

A Scalable Replica Management Method
in Peer-to-Peer Distributed Storage System

Jing Zhou, Yijie Wang, and Sikun Li

School of Computer Science, National University of Defense Technology
Room 307, National Key Laboratory for Parallel and Distributed Processing, NUDT

Changsha, China
jingle77@126.com

Abstract
Large numbers of replicas in peer-to-peer dis-
tributed storage systems deteriorate inconsis-
tency and load imbalance. According to those
data management problems, a scalable replicas
management method based on decentralized and
unstructured peer-to-peer network is proposed.
Replicas are partitioned into different hierarchies
and clusters according to single replica replica-
tion, and then replicas are coded and managed
based on the user-defined hierarchy-coding rule.
After that, replicas are organized with centraliza-
tion in local and peer to peer in wide area, and
the cost of reconciling consistency can be greatly
depressed combining with defined propagation-
time-plot. The simulation results show it is an ef-
fective multi-replica management method,
achieving good scalability, and adapting well to
applications with frequent updates.

1. Introduction
Peer-to-peer distributed storage systems have received
much attention recently for sharing information among a
large number of participants. As for it, data replication has
been the subject of a great deal of recent interest [1,2,3].
More recently, the focus has shifted to sharing informa-
tion in a large-scale decentralized setting.

Systems that address information sharing typically
have to deal with information that changes over time. In a
decentralized setting, this means dealing with consistency
of mutable replicated data. Large numbers of replicas
increase the update propagation delay and update con-
flicts, and sometimes create a load imbalance.

The solutions to manage large number of replicas can
be divided into several types: client-server [4], hierarchy
[5], peer-to-peer [6], and topology-based [2]. An unreli-

able multicast protocol [7] is employed to efficiently dis-
tribute updates in the general case. Additionally, optimis-
tic consistency [8] relaxes the requirement of strong con-
sistency, and improves performance and availability.

A distributed service faces two inherently conflicting
challenges: high availability and strong data consistency.
To address these challenges, a Scalable Replicas Man-
agement method in Peer-to-peer distributed storage sys-
tems (SRMP) is proposed, which is based on decentralized
and unstructured peer-to-peer network architecture.

The remainder of this paper is organized as follows.
Section 2 introduces the basic conceptions and defini-
tions, and we describe our algorithm in detail in Section 3.
We evaluate the design from several aspects experimen-
tally in Section 4, and conclude in Section 5.

2. Basic conceptions and definitions
Large-scale distributed systems adjust placement of repli-
cas according to dynamic external accesses or system
requirement, to create new replica or to remove old one.

Definition 1. Active Replica: There are one or several
copies of the same data that have uniform logical identifi-
ers but are placed on different nodes. The copies are
called replicas of that data. Replica that could be accessed
at least by one user is an active replica. RS denotes the
replicas set including all the active replicas in system.

Now replication in peer-to-peer distributed storage
systems is mostly based on single data replica.

Definition 2. Replication Origin: As for single-
replica replication, the copy of some one replica r′ is cre-
ated and transferred to another node, and then a new rep-
lica r is created. Here, replica r′ is the replication source of
replica r , denoted as ()O r r′= .

3. Multi-replica clustering management
In SRMP method, replicas are partitioned into different
hierarchies and clusters, and then replicas are coded and

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14-16, 2006
©Computer Society of India, 2006

managed based on the user-defined hierarchy-coding rule,
which can also dispose the alteration of clusters caused by
dynamic replica addition or replica removal. The cost of
reconciling consistency can be greatly depressed combin-
ing with defined propagation-time-plot.

3.1 Replicas clustering based on replication origin

SRMP partitions replicas into clusters as followings.
� Replica and its replication origin are partitioned into

the same cluster. The replication origin in each cluster
is head, and others are general. Suppose r is the head
of some cluster, and then it is denoted as ()C r .

� Suppose replica kr is created by replicating replica jr .

If the cluster ()jC r exists, replica kr joins it; other-

wise one new cluster ()jC r is created.

� All the active replicas in system are partitioned into
nested different clusters. As for the outer clusters, its
nested cluster is regarded as a single active replica.

� The number of replicas in one cluster is finite. When
the number excesses the threshold, the cluster over-
flows, and then it needs to be disposed carefully.

()H r or ()G r represents that replica r is head or gen-

eral. (),C r r′ represents that r′ is in cluster ()C r . The

number of general replicas in ()C r is got from expression:

()() () ()() ? 1 : 0
R

GR
r S

num C r C r,r r r
′∀ ∈

′ ′= ∧ ≠�

(1)

3.2 Hierarchy-coding rule

In SRMP, replicas are partitioned into clusters and cluster-
ing management model is established by encoding. Each
replica is assigned a unique binary character string (iden-
tifier) when it joins system and the codes are reclaimed
when replica failure or replica removal occurs.

The codes comprises of three segments: Replica-Level
Codes (RLC), Replica-Sequence Codes (RSC), and Inher-
iting cluster-Head Codes (IHC). RLC shows the nested
relation between replicas, RSC shows the sequence in its
cluster and IHC inherits segmental codes from its replica-
tion origin and shows the inherited relation between rep-
lica and its replication origin.

We devise that replica identifier has fixed number of
bits, RLC and RSC are of same length for any replicas,
IHC adjusts length to local conditions, and the lack bits
for outer replicas are all set as 0.

Suppose sequence codes and level codes are e and
l bits respectively, the maximal number of replicas is:

()() ()
2

1

2 2 2 2 2 2
l

ie e e e e e

i

sum
=

= + ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ =� (2)

When 2=l and 4e = , the number of replicas accord-
ing to code rule approximates 162 , e.g. 65,536, which can
meet system scalability adequately.

3.3 Replicas addition algorithm – A-SRMP

SRMP uses single-replica replication to create new rep-
lica. The algorithm A-SRMP of replica addition in SRMP
is shown in Figure 1.
� The codes are invalid and reclaimed when replica re-

moval or failure occurs. Therefore cluster-head replica
searches all the codes in its own cluster to find the
codes that have not been assigned.

� Replica r is general if it joins system by its true repli-
cation origin ()O r or by the replica ()()1 1r C r ,O r ; oth-

erwise it is the cluster-head.
� ()xPart i t ionGeneral Re pl ica r ,r : It is because that sev-

eral clusters in existent management structure is full
when r is added. If these clusters are not partitioned,
all the following added replicas will repeat all the op-
erations that r experiences.

� (),tempNotifyNewHead S r : Replica addition may bring on

the alteration of cluster-head for some replicas, and
the new cluster-head r employs a broadcast to inform
the alteration to replicas in tempS .

3.4 Replicas removal algorithm– R-SRMP

SRMP needs to make a difference between the removals
of general replicas and cluster-heads. The algorithm R-
SRMP of replica removal in SRMP is shown in Figure 2.
� Replica n_hr is selected as the new cluster-head

AddReplica (Node N)
Select one best replica 1r for node N from RS ;
A copy of 1r is transferred to node N and new replica r is created;
For replica 1r
// Suppose RHC of 1r are 1k 0h h−′ ′⋅ ⋅ ⋅ , where 2lk = and l is the length of RHC.

0j ← ;
For 0i = to 1k − If 0ih′ = Then 1j ← ; break;
If 0j =
Then 1 1 1k 0 k 0h h h h− −′ ′⋅ ⋅ ⋅ ← ⋅⋅ ⋅ − ;

If ()2 1C r ,r Then return (()2ClusterHeadIs r);
 // The head of the cluster that replica r will join is replica 2r .

Else 1 1k 0 k 0h h h h− −′ ′⋅ ⋅ ⋅ ← ⋅⋅ ⋅ ; return (()1ClusterHeadIs r);
For replica r

Get head headr from returned message, and 2headr r= or 1headr r= ;
Replica r sends joining request to headr ;
While () ()() 2e

head GR headH r num C r∧ = Do
1 1 1k 0 k 0h h h h− −⋅ ⋅ ⋅ ← ⋅⋅ ⋅ − ;

If ()h e a d h e a dC r ,r′ Then (), ,head headClusterOverflow r r r′ ;

t e m p h e a dr r← ; h e a d h e a dr r ′← ;
For replica headr

headr assigns codes to r , and records the information about it; // See
�

If () ()1 1 1 1 1k 0 k 0 k 0 k 0h h h h h h h h− − − −′ ′ ′ ′⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ∨ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ −
Then ()G r ; // See �
Else ()H r ; tempS ← ∅ ;

 For (){ }()x x t temp tr r r C r ,r∀ ∈ // Suppose RSC of xr are 1 0s se− ⋅ ⋅ ⋅ .

If i
1

s 1

0

2 2
i e

e

i

= −
−

=

� �
>� �

� �
� Then ()xPart i t ionGeneral Re plica r,r ;

{ }temp temp xS S r← � ; (),tempNotifyNewHead S r ; // See ���

Figure 1. Replicas addition algorithm—A-SRMP.

from tempS based on replica activity or replica physical

location etc. We will not discuss it in detail here.
� When the removed replica r is a cluster-head, its clus-

ter-head is just to modify information (e.g. the physi-
cal location) corresponding to the codes of rep-
lica n_hr but not to add new information.

