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Abstract

We consider the problem of evaluating continuous
selection queries over sensor-generated values in the
presence of faults. Small sensors are fragile, have fi-
nite energy and memory, and communicate over a lossy
medium; hence, tuples produced by them may not
reach the querying node, resulting in an incomplete
and ambiguous answer, as any of the non-reporting
sensors may have produced a tuple which was lost. We
develop a protocol, FAult Tolerant Evaluation of Con-
tinuous Selection Queries (FATE-CSQ), which guar-
antees a user-requested level of quality in an efficient
manner. When many faults occur, this may not be
achievable; in that case, we aim for the best possible
answer, under the query’s time constraints. FATE-
CSQ is designed to be resilient to different kinds of fail-
ures. Our design decisions are based on an analytical
model of different fault tolerance strategies based on
feedback and retransmission. Additionally, we demon-
strate the good performance of FATE-CSQ compared
to competing protocols with realistic simulation pa-
rameters and under a variety of conditions.

1 Introduction

Wireless sensors are becoming smaller and cheaper,
while their capabilities continuously improve. Systems
incorporating large numbers of them are now techni-
cally and economically feasible and will provide un-
precedented access to the physical world at a fine level
of spatio-temporal detail [5]. It is important that data
management architectures take into account both the
capabilities and limitations of sensors [14]. Increas-
ingly, researchers are realizing that sensors are more
than passive beacons, but can perform useful work,
to conserve their own resources and to meet applica-
tion goals. Sensors can be smart in terms of data ac-
quisition [17], processing before transmission [11], and
propagation across the network [4]. Pushing intelligent
decision-making and data manipulation to sensors has
many benefits: (i) removing part of the burden from
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the centralized components of the system, (ii) making
decisions close to the monitored phenomenon, thus im-
proving reaction times, (iii) preserving the crucial re-
sources of wireless bandwidth and energy supply.

Not only performance, but also semantic aspects of
sensor-based data management must be addressed. In
traditional databases, the focus is on storing and re-
trieving data efficiently: lower-level components such
as hard disks, networks, operating systems, etc., are
assumed to run correctly and provide reliable service,
failing only exceptionally. This is not reasonable for
sensor networks where a wide variety of accidents may
occur: sensors are fragile units deployed in the field,
communication failures, energy depletion and other
calamities are routine, and the system must function
in spite of them. More importantly, they introduce an
aspect of uncertainty into standard operations, such as
answering queries. We should not aim to extract some
data from the network in a purely best-effort manner,
but rather to produce results with a clearly defined
formal meaning.

In our paper we try to meet this challenge for the
evaluation of continuous selection queries (CSQs) over
sensor-generated data. We define such queries as re-
quests for the retrieval, for every period of length 7,
of all sensor values satisfying a user-defined predicate
A. The query is issued at an injection point I P, and
spreads to a set S of all sensors of interest. Every 7
seconds, each s € § generates a tuple t; by acquiring
the attribute(s) of interest, and if A(ts) is TRUE, then
ts is called a YES tuple which must be forwarded to
IP. Otherwise, it is a NO tuple and does not need
to be forwarded. The ezact set £, s of such a query
for a particular period is defined as the set of all YES
tuples, or Ex.s = {ts|A(ts) As € S}. We will call this
set £, where A\, S are assumed. Due to faults (e.g., a
message being lost en route to IP), we expect IP to
receive an answer set A that is a subset of £.

The presence of faults introduces two obstacles in
interpreting A. Is it a “good” answer, or is it very in-
complete due to the occurrence of many faults? Even
if A was “perfect” (equal to &), ambiguity remains:
what about the remaining sensors, |S| — |.A| in num-
ber, from which tuples were not received during this
period? If faults occur frequently, then it is possible



for all these sensors to have actually produced results,
which however were not reported.

As a practical example, consider the following sce-
nario: a disaster occurs, involving e.g., a leak of poi-
sonous gas. To gain information about the extent and
intensity of the disaster, without endangering person-
nel, small wireless electronic sensors may be dropped
from the air covering a wide area around the reported
sources of the chemical pollutants. These sensors sub-
sequently report whether or not the pollutant levels
are above a critical threshold, implying e.g., that pro-
tective gear should be worn by rescue personnel de-
ployed in the area. Diffusion of pollutants may de-
pend on weather (e.g., winds), or on the rate at which
they are released to the environment. An ad-hoc sen-
sor network would be able to deliver critical real-time
identification of dangerous regions, helping to priori-
tize resources for rescue operations, determining evac-
uation urgency in different areas, etc. The presence of
faults in this example would imply that locations not
reporting “dangerous” levels of pollutants may indeed
be dangerous. If decision makers could know that the
number of such locations is small, then they would be
able to make better decisions, e.g., assessing the risk
of sending personnel to a non-reporting region.

Our paper deals with how to give to the injection
point I P additional quality guarantees about the an-
swer set A. The query has to specify its quality re-
quirements, expressing how “good” it wants A to be.
Then, the system will work towards meeting these re-
quirements. Sometimes, due to the occurrence of many
faults, it might be impossible to achieve this goal; then
the best possible answer will be given within the period
time 7. Irrespective of whether or not the requirement
is met, the system will produce guarantees, aiding in
the interpretability of the result.

Our paper is structured as follows. Section 2
presents challenges in dealing with faults in sensor net-
works and defines a metric for gauging the goodness
of a query answer, In Section 3 we present a proto-
col, FAult Tolerant Evaluation of Continuous Selec-
tion Queries (FATE-CSQ) for producing such an an-
swer. FATE-CSQ is based on hop-based feedback and
re-transmission, a design decision motivated by our
analytical study of alternative fault tolerance mecha-
nisms presented in Section 4. We evaluate FATE-CSQ
and alternatives in Section 5. Finally, we review some
related work in Section 6 and conclude in Section 7
presenting directions of future research.

2 Faults in Sensor Networks

In this section, we describe our problem setting, and a
metric for quantifying answer quality in the presence
of faults.

2.1 Problem Setting

We assume that a sensor network consists of nodes,
which can be wireless sensors, wired access points or
servers. Nodes communicate with each other via pair-
wise links. Each sensor has a link with every other
sensor within its hearing range. A link is a logical
concept, capturing the ability of two nodes to talk to
each other without intermediaries. When a node s
transmits, then its message can be heard by all nodes
sharing a link with s: this may lead to collisions, but
can also be used for reaching many nodes with one
transmission, saving energy. The query is posed at I P
and answer tuples must flow from all nodes in S to I P;
this imposes some structure to the part of the sensor
network we are dealing with, I P is a “head” node, and
other nodes have paths through which tuples can flow
to IP.

We categorize faults along two dimensions: node
vs. link faults and terminal vs. non-terminal ones. A
node fault is a failure of a component A in the system
and affects all its descendants, i.e., nodes relying on
A to transmit data to IP. A link fault occurs when
a transmitted message is lost, even though both end-
points are operational, because of e.g., collisions, or
electromagnetic interference [30].

A second distinction pertains to fault finality. Some
faults are caused by conditions which cannot be cir-
cumvented by additional effort or a change of policy,
e.g., physical damage to a node. Effort towards cor-
recting such terminal faults is not useful. By contrast,
non-terminal faults, e.g., reception of a corrupt packet,
can be corrected, leading to the recovery of data and
improving the probability that they will reach IP.
Such faults can be further categorized based on their
duration. Short-term faults may cease to be a prob-
lem before the beginning of the next period, in time
for the data to be forwarded to the user. Long-term
faults last for more than one, and potentially many,
periods; hence, effort towards resolving them during
the current period is wasteful.

Our protocol, FATE-CSQ aims to prevent, detect,
and correct faults. It prevents faults by occasionally
modifying the network topology to ensure that healthy
nodes always have a path towards I P. It detects faults
using an intelligent feedback-based mechanism. Fi-
nally, it tries to correct faults by attempting to re-
transmit data that have not been properly forwarded.

2.2 Quality Metric

To assess the quality of the answer, we have chosen to
use the recall measure, which has a long history of use
in Information Retrieval [2], and has also been recently
proposed [15] for dealing with imprecise data. Recall
can be computed easily and has an intuitive real-world
meaning. If A is the answer set, a subset of the exact
set £, then recall is simply the fraction of £ that has
been retrieved:
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Figure 1: Sensor set S, exact set £, answer set A,
number of NO tuples N.

r:%if|€|#0,elser:1 (1)
|A| is known: it is the number of answer tuples
received by TP, but |£| is unknown and can vary in
[|A],|S]]. For example, if |A| = 100 and |S| = 1000,
then r can be as low as 5= = 0.1, since potentially
all 1000 tuples were YES, but only 100 were received
due to faults. Without additional information, this is
the best we can do. We can improve this bound, if, in
addition to A, the I P is also aware of a number N of
tuples known to be No. If N is known—the mechan-
ics of how to achieve this are explained in the next
section—then we can improve on the recall guarantee:
now, at most |S| — N tuples may exist in the exact
set. In the example of the preceding paragraph, if we
knew that N = 500 tuples were NO, then r can be
as low as % = 0.2, a definite improvement over
the previous bound. A graphical representation of the

recall concept is seen in Figure 1.

In general, the recall guarantee r is:
| Al

= if N, els =1 2
Ty |S‘—N1|S‘;é , else Ty ()

Summarizing, a query ¢ is applied on a set of nodes
S and consists of a predicate A, a period 7, and a
recall requirement r,. Its semantics are: at time ¢ the
set of tuples satisfying A is £. By time ¢ + 7 a subset
A C & should reach IP, and a count N of sensors in
S whose tuples are NoO. A and N should be such that
rg > 1q (Where ry is defined from Eq. 2); if this is
not achievable, then work towards minimizing rq — 7
until time ¢ + 7. This is repeated for the next period,
setting t «— t 4 7.

3 FATE-CSQ Protocol

In this section we will describe the three phases of op-
eration, shown in Figure 2, of FATE-CSQ. We will be
using Figure 3 to illustrate the workings of our proto-
col.

3.1 Query Establishment Phase

The query is first submitted to IP and during the
first phase of operation, it must reach all nodes in S.
This is achieved by establishing a routing tree using
broadcasts. Each node s maintains its parent’s ID,
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Re-structure?
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Figure 2: Phases of FATE-CSQ Operation
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P,: this is the node from which it has received the
broadcast, e.g., Pr = A. Subsequently, each node
sends messages to I P via its parent, e.g., node I sends
a message to IP via the path I — F — A — IP.
Each parent s maintains a set C, of its children.

The procedure described in the previous paragraph
can be repeated: nodes who already have a parent re-
tain it, but nodes who have missed the initial message
are given an opportunity to join in, just as before. Af-
ter a few repetitions, the full routing tree such as in
Figure 3 is established. I P counts n;p, the number of
sensors reporting via the tree, and |S| is set to be equal
to nrp; this may be smaller than the total number of
nodes, because some of them may not have joined the
tree despite repeated attempts. Alternatively, |S| can
be set as the total number of deployed nodes. In that
case |S|—nrp tuples will always be potentially missed.
The choice of |S| is a matter of desired semantics, i.e.,
recall over all nodes, or over all nodes currently con-
nected in the routing tree.

The beginning time t; of the next phase, i.e., the
start of the first period of the query evaluation, is then
announced to all nodes via the routing tree. At this
time, the round length is also announced; the concept
of a round will be defined below. We assume that
clocks of different nodes are synchronized, i.e., that g
refers approximately to the same instant for all sensors
in the system. Recent work [9] indicates that fairly
close synchronization (< 1 msec) is feasible.

3.2 Single-Period Query Evaluation Phase

This is the main phase of the FATE-CSQ protocol, re-
peated for each period. The answer is progressively im-



proved in a series of smaller time units, called rounds,
during which tuples flow towards the I P and are ac-
knowledged by their recipients with feedback mes-
sages. Nodes finish work when the recall requirement
is met, or the current period expires, or when they ex-
haust all possible work that can be done in their local
subtree, and hence can go to sleep.

The first period begins at time ¢;. Each sensor s
generates its tuple ¢t; by sensing its physical environ-
ment at that time. This phase lasts until £y + 7 at the
latest, as the system tries to produce results that meet
rq. There are three different kinds of nodes: (i) leaf
nodes (e.g., G,C) are responsible only for transmit-
ting their own values to their parent, (ii) intermedi-
ate nodes (e.g., A, F) are additionally responsible for
transmitting the values of more distant descendants,
(iii) IP does not need to transmit any values, but is
responsible for determining when r; has been met.

Transmission Rounds.— Transmission of data
and feedback within a period is organized in successive
rounds. Each round is a time interval during which a
parent receives data from its children: this has to be
enough to accommodate all of them and is thus longer
for nodes with many children. Unlike 7 which is query-
specific, a round length is specific to each parent in the
network and is known by each of his children. To avoid
collisions, children must not all broadcast simultane-
ously. Elaborate policies, such as TDMA [12] can be
used to allocate time for transmission to each child:
any such policy can be used with FATE-CSQ), as long
as transmission is contained within the duration of the
round.

There are two different kinds of data transmitted
from child to parent: (i) YES tuples, and (ii) counts
of No tuples. YES tuples need to be sent individually,
because they will be added to the set A returned to
the user. For a node s, the number N is the count of
No tuples that s knows to exist in its subtree: this is
less or equal to the actual number of NO tuples—since
some reports of NO tuples may be lost. Unlike YES
tuples which must reach I P individually, counts of NO
tuples can be aggregated. A node’s N, is always at
most .. N, the sum of its children’s counts. Data
transmission in FATE-CSQ occurs as follows:

Transmitting Data:

(1) Send your own tuple if YES; otherwise send
a NO message to your parent.

(2) Listen for messages from your children.

(3) If you receive a YES tuple, forward it to your
parent.

(4) If you receive a new count N from child z,
then update your own count as Ns «— N, + N, —
N and forward the new N; to your parent.

All nodes in the system run the above, but leaf
nodes do not perform steps (2-4) and I P outputs YES
tuples to the user. IP checks whether r, > 7, and if
S0, emits a STOP message to all nodes in S, halting

work until the next period. Step (1) occurs only if
necessary, as we will see next.

Feedback.— At the end of the round, the parent
transmits feedback to its children about their own tu-
ples received during the round. For example, node
A transmits feedback about tuples tp,tg,tr. This is
called direct feedback and uses an entity called Children
Feedback Vector (CFV).

Forwarding feedback is used for tuples forwarded by
a node’s children. This uses an entity called Missing
Tuple Vector (MTV). We will explain CFV and MTV
shortly, but note that they apply to different sets of
tuples: if tg is lost in link ' — A, then this will be
corrected by A using direct feedback (CFV), because
F is a child of A. If tg is lost in the same link, then
forwarding feedback (MTV) will be used, because H
is a more distant descendant of A.

In direct feedback, each s has either received the
value of each of its children or not. The CFV is a |C;|-
long bit vector with 0’s for sensors whose tuples (either
YEs or NO) have been received and 1’s otherwise. At
the end of the round, the CFV is broadcast. Children
hear it and do the following:

Direct Feedback:

(1) Listen for the CFV at the end of each round
(2) On hearing the CFV, check whether your bit
is set. If yes, re-transmit your tuple; else, do
nothing.

Using the CFV has three advantages: (i) feedback
is given in a single message for all children, (ii) each
child’s tuple is relayed at most once to its parent,! and
(iii) feedback is timed to coincide with the end of the
round; hence, no idle listening on the channel is done
to receive it. Additionally the CFV can be used to set
the duration of the next round: e.g., CFV=011000 has
two 1’s and hence the next round should last % = %
times the length of the first round, since now 2 instead
of 6 children need to transmit data. The transmit-
feedback cycle becomes faster as more data are re-
ceived by the parent, improving latency, and increas-
ing the probability that the quality requirement will
be met. If a node does not receive the CFV then it
will be stuck listening in (1) of the above, and pick the
CFV in the next or subsequent rounds. The CFV is
small, so it might be attached to all messages gener-
ated by a node’s siblings: this allows a node to receive
it indirectly, reducing idle listening time.

Let’s proceed to forwarding feedback. We treat this
separately, because nodes forward tuples from their
entire subtree, and this can be huge, especially for the
higher-level nodes, close to IP. We would have to
reserve a bit for every such node if we used a CFV
vector to provide feedback, thus increasing the CFV
vector to a prohibitively large length; moreover, this

IThis corresponds to step (1) of the protocol for Transmitting
Data. Of course, a tuple may be retransmitted more than once
if the CFV itself is lost.



would require topological knowledge about each node’s
entire subtree. Node s forwards a sequence of tuples
to its parent Py during a round. It numbers these
sequentially, e.g., (1,2,3,4,5,6). The highest sequence
number is labeled n,,,, = 6. Node s also forwards N,
to its parent whenever this changes;? suppose N, = 5
for our example. Now, suppose that P, receives tuples
numbered (2,3,5) and the latest count of NO tuples
it has received is NSOM. The MTYV which it supplies
to s at the end of the round will consist of: (i) the
highest tuple number received n, in our example n = 5,
(ii) the missing values encoded in a bit vector with
1’s representing gaps and 0’s received tuples. Thus
(2,3,5) is represented as 10010 (read left to right),
(iil) the most recent count of NO tuples N, ;’ld; suppose
N = 3 in our example. When s receives the MTV,
then it will:

Forwarding Feedback:

(1) Resend tuples with seq. number < n whose
bit in the MTV is 1.

(2) Resend tuples with seq. number n + 1 to

nmaz-
(3) Drop all other tuples from its buffer.
(4) If N2'® < N, send Nj.

In our example, tuples numbered 1,4 would be re-
transmitted in step (1), tuple 6 in step (2) and Ny =5
(since Ny =5 > N4 = 3) in step (4). Tuples (2,3,5)
would be dropped from the buffer of s.

Forwarding feedback is used to isolate the effects of
faults. If a tuple is lost in a certain link, it need not be
re-transmitted from the node where it originated: this
improves both latency, as faults are corrected quickly,
and reduces communication load. As an additional
benefit, parts of the routing tree can go to sleep once
a certain condition has been met, as we will explain
below.

Preventing Buffer Overflows.— There is a po-
tential danger, stemming from the finite memory
buffer of a sensor, and the fact that it must forward
all answer tuples from its subtree to its parent. In the
worst case, all descendants of a sensor s are YES and
there is a fault either of P; or of the link s — Pi.
In that case, all these (ns in number) tuples will be
“stalled” at s, since they are not acknowledged by P;.
This may cause a buffer overflow, and hence a lost tu-
ple. To solve this problem, each sensor s keeps track
of its buffer, checking, when receiving a new tuple,
whether or not it can be stored locally. Only if this is
possible does it acknowledge the receipt via feedback.
Thus, the children of s do not delete a tuple if there is
no room in s to store it. Under this policy the prob-
lem of lost tuples, as in the previous example would
be solved: when normal operation in link A — IP is
restored, then A’s buffer will again have space, and A
can start acknowledging received tuples once more.

2N; can be piggy-backed on other packets transmitted to
one’s parent, e.g., YES tuples to save communication effort.

Going to Sleep.— Parts of the network must be
allowed to go to sleep when they have produced all pos-
sible information. We observe that each node s knows
the number ng, the number of nodes in its subtree; this
can be easily determined during the Query Establish-
ment Phase by counting messages flowing from each
node to the I P. Node s can also count Yy, the number
of tuples that it has forwarded and have been acknowl-
edged by its parent: this can be done by incrementing
Y, whenever a forwarded tuple is dropped from the
sensor’s buffer as a result of forwarding feedback from
its parent. When s receives feedback from P then it
will perform the following check: N°¢+Y, = n, which
implies that P, received all tuples forwarded by s and
also has the correct count of NO tuples. Thus, s can
now go to sleep for the rest of the period.

3.3 Re-Structure Phase

The STOP signal marks the end of the Query Eval-
uation phase for the current period. If STOP is not
transmitted, then the system has failed to meet the
recall requirement, and the Query Evaluation phase
ends automatically. The decision whether or not to
re-structure must take place before the next period be-
gins. The initial network topology, discovered in the
Query Establishment phase will slowly become out-
dated. As nodes fail, their descendants will be cut off
from IP and large parts of the network will become
“silent.” Tt will be increasingly difficult (if at all pos-
sible) to meet 7y, taking a greater fraction of 7, as
nodes perform repeated rounds trying to squeeze as
much data as possible out of the still-connected parts
of the network.

Thus, we must occasionally initiate a Re-Structure
phase, during which, continuous query evaluation is
interrupted. IP sends a RESTRUCTURE message:
parent-child information is modified, so that any nodes
whose communication with their parent is problematic
acquire a new parent and can start producing data
again. The Re-Structure phase proceeds similarly to
the Query Establishment phase, but it is now not nec-
essary to re-transmit the query itself, or to re-establish
the starting time of each period. The Re-Structure
phase is an overhead: doing it frequently keeps the
network in good shape, but wastes time and energy
as network topology is re-established; conversely, do-
ing it rarely decreases the overhead, but the network
deteriorates. As we will show in Section 5, there is an
optimum rate at which re-structuring ought to take
place.

4 Analysis of Mechanisms for Fault-
Tolerance

FATE-CSQ relies on a local, hop-based (HOP) feed-
back mechanism to provide resilience to faults. Alter-
native methods, use either (i) end-to-end (E2E) feed-
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Figure 4: A path from node s to IP. Reverse links
(for feedback) are not shown.

back between the I P and the sensor producing a tuple,
or (ii) optimistically (OPT) no feedback at all. E2E
methods are “forward-and-forget” and do not require
intermediate nodes to take any special action. OPT
mechanisms save on the cost of sending the feedback.

In this section, we analyze the HOP, E2E and OPT
methods. We will focus on a node s which is k& hops
away from the IP (see Figure 4). For simplicity, we
assume that feedback is given individually, rather than
combined for multiple nodes as in FATE-CSQ. This
overestimates the number of feedback messages, but
suffices for building our intuition. Additionally, we
do not deal with NO counts which represent a minor
cost compared to YES tuples and can usually be piggy-
backed on such tuples.

Let p be the failure rate (probability) between a
pair of nodes. A message can fail either because the
recipient or the link between sender and recipient are
faulty, and p combines both factors. We will estimate
the number of messages (data or feedback) sent. This
is related to energy expenditure, as well as time: more
messages will drain energy resources more rapidly, and
will require more time.?

Optimistic Protocol - OPT.— In OPT, a node
forwards tuples to its parent. It does not provide any
feedback to its children. To increase the probability of
reception, the source node attempts to send each mes-
sage m times The LAZY protocol discussed in Section
5 is a special case of OPT with m = 1.

A tuple will not reach the IP if there exists at least
one hop for which it fails. Hence, in a single attempt
it will reach the I P with probablhty POPT (1—p)*.
For m attempts, it will reach the I P Wlth probability:

1-@-p"H" (3)

: increases as p decreases (less faults), k de-
creases (less hops), and m increases (more retries).

The expected number of messages (for all nodes in
the path) is calculated as follows. For one try, the
expected number of messages, if the node is k hops
away from the IP is:

PT
POPT =1 -

OPT
Pkm

MPETT =14 (1 - pMPTT, with MOTT =0 (4)

3The relationship is not, however, entirely linear. For exam-
ple, a message may take longer to reach a parent with many
children (longer round size).

1-(1—p)*

p )
with a special case of MOPT =k for p = 0. Since the
value is sent m times, the expected number of messages
is:

MOET — L= L=B) ®)
p

This increases with more retries m, lower probability
of failure p and greater number of hops k.

End-to-End Protocol - E2E.— In E2E the IP
sends feedback to the sensor s. Intermediate nodes
only relay the feedback. If the message is received
by IP, positive feedback is provided; otherwise, nega-
tive feedback is sent. If the sensor s receives positive
feedback then it takes no further action; if it receives
negative or no feedback, then it retransmits its tuple.
Re-transmissions always begin from the source s.

During a single try, the value will reach IP with
probability Prag1 = (1 — p)*. Regardless of whether
the value reaches the I P or not, feedback (positive or
negative) will be generated which will reach s with the
same Ppop 1. Hence, with probability Pg,p, = (1 —

Solving this recurrence yields M~ OPT —

p)?* node s will receive positive feedback, and hence no
more messages will be sent. With probability 1 — (1 —
p)?F it will either receive no or negative feedback and
the tuple will be resent. If m end-to-end transmissions
are attempted in total, then the tuple will reach IP
with probability PEQE =1- (1 - PEQE’l)m =1- (1 —
(1 —p)*¥)™ just as in OPT.

The expected number of messages of this protocol
is derived as follows. Sending either the data value
or the feedback takes M; = 1=(-p*
expected sense for one attempt. The expected num-
ber of messages, if m total number of attempts are
allowed is M72F = 2My + (1 — Py )MP2E | where
ME2E = Ml. Note that 2M; refers to the messages
exchanged in the first end-to-end attempt. Then, with
probability 1— P2, 1 either the message from s to IP
or the feedback will be lost, resulting in a second at-
tempt. M E2E " the final term is simply Mj, because
no feedback is needed in the very last attempt: the
node will not retransmit irrespective of whether its
tuple has been received by the I P or not. Solving the
recurrence, yields:

messages in the

Mi(2+(1— P}%2E,1)m_1(—2 + PéZE,l))

E2FE
Mk =
sm 2
PEQE,l

(6)

The number of messages increases as Pgap,1 de-
creases (frequent losses), and as m increases (more at-
tempts).

Hop-by-hop Protocol - HOP.— This is used by
FATE-CSQ. Positive or negative feedback is given at
each individual hop. A node retransmits to its parent
unless positive feedback is received.

