
Algebra-Based Optimization of XML-Extended OLAP Queries

Xuepeng Yin Torben Bach Pedersen

Department of Computer Science, Aalborg University, 9220 Aalborg Ø, Denmark, {xuepeng, tbp}@cs.aau.dk

Abstract

In today’s OLAP systems, integrating fast changing data
physically into a cube is complex and time-consuming. Our
solution, the “OLAP-XML Federation System,” makes it
possible to reference the fast changing data in XML format
in OLAP queries without physical integration. In this pa-
per, we introduce the novel query optimization techniques
specialized for the federation system including a query op-
timizer and plan transformation rules. We also show the
experimental results which suggest that our approach, un-
like the physical integration, is a practical solution for inte-
grating fast changing data into OLAP systems.

1 Introduction

Current OLAP systems have a common problem in han-
dling the situations where changes in data requirements are
common and data changes frequently. Physical integra-
tion of new data into OLAP systems is a long and time-
consuming process. The increasing use of XML suggests
that the required data will often be available in XML for-
mat. Therefore, a logical integration of OLAP and XML
data is desirable.

Our overall solution is to logically federate the OLAP
and XML data sources, decorating the OLAP cube with vir-
tual dimensions based on external XML data, and thereby
allowing selections and aggregations to be performed over
the decorated cube. In this paper, we extend previous
work [10, 14] by presenting the novel query optimization
techniques specialized for the logical federation system,
including a functioning implementation of the query op-
timizer for the OLAP-XML query engine and a set of plan
transformation rules based on the logical algebra of OLAP-
XML federations. We also show the experiments on the
query engine implemented with the above techniques, with
respect to federation performance, optimization effective-
ness, and feasibility, suggesting that the logical OLAP-
XML federation system can be the practical solution to
gaining flexible access to fast changing data in XML for-
mat from OLAP systems.

There has been a great deal of previous work on data
integration, for instance, on relational data [4, 5, 9], semi-

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14–16, 2006
c©Computer Society of India, 2006

structured data [6], and a combination of relational and
semi-structured data [1, 7]. However, none of these handles
the advanced issues related to OLAP systems. Some work
concerns integrating OLAP and object databases [3, 8] with
complex associations. In comparison, using XML as data
source, as we do, enables the federation to be applied on
any data as long as the data allows XML wrapping, greatly
enlarging the applicability.

2 OLAP-XML Federations

A federation contains an OLAP cube and the XML docu-
ments. A cube contains measured values (measures) that
are characterized by dimensions. A dimension is structured
using levels of different details. The fundamental part of
an XML document is the element node, which can con-
tain other element nodes. Another component of a fed-
eration is links. Links are created by users or DBAs be-
tween existing dimensions and XML data, allowing exter-
nal data to characterize the OLAP measures as extra dimen-
sions. The fundamental linking mechanism is a relation
between one dimension value in a cube and one node in an
XML document. Suppose TC is a cube based on the TPC-

XML

<Nation>

All

OLAP

<Nation>

Nation
link

<Nations>

<Nation>

</Nation>

<NationName>Denmark</NationName>
<Population>5.3</Population>

. . .. . .. . .

</Nations>

Nation

Supplier

Region

Suppliers
Dimension

Figure 1: Linking OLAP and XML

H benchmark [12] with the dimensions, Suppliers (All-
Region-Nation-Supplier), Parts (All-Manufacturer-Brand-
Part), Orders (All-Customer-Order), and Time (All-Year-
Month-Day) charactering the measure, Quantity (of parts
in orders). Nation names and corresponding population
data (in millions) are available in an XML document. Fig-
ure 1 shows an example link, Nation link (Nlink), that con-
nects the dimension values of Nations to the Nation nodes
that have the same text values in the sub-nodes, Nation-
Name, in the XML document. The plus/minus symbol in
a box indicates whether the element is folded/unfolded.
With Nlink, the population information about nations



can be referenced in OLAP queries. The example fed-
eration query, “SELECT SUM(Quantity), Brand, Na-
tion/Nlink/Population FROM TC WHERE Nation/Nlink/
Population<30 GROUP BY Brand, Nation/Nlink/ Popula-
tion,” shows the total quantity of the parts of each brand
sold by each nation, where a nation is decorated with its
population. Nation/Nlink/Population, is a level expression,
where Population is a relative XPath expression applied to
the XML nodes in Nlink to identify new nodes. A level
expression allows decoration of dimension values (e.g., na-
tion names) with XML values (e.g., populations) in the
context defined through links.