� The replicas in { }temp n_hS r− need not modify their own

codes when they receive the broadcast from rep-
lica n_hr , and they are only be informed that the physi-
cal location of cluster-head is altered.

3.5 Consistency based on propagation-time-slot

We introduce the idea of Propagation-Time-Slot (PTS)
to optimize update commitment and sorting. For any ac-
tive replicas 1r and 2r , PTS is the minimal time to propa-
gate an update issued by replica 1r to replica 2r in an ideal-
ized network environment without congestion or losing
messages.

The reconciling course in SRMP is as follows, which
is shown in Figure 3.

�
� �

�

	
	

�

Figure 3. An illustration of the reconciling course.

� The updates issued by replica r are always propagated
to its cluster-head replica r′ .

� Replica r′ merges all the updates into a new update
during PTS , and then sends it to its cluster-head r ′′ .

� The rest may be deduced by analogy until r ′′ is the
outermost, that is, replica-level codes of r ′′ are 00 0⋅ ⋅ ⋅ .

� The peer to peer replicas in the outermost cluster use
ack vectors proposed by Golding [9] or casual history
method [3] to order updates, and distribute updates by
anti-entropy [10].

� Replica r gets all the unseen updates stored on r′

when it propagates updates to r′ . Additionally, once
replica r′ receives new updates from r ′′ , it propagates
them to r initiatively.
Introducing PTS has the following advantages: It can

earliest detect conflicting updates for local replicas to
reduce update-conflict-rate. Merging multi un-conflicting
updates cannot destroy consistency, but can reduce the
number of delivered updates, and then depress the cost of
keeping consistency.

4. Simulation
OptorSim [11] was developed to evaluate the effective-
ness of replica optimization algorithms. In our simula-
tions, we utilize OptorSim to construct a distributed envi-
ronment with 1,000 sites. Each data object is a 10GBytes
file, and the size of data object set is 150GBytes. Initially,
each file only has a master replica and is distributed over
the sites random. We use a replication strategy with rep-
lica addition according to frequency of access and least
accessed replica deleted.

There are five read access types and five write access
types. The size of file accessed by each read access and
the probability (Prob.) of each are summarized in Table 1
(a), and that of each write access are shown in Table 1 (b).

Table 1. The schedules of read and write accesses.
 (a) (b)

Type Size(GB) Prob.
R1 10 20%
R2 20 20%
R3 30 35%
R4 40 20%
R5 50 5%

Type Size(MB) Prob.
W1 1 20%
W2 10 25%
W3 100 30%
W4 1000 22%
W5 10,000 3%

(1) Setting Propagation-time-slot

The propagation-time-slot is the basis of simulation,
which should be set first. We simulate the alteration of
PTS in different network bandwidth configuration, as is
shown in Figure 4.

For different network configuration, PTS is not under
0.1 second in idealized state. However, in practice, the
time is excessive longer than that due to network latency.
So in the following simulations, we set that PTS is 0.1s.

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5
Write access types

T
im

es
(S

)

1 MB 10 MB 100 MB 1 GB 10 GB

Figure 4. The alteration of PTS in different network
bandwidth configuration.

(2) Effects of Number of Replicas
We configure several size of storage space of each

site, and then submitting 10,000 external read accesses.
Suppose there are no occurrences with node failures or
network partitions during simulator running. Replicas of
each file is partitioned into clusters and coded according
to the code rule with 2=l
 4e = . After the end of run,

RemovalReplica(Replica r)
If ()(),

Rr S C r r′∈ ′∀ ¬ // Replica r is not head for any replica r′ ,
Then () ()G r H r∧ ¬ ; //and it is only general and it cannot be cluster-head.

If ()()
h Rr S hC r ,r∈∃ // hr is the head of the cluster that replica r falls into.

Then Replica hr deletes and reclaims the information of replica r ;
Else r r′′ = ; (){ }temp temp temp R tempS r r S C r ,r′′← ∈ ∧ ;

While ()tempS ≠ ∅ do
Select replica _n hr from tem pS as new head; //See �
If ()()

h Rr S hC r ,r′∈ ′ ′′∃ Then hr records the information of _n hr ; //See �
Replica _n hr replicates management information from r ′′ ;

n _ hr r′′ = ; (){ }temp t t R tS r r S C r ,r′ ′′← ∈ ∧ ;

n_hr broadcasts the alteration of head to replicas in { }temp new_hS r− ;

temp tempS S ′= ; //See

Figure 2. Replica removal algorithm—R-SRMP.

the distributions of maximal number and minimal number
of replicas are shown in Figure 5.

Because of our employing replication strategy, the re-
sults are influenced by storage capacity. We just select
extremes of numbers of replicas for all the files in file set.

0
200
400
600
800

1000

20 40 60 80 100
Storage capacity of each site(GB)

N
um

be
r o

f r
ep

lic
as Minimum Maximum

Figure 5. The distribution of the number of replicas of one file.

The average propagation time of each update is shown
in Figure 6. We compare our algorithm with others, such
as replica autonomy (Uniform) and policies organizing
replicas into a regular graph (Ring, Tree, and Mesh). The
simulator is run until 5,000 updates had been processed.
For compared policies, two replicas exchange updates in
an anti-entropy session, and the anti-entropy rate is half of
the update rate.

The results show that consistency depends on the
number of replicas. For small numbers of replicas, the
Uniform policy performs quite well. For large numbers of
replicas, our method has an obvious advantage and there
are slight variations when the number is large to a certain
extent. The policies that simulate a fixed topology have
the worst performance and scaling.

0
1
2
3
4
5
6
7

0 100 200 300 400 500 600 700
Number of replicas

A
ve

ra
ge

 ti
m

e
/1

00
0(

S) Uniform Tree Mesh SRMP

Figure 6. Effects of the number of replicas on the performance.

(3) Effects of the Update Rate
Figure 7 shows the effect of varying the update rate on

different method. Suppose there are 500 replicas and the
anti-entropy rate is 1.

The update rate is higher, the number of update ex-
changed in each session is more, so the time to achieve
consistent is shorter. SRMP is more predominant when the
update rate is higher because there are few replicas (clus-
ters) to exchange updates by sessions in a broad range
after clustering and our method merges updates dur-
ing PTS .

0
2

4
6

8
10

0.1 0.5 1 5 10
Average update rate

A
ve

ra
ge

 ti
m

e/
10

00
(S

)

Uniform Tree Mesh SRMP

Figure 7. Effects of the update rate on the performance.

5. Conclusions

SRMP replica management method is proposed to the
question of complicated resource management brought by
large numbers of replicas in a large-scale peer-to-peer
distributed environment. It manages replicas by clustering
based on the user-defined hierarchy-coding and takes dy-
namic replica addition, replica removal, and consistency
into account adequately.

The simulation results also show that SRMP is an effi-
cient way to manage a large number of replicas, achieving
good scalability, and adapting well to applications with
frequent updates.

6. References

1. M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Ya-
lagandula, and J. Zheng. PRACTI Replication for Large-
scale Systems. Technical Report, TR-04-28, Austin: Univer-
sity of Texas at Austin, 2004.

2. Yasushi Saito, Christos Karamanoli, Magnus Karlsson and
Mallik Mahalingam. Taming Aggressive Replication in the
Pangaea Wide-area File System. In: Proceedings of the fifth
symposium on Operating systems design and implementa-
tion. New York: ACM Press, 2002. 15-30.

3. Brent ByungHoon Kang, S2D2: A framework for scalable
and secure optimistic replication [Ph.D. Thesis]. Berkeley:
University of California, 2004.

4. J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system. ACM Transaction on Computer Sys-
tems, February 1992, 10(1): 3–25.

5. J Kubiatowicz, D Bindel, Y Chen, et al. OceanStore: an
architecture for global-scale persistent storage. ACM
SIGARCH Computer Architecture News, 2000, 28(5):
190~201.

6. Clarke, I., Sandberg, O., Wiley, B. and Hong, T.W. Freenet:
a distributed anonymous information storage and retrieval
system. In ICSI Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, California, 2000. 25-31.

7. R. A. Golding and Darrell D. E. Long. Design choices for
weak-consistency group communication. Technical report,
UCSC–CRL–92–45, Santa Cruz: University of California,
September 1992.

8. J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dan-
gers of replication and a solution. In: Proceedings of ACM
SIGMOD International Conference on Management of Data.
Montreal, Canada, June 1996. 173-182.

9. R. A. Golding. Modeling replica divergence in a weak-
consistency protocol for global-scale distributed data bases.
Technical Report, UCSC-CRL-93-09, Santa Cruz: Univer-
sity of California, February 1993.

10. K. Petersen, M. J. Spreitzer, D. B. Terry. Flexible update
propagation for weakly consistent replication. In: 16th ACM
Symposium on Operating Systems Principles. New York:
ACM Press, October 1997. 288~301.

11. W. H. Bell, D. G. Cameron, L. Capozza, P. Millar, K. Stock-
inger, and F. Zini. Optorsim: a grid simulator for studying
dynamic data replication strategies. International Journal of
High Performance Computing Applications, 2003, 17(4):
403-416.