Consider a single hop. The probability of a message
being delivered to ¢ (one hop) is PHOP =1-pm if



m attempts are made. In general we can write the
probability that the message will reach the IP if m
attempts are allowed in the first hop and there are k
hops in total as:

1-p™m ifk=1Am>0
P,fgp =< 0 ifm=0
1- p)P,f{olfn erP,fg}jl else

(7)

The first case is a boundary condition if the mes-
sage is only one hop away from the IP. If m = 0
(second case) then the message cannot be delivered,
as there are no more retries left. Finally, for the third
case: if the message is successfully forwarded by one
hop, then it must clear k£ — 1 hops with m retries;* oth-
erwise it must clear all k£ hops with one less (m — 1)
number of retries. Now, consider the expected number
of messages for m tries:

0 ifm=0ork=0
MIOP =8 1+ AMIOP + BMESE
2+ AMIOF, + BMIQT else
(8)

If m = 0 (no more attempts) or k = 0 (no more
hops), then no more messages are sent. Otherwise, 2
messages are sent (tuple transmission, feedback), ex-
cept in the final attempt, where no feedback is neces-
sary. More messages will be sent in the first hop itself
if either the tuple transmission or the feedback failed
(probability A = 1 — (1 — p)?), but now the number
of retries is reduced by one (second term). Finally, we
add up the number of messages further up in the path
to the IP, i.e., starting from k& — 1 hops away from
the IP. Such nodes produce work only with proba-
bility B = 1 — p, i.e., if the message was successfully
delivered in this hop.

4.1 Which protocol is best?

We can now analytically determine which approach
should be chosen, depending on p, the probability of
failure. Notice that we calculated the probability P
of the IP receiving the value for the three different
protocols. This corresponds exactly to recall r4: for
each protocol. We would like to set m to a value which
reaches r, level of probability. Subsequently, using this
m we can calculate the expected number of messages
M: the best protocol is the one which minimizes this
M. Note the qualitative difference between OPT and
the others: OPT always performs m attempts, where
m must be set a priori: if p is lower than expected, then

4The justification for using m is the following: the message
must clear one less hop (k—1 vs. k). However, transmitting the
value in the first hop itself consumes one message time. Hence,
the system has enough time to afford the same number of retries
for ¢ as for s.

ifm=1land k>0
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Figure 5: Number of messages vs. number of hops
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more work than necessary is performed; coversely, if p
is higher, then 7, is not achieved. This is not a problem
for E2E and HOP, which stop exactly when m suffices
to achieve 7.

Solving v, > P from equation 3 yields optimal

value mopr = Mpgap = % for OPT and
E2E. For HOP this is determined by calculating
PHOP pHOP ka?Z_OP from recurrence equation (7)
stopping when P,fiop > rq; then myop = 4. Substi-
tuting mopr, me2E, mgop in Egs. 5,6,8 we obtain
the cost incurred by the three protocols.

To illustrate the behavior predicted by our analyt-
ical model, we plot the expected number of messages
as a function of k (Figure 5 with p = 0.15) and p (Fig-
ure 6 with k = 10); we keep the recall requirement at
rq = 0.95. The better performance of the hop-by-hop
method is illustrated; note, that in FATE-CSQ perfor-
mance will be likely even better, because messages are
not acknowledged individually.



5 Performance Study

We now validate FATE-CSQ), and test its performance
under different conditions.

5.1 Simulation Settings

There are no published algorithms providing recall
guarantees for evaluating continuous queries. There-
fore, we compare FATE-CSQ against two heuristics:

LAZY.— This is OPT of Section 4 with m = 1.

Given that LAZY does not take faults into account,
its performance is purely dependent on the status of
the sensor network and thus serves as a baseline for
comparison: it will do the minimum amount of work
possible, which will only suffice to meet r, if faults are
sufficiently rare.
E2F.— This is E2E described in Section 4. Addition-
ally, feedback messages sent to multiple nodes are com-
bined. Since the feedback is initiated by the IP, its
size can be very big. In order to break it into smaller
pieces, the IP assigns a logical ID for each node, in
essence transforming the routing tree into an index
on these logical IDs. In this way, intermediate nodes
decrease the feedback message size by only including
those nodes whose logical ID belongs to current sub-
tree in the routing tree.

To compare policies we use: (i) the guarantee rg;
(ii) latency (time to achieve ry); and (iil) normalized
energy consumption, i.e., total energy consumption di-
vided by |S].

We simulated all the three protocols (LAZY, FATE-
CSQ and E2E) on GlomoSim [29], a scalable discrete-
event simulator for wireless networks by UCLA which
provides detailed radio and MAC layers. Table 1 de-
scribes the basic parameter settings used in the sim-
ulation. The chosen power consumption param corre-
spond to the TR1000 radio from RF Monolithics [20],
where the transmission range is set to approximately
20 m. This low-power radio has a data rate of 2.4Kbps
and uses OOK modulation [21].

If not mentioned particularly, for most of the ex-
periments, the recall requirement is 0.9. 100 sensors
are placed in a terrain of size [200m, 200m] with grid
unit 10 m. We observe that in this setting, a node has
at most 16 children and the routing tree depth is 6.
Every 20 sec, 10% to 50% of nodes fail for a duration
randomly chosen from 5 sec to 20 sec. In addition, we
model link quality as in [26]: For each directed node
pair at a given distance, we associate a link failure
probability based on a mean and a variance, assum-
ing that the probability follows a normal distribution.
Each simulated packet transmission is filtered out with
this probability. Typically, we set the mean of this to
be 0.3.

5.2 Experimental Results

The three free parameters in our setting are: chang-
ing sensor values, query recall requirements and sensor
network conditions; so we evaluate network behavior
by varying these factors. Our experiments consist of
five parts, testing for: (i) The impact of varying selec-
tivity (varying |€|) (ii) system performance (varying
rq) (iil) system resilience against failure severity (iv)
protocol performance as |S| increases or node density
increases, and (v) the impact of re-structuring.