3 The OLAP-XML System

The federation system has three major components: query
analyzer, query optimizer, and query evaluator. Given a
query, the query engine parses and analyzes the query, and
generates the initial logical plan. The query optimizer gen-
erates a plan space for the initial plan and searches for the
best execution plan (which has the least execution time) and
then passes the plan on to the query evaluator, which gener-
ates the final results. The query optimization is a Volcano-
like [2], rule-based process. However, the optimizer is a to-
tally different implementation specialized for OLAP-XML
federations, including: 1) faster logical plan enumeration
(by a factor of five or more), because the logical plans are
considerably smaller than physical plans without integrat-
ing the detailed data retrieval and manipulation algorithms,
2) novel transformation rules (see below) specialized for
OLAP-XML federations, 3) a novel cost-model for the fed-
eration components [13], which have a high degree of au-
tonomy , and 4) the inlining technique that rewrites selec-
tion predicates (see below).

4 Logical Algebra and Plan Transformation

Decoration A decoration operator, δ lxp , builds a virtual
(decoration) dimension using the XML data referenced by
a level expression lxp. The decoration operator enables the
external XML data to become virtually a part of the cube,
thereby allowing the following operations involving XML
data to be performed on the federation.
Federation Selection A federation selection operator,
σFed[θ], allows the facts from the cube to be filtered using
the external XML data as well as the regular cube data.
Federation Generalized Projection The generalized fed-
eration projection operator, ΠFed[L]<F(M)>, also let the fed-
erated cube be aggregated over the external XML data.
Here, L is a set of levels to which the federation will be
rolled up to, intuitively, the levels in the GROUP BY clause
where level expressions can be present. F(M) is a set of
aggregate functions over the specified measures, i.e., the
aggregates in the SELECT clause.

When an SQLXM query is parsed and analyzed by
the query engine, it is expressed in the logical algebra
above and turned into a logical query tree. Figure 2
shows the query tree for the example query in Section 2,

where FTC represents the federation involving the TC
cube. The query tree implies the query can be evalu-
ated in three major steps. First, the decoration operator
instantiates the level expression and builds a virtual di-
mension consisting of the population data to decorate the
associated suppliers’ nations through Nlink. The dimen-
sion schema is (All-Nation/Nlink/Population) or simply
(All-Population). Then, the selection operator slices the
cube using the population data, and finally the federation

δ[N/Nl/P]

FTC

σF ed[N/Nl/P<30]

B=Brand, P=Part, Q=Quantity,

Nl=Nlink,N=Nation

ΠF ed[B(P ),N/Nl/P ]<SUM(Q)>

Figure 2: The logical plan

generalized projection op-
erator rolls up the levels
of dimensions to Brand,
Population, and All (the top
level of the dimensions not
referenced in the SELECT
clause), which leaves only
the Parts and Suppliers
dimensions in the federa-
tion, and produces the final
aggregate results.

Transformation Rules Transformation rules are used dur-
ing query optimization to enumerate equivalent plans that
generate less intermediate data. Although some rules are
variants of existing rules in relational systems [11], all the
rules are specialized for OLAP-XML federation with the
hierarchical structure and the virtual dimensions taken into
consideration. Following this, Rules 1 and 2 can be
thought of as being developed from well-known relational
rules on select and group-by. Rules 3, 5, and 6 aim to op-
timize cases when the special OLAP-XML decoration op-
erator is involved, and thereby are novel. Rule 4, which
concerns inlining, is also novel.

In the following, let l denote a dimension level and �
denote the partial order between two levels. we say l ′i �i li
holds if and only if the values of the higher level l i contain
the values of the lower level l ′i. For example, in the Time
dimension, Day �Time Year because years contain days.
Also, the plan expression on one side can be reconstructed
to the other side following an arrow.

A federation generalized projection cannot roll up the
dimensions to levels higher than those referenced by the
federation selection executed afterwards because these lev-
els would no longer exist after the roll-up. Therefore, a
federation generalized projection operator and a selection
operator are commutative if the levels referred by the se-
lection are not projected away by the projection.
Rule 1 (Commutativity of Federation Generalized Pro-
jection and Selection) If θ does not reference mea-
sures, and for each level li in θ there exists a level
l′i ∈ L such that l′i �i li, the following rule holds:
ΠFed[L]<F(M)>(σFed[θ](F)) ↔ σFed[θ](ΠFed[L]<F(M)>(F)).

Rule 1 does not apply if the projection above rolls up
the cube to the levels higher than those referred by the se-
lection’s predicate. However, a part of a federation gener-
alized projection can be performed prior to the federation
selection below, meaning that the cube can be rolled up to
certain levels without interfering the selection.



Rule 2 (Pushing Federation Generalized Projection Be-
low Selection) If θ does not reference measures, and for a
level li in θ there exists a level l′i ∈ L such that li �i l′i,
the following rule holds: ΠFed[L]<F(M)>(σFed[θ](F)) →
ΠFed[L]<F(M)>(σFed[θ](ΠFed[L′]<F(M)>(F)), where, L′ are
the highest levels that the new generalized projection can
aggregate the cube to and still allow θ to be evaluated, i.e.,
levels referenced by θ still exist in the cube.

A federation selection reduces the tuples while they are
passed onