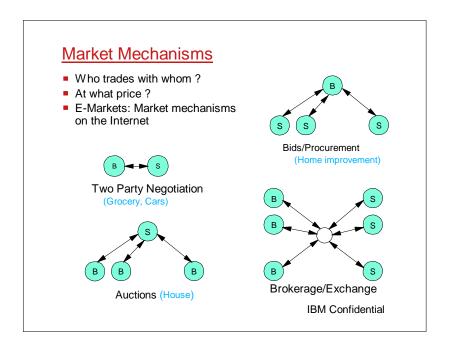


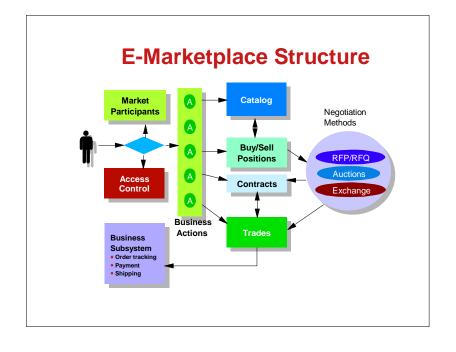
Query Processing

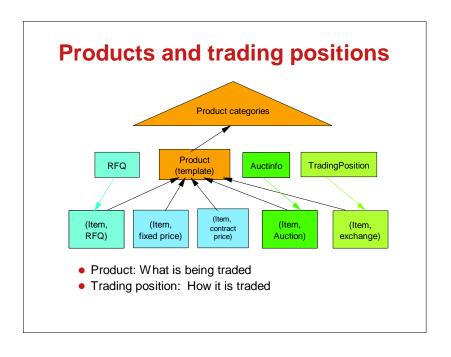
- Three step process:
 - ▶ Reduction: Translate from interface to base relations
 - cars(gm,model,1996,mileage,price,value) & price < value
 - classifieds(gm,model,1996,mileage,price) & bluebook(gm,model,1996,mileage,value) & price < value
 - ▶ Abduction: Translate from base to site relations
 - nytimes(gm,model,1996,mileage,price) & gm(model,1996,mileage,value) & price < value
 - ▶ Optimization: Eliminate redundant source accesses, etc

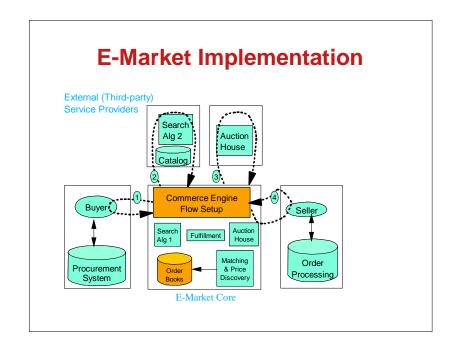
Abstraction Hierarchy

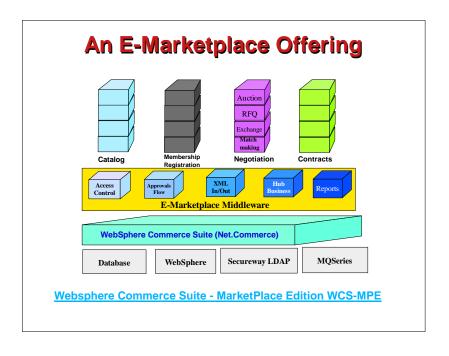
- Base relations in hierarchy provide flexibility
 - ► Can add new information sources easily
 - ► Serve as the basic building blocks of the app domain
- Interface relations and site relations are expressed in terms of the base relations
 - cars (manufacturer,model,year,mileage, price,value) *= classifieds(manufacturer, model, year, mileage, price) & bluebook(manufacturer,model,year,mileage,value)
 - ► nytimes(manufacturer, model, year, mileage, price) => classifieds(manufacturer, model, year, mileage, price)
 - ► gm(model,year,mileage,value) *= bluebook(gm,model,year,mileage,value)

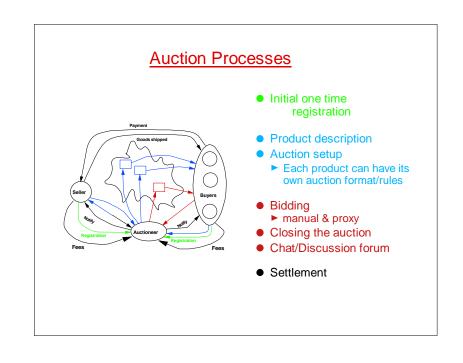


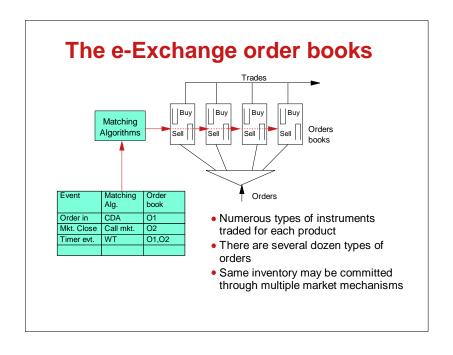

Overview

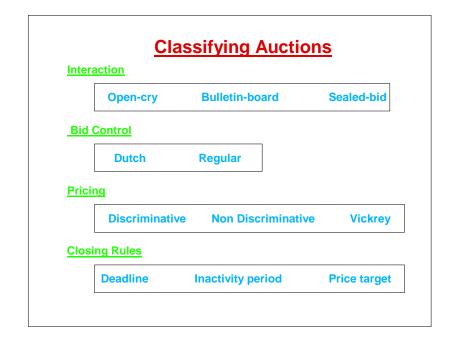

- Role of Internet and databases in eCommerce
- E-Catalogs
- E-Markets: Auctions, RFQ, Exchanges
- e-Coupons: Sales Promotions
- Personalization

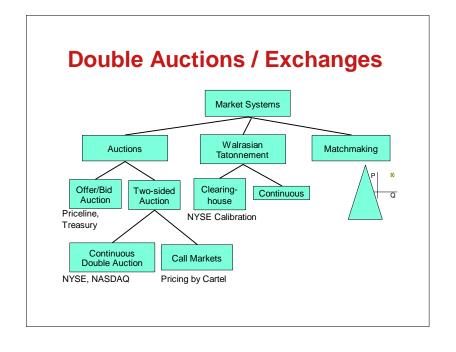

Internet promotes E-Markets


- Internet lowers the cost of market mechanisms
- Internet magnifies their advantages
- More markets will switch to auctions, competitive bidding for procurement, and exchange model









Future Directions for Database research in E-Trading

- Standardized Business objects:
 - Bid/Offer, Product Production Capacity, soft goods (insurance)
- Messaging
 - Integration with backend ERP systems
 - Automatic archiving of old records
 - Audit trails
- Efficient communication of Market information and notification of trading results
 - communicate best bid in an auction or ask/bid prices in a brokerage to relevant parties
 - IP multicast vs. efficient implementation of unicast to a group implemented as an OS service

Overview

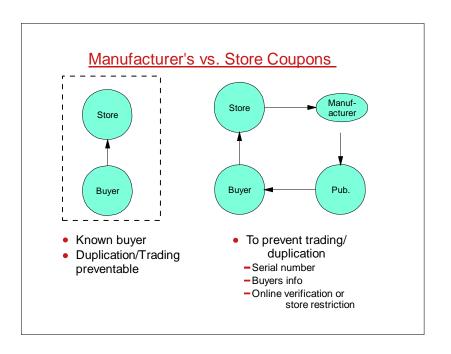
- Role of Internet and databases in eCommerce
- E-Catalogs
- E-Markets: Auctions, RFQ, Exchanges
- e-Coupons: Sales Promotions
- Personalization

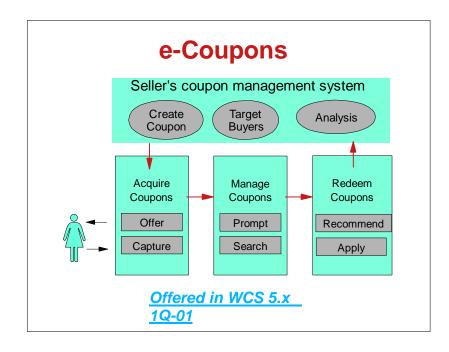
Sales Promotions: Opportunity

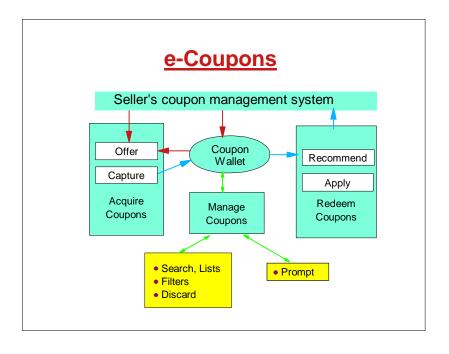
Varieties

- Traditional coupons
- Cash Back Offers
- 2 for 1 (x for y) deals
- Free Trials/Samples (in-pack/on-pack inserts)
- Cross sales, Upsales
- Contests
- Loyalty Awards

Marketing Industry (1991)


Sales Promotions (Incentive, usually monetary) \$100 Billion, 12% CGR


Purpose


- Promote new brand
- Switch brand loyalty
- Increase consumption
- Attract shopper into store
- Inventory reduction

Promotions

- Cross sales and upsales coupons: given when shopper buys some thing
- Best seller lists, store specials, and daily specials
- Loyalty awards: Given automatically after a basket of purchases in multiple shopping visits
- Frequent visit awards: Given for certain amount of online interaction

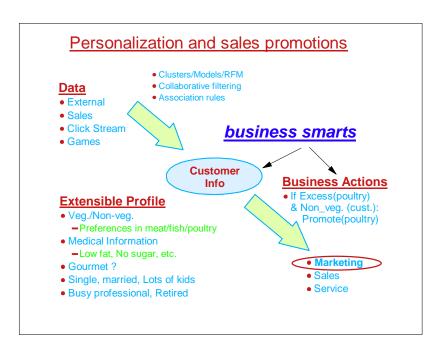
Coupon Object

- Package to which coupon applies
 - One item (Particular model of TV)
 - Multiple items of same kind, or of different kinds
 - Total purchase order value
- of the coupon
 - Fixed monetary value (Save \$1.00)
 - 10% of purchase price
 - Shirt free (or 50% off) with pants
- Two for one sales
- points (frequent flyer), buttons, tokens
- Validity window, Targeting restriction (geographic)
- Number of coupons distributed
- Display method
- Administrative tools: create, distribute, monitor, close

Coupon Wallet

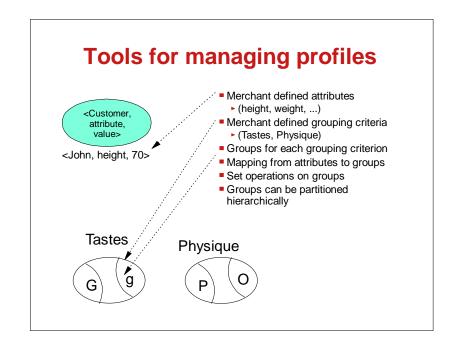
- Maintained in store
- Shopper can specify products/categories
 - Coupons for specified products/categories only stored in wallet
- Shopper can search for coupons in his wallet
 - Various selection and ordering metaphors
- Coupons may require shopper action to be acquired
- Shopper can specify coupons he is willing to accept

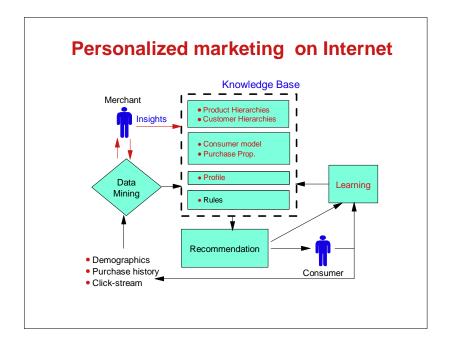
<u>Database capabilities needed for coupons:</u> <u>Triggers / Alerts</u>


- Ability to trigger stored procedure on access
 - For monitoring access behavior, for example, number of times a product is viewed
- Ability to trigger stored procedure based on access behavior
 - For example, offer discount if product viewed x times but not bought within a certain timeframe
- Ability to launch stored procedure based on condition holding true for a period of time
 - Close auction if no new bid received for 15 minutes
 - Send dunning letters (reminder if payment not received in 10 days)

Redemption

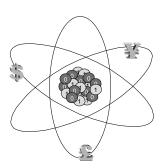
- Applicable coupons displayed when order created
- Shopper selects coupons for redemption
 - Coupon redemption should not be totally automatic
 - Users may have different plans for using their coupons
- However, tools provided to help selection
- When coupon redemption is automatic
 - shopper should be made aware of the redemption (to earn good will for the discount being given)


Overview


- Role of Internet and databases in eCommerce
- E-Catalogs
- E-Markets: Auctions, RFQ, Exchanges
- e-Coupons: Sales Promotions
- Personalization

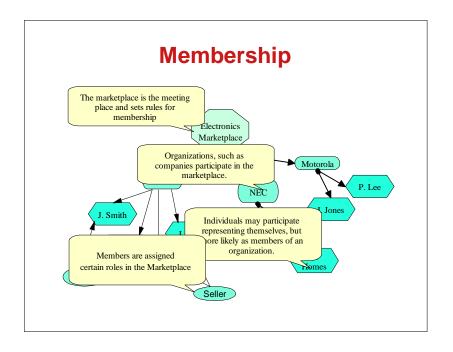
Customer Profiles

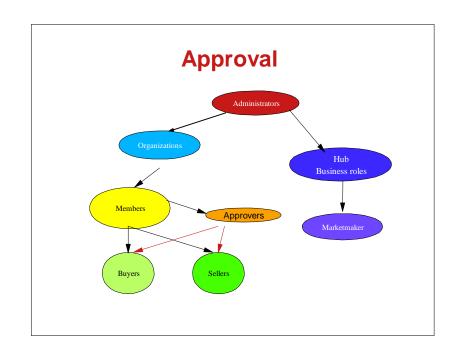
- Knowledge of the customer
- Standard part
 - ▶ Demographics
 - ► Customer valuation
- Extensible part (for insurance industry)
 - ► Risk aversion
 - ► Accident propensity
 - ► Automobile, property, and health descriptions

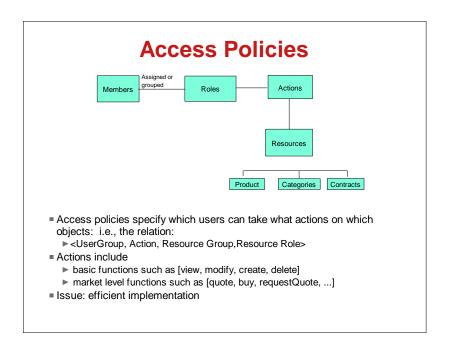

Using rule engines for business actions

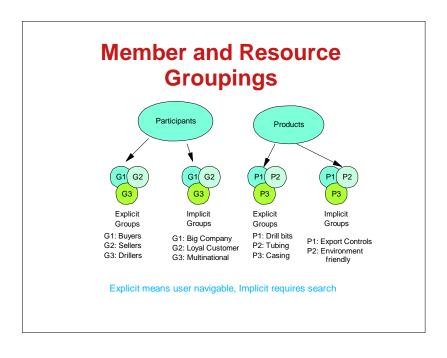
- Give 15% discount to loyal customers
- If customer likes humor, promote Dilbert
- In Dec. promote calendars to shoppers buying gifts
- To promote product, show ad/incentive if customer has seen product and not bought, or customer not likely to see product, and product not promoted before

Evolution of Databases in E-Commerce Environment APP Commerce API Doc. Mgmt. Schema Int. Profiling Data Analysis


Issues in applying Datamining to E-Commerce


- Data like purchase history has too many dimensions
 - Straight forward application of clustering would fail
 - Preprocessing needed to retain relevant attributes
 - E.g., instead of shirts, slacks and suits, have apparel
 - Problem: How to find the right dimensions for analysis
- Building good predictor models: combining
 - Similarity of shopping basket content
 - Shopping for thanksgiving dinner vs. summer barbecue vs regular shopping.
 - Consumption models
 - Factoring changes in seasons and family head count
 - Profile data and business rules




Backup

Papers on this subject can be found at www.ibm.com/iac

Static vs. Dynamic Facts

- "loyal" and "likes humor" are static facts
 - ► Can be processed in batch mode, off line
 - ► Low processing requirements
 - ► Can be asserted by conventional Rules Engines off-line
- "buying gifts", "product not promoted before", are dynamic facts
 - ▶ Real time processing, high processing overhead
 - ► Session logs to feed inline rules

Simple Conditions and Actions

- Conditions
 - ► Shopper a busy professional (retired person)
 - ► Shopper likes humor
 - ▶ Product has cross-sale or up-sale item
- Actions
 - ► Show audio version of a thick book or a less voluminous book on the same subject
 - ► Suggest other humor books
 - ► Advertise/Discount the cross-sale item

Simple Rules

- On <u>Event</u>
 If <u>Condition</u>
 Then action
- Events
 - ► Entering or Leaving Rack/Aisle/Category
 - ► Adding book to shopping cart
 - ► Placing order for selected books

Performance Considerations

- Profiles store static facts
 - ► Efficient mechanisms to assert these facts needed
- Mechanisms other than rule engines to exercise few commonly used (and simple) rules
 - ► Custom solution (hard wired rules)
- Support for incremental processing