Varying Selectivity.— We study how latency and
overhead vary as selectivity changes from 0.1 to 1.0.
Figure 7 shows that there is a point (~ 0.7) with min-
imal latency. If |£] is low, then the effect of even a
few faults is amplified, and repeated rounds are per-
formed to resolve the status (YES/NO) of most nodes;
conversely if |£| is high, then many YES tuples must
reach IP; hence, latency is at its worst for these ex-
treme cases. E2E incurs higher latency and consumes
more energy than FATE-CSQ uniformly.

Varying Recall Requirement.— In this exper-
iment, we vary r, from 0.5 to 1.0. Since we are in-
terested in the latency of each protocol in achieving
T4, we set the query period to be 20min, enough for
the protocol to meet the requirement—for the set data
rate and physical setup.

Figure 8 shows little variation in either latency or
energy consumption for LAZY. This is due to its igno-
rance of query requirements and network conditions.
No extra effort is put to achieve higher recall after
each sensor reports its value once. The rightmost plot
in Figure 8 shows the actual recall provided by each
protocol given recall requirement of 0.9. In compar-
ison, E2E checks periodically its current recall and
sends feedback to ask for more information if neces-
sary. FATE-CSQ does not issue the STOP signal until
the recall requirement is met, which means that re-
transmission of sensor values or the number of NO
continues inside the sensor network. E2E incurs much
higher latency and cost than FATE-CSQ, which ben-
efits from its hop-by-hop recovery. We also observe
that when the recall requirement is low, E2E consumes
less energy than FATE-CSQ; this is because reporting
once from each sensor suffices and there is no feedback
necessary from the IP. However, in FATE-CSQ), in-
termediate nodes initiate an additional round before
receiving the STOP signal.

Varying Failure Severity.— In this experiment,
we investigate how the link failure rate affects perfor-
mance (Figure 9). We vary the mean of the link failure
probability from 0.1 to 0.5. Since LAZY does not try
to ensure that the recall requirement is met, its per-
formance provides a comparative baseline. For FATE-
CSQ and E2E, both latency and energy consumption
increase as the link failure rate increases, since more
feedback messages and re-transmissions are required
to meet 4. FATE-CSQ outperforms E2E uniformly.



Node Placement Grid
MAC Layer CSMA
Radio Layer RADIO-ACCNOISE
Propagation Model TWO-RAY
Radio Range (m) 20
Radio Bandwidth (kbps) | 2.4
xmit. | recv. | idle sleep
Radio Power (mW
( ) 14.88 | 12.50 | 12.36 | 0.016
Table 1: Simulation settings
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Figure 7: Impact of selectivity

System Scalability.— In this experiment, we vary
the grid unit from 5 to 15 m (note that the sensor radio
range is set to be 20 m in this simulation). As the grid
unit increases, the tree depth varies from 2 to 18 and
the maximum number of children varies from 57 to 2.
Figure 10 shows that in general both the latency and
the energy consumption increase as the node density
decreases. However, there exists a point (grid unit of 5
m in this case) where the latency and energy consump-
tion are the lowest. This is because when the grid unit
is small, node density is high and one node has more
neighbors within its radio range, therefore the height
of the routing tree is small. To avoid collisions, the
total time needed for these children to transmit their
data is long. In contrast, when the grid unit is large,
there are more hops between most sensors and the I P,
and more time is needed to get most data received by
the IP.

We also vary the number of nodes from 25 to 200.
As this increases, both latency and energy consump-
tion increase. All three protocols follow a similar
trend, but FATE-CSQ outperforms E2E consistently
(Figure 11).

Frequency of Re-Structure Phase.— As we
have discussed previously, the re-structure phase rep-
resents a neccessary overhead in order to maintain the
health of the network. In this experiment we vary a
parameter § from 0.6 to 1.0: the re-structure phase is
initiated if the last period used more than #7 time to
meet the r, requirement. We observe from Figure 12
that there is a point where the energy consumption is
lowest. This confirms our intuition in Section 3. We
also observe that the energy consumption with g be-
ing small (0.6 in this case) is lower than with 8 being
large (0.9 or 1.0). This is because the normalized en-

Evaluation of Re-Structure
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&
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Figure 12: Impact of Re-structure

ergy consumption for topology discovery is about 1.2
uJ in general. To be conservative, it is more efficient
to initiate topology re-discovery more frequently if the
optimal point is not found.

Performance Summary.— In summary, FATE-
CSQ outperforms E2E and LAZY uniformly under
varying selectivity, recall requirements and, network
conditions, scaling well as the number and density of
nodes increase.

6 Related Work

Stann and Heidemann [22] have recognized the im-
portance of faults in sensor networks, and have pro-
posed a solution for a reliable transport protocol that
fragments and re-assembles a data object reliably over
the sensor network. Their work concerns the trans-
port of an object broken down into chunks, whereas
we deal with multiple small objects (data tuples)
from many different sensors. Completely reliable data
transmission is not necessary in our case, and thus
re-transmission can end when the required level of
quality is reached. [22] also considered analytically
end-to-end and hop-by-hop protocols but under the
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assumption that an infinite number of retries could be
attempted; our analytical treatment of the problem
compared three different policies under the additional
time constraint imposed by the periodicity of the con-
tinuous query. Kim et al. [13] have also considered
reliable transfer in sensor networks, proposing the use
of both re-transmission and erasure codes which are
used to reconstruct a message of M packets if any M
from M + R packets are received. In our case, reliabil-
ity is not needed to reconstruct a long message broken
into many pieces, but rather to collect multiple small
pieces (tuples) from a number of different sources. Ad-
ditionally, using alternative routes to send data is not
feasible in our case, since this would require additional
book-keeping to ensure that duplicate tuples are not
counted more than once in computing the recall level
achieved by the system.

Limiting the effects of faults has been studied in
the past by TAG [16] and SKETCH [6] for aggregate
queries. In TAG, a routing tree is formed during query
dissemination phase. Later, a sensor node selects a
new parent if (1) the quality of the link with his par-
ent is significantly worse than that of another poten-
tial parent, or (2) it has not heard from its parent for
some period of time. SKETCH uses a DAG instead
of a tree for data delivery. Given that most nodes
have multiple parents in a DAG, an individual link or
node failure has limited effects. A robust technique
for computing duplicate sensitive aggregates was pro-
posed by combining multi-path routing and duplicate
insensitive sketches.

More recently Bawa et al. [3] have identified the ill-

defined semantics of current best-effort algorithms over
dynamic networks (including P2P systems and sen-
sor networks) and have sought to formalize these with
a correctness criterion called single-site validity. [3]
deals with node faults (using our terminology). Desh-
pande et al. [8] have also recently identified shortbacks
of traditional best-effort algorithms, with the key ob-
servation that not all sensor values should be retrieved
at all times, to cut down on energy-expensive sens-
ing and communication. Thus, they build a statistical
model based on a subset of sensor values which has
the additional benefit of being able to predict “miss-
ing values.” We believe that this would be useful on
top of FATE-CSQ, as it would help estimate the values
of the sensors which such a protocol could not recover
from the network.

Our work complements data stream systems using
load shedding [23, 1]. A data stream processor of-
ten needs to “drop” tuples at the input of operators,
if its capacity does not suffice. By taking into ac-
count the fraction of tuples dropped in the different
branches of the query plan, an attempt is made to
recover maximum capacity for a given output stream
quality loss. The assumption that the input streams
themselves are of perfect quality is not always valid,
e.g., for sensor-generated data. In such a case, tuples
have been dropped before they reach the central moni-
toring site—not by choice (to recover capacity) but by
accident (faults). Our paper gives a bounded estimate
of this a priori drop rate which can be easily incor-
porated in e.g., the framework of [23]. Data stream
managers can thus become aware of data quality, for
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instance by choosing not to shed more load from an
input stream that is already missing many tuples.

Hop-by-hop error recovery in sensor networks was
proposed by PSFQ (Pump Slowly, Fetch Quickly) [25].
Driven by the purpose of controlling, managing or re-
tasking sensors, PSFQ aims to provide in-sequence
data delivery from the I P to the sensors. Along similar
lines, GARUDA [18] also provides I P-to-sensors relia-
bility, unlike our work which aims for sensor-to-I P reli-
ability. In addition, PSFQ assumes that message loss
in sensor networks occurs because of poor link qual-
ity rather than congestion. However, the urgent need
for congestion control has been pointed out while dis-
cussing the infrastructure tradeoffs for wireless sensor
networks [24]. ESRT (Event-to-Sink Reliable Trans-
port) [27] aims to provide congestion control in sen-
sor networks by adjusting sensor reporting frequency
based on current network congestion and application
specific reliability requirements. With the same objec-
tive, CODA (Congestion Detection and Avoidance) [7]
provides an energy efficient congestion control scheme
which decouples application reliability from control
mechanisms. Our work is more similar to ESRT in
that we aim to achieve overall application quality re-
quirements. In our application of CSQs, in-sequence
delivery is not needed, hence PSFQ’s guarantees are
superfluous.

Providing reliable data delivery has also been ad-
dressed by routing protocols. Braided Diffusion [10]
maintains multiple “braided” paths as backup. When
a node on the primary path fails, data can go on an
alternate path. GRAB (Gradient Broadcast) [28] en-
sures robust data delivery through controlled mesh for-

warding. It controls the “width” of the mesh, thus
the degree of redundancy in forwarding data. Reli-
able routing does not differentiate data and enforces
reliable delivery of each piece of data, which is neither
efficient nor necessary. Interesting work has been done
to evaluate the impact of link quality estimation and
neighborhood table management on reliable routing in
sensor networks [26].

Sympathy [19] was developed at UCLA for debug-
ging and detecting failures in sensor networks. It an-
alyzes failures to uncover their causes. Our protocol
assumes no a priori knowledge of fault conditions, and
attempts to correct faults wherever they occur; this
may lead to wasted effort, e.g., for a long-term node
fault. Information output by a tool like Sympathy,
could be used to react to faults more intelligently.

7 Conclusions

We developed a protocol which provides a quality
guarantee expressed as the fraction of the exact an-
swer set of a continuous query returned to the user.
We use a hop-by-hop feedback /re-transmission scheme
motivated by our analytical study of alternative meth-
ods. We evaluated our FATE-CSQ protocol against a
simpler one that doesn’t consider faults, and a smarter
end-to-end protocol that does not use in-network pro-
cessing to localize and quickly fix the effects of faults.
Our emphasis has been on the need for clear semantics
of data obtained from the network via queries: total
retrieval of relative data may be impossible, but quan-
tifying the accuracy of answers will go some way to
making it interpretable to users of the system. Po-



tential extensions of our work include the considera-
tion of more diverse types of queriesand the study of
the resilience of different physical layouts and network
topologies to faults.
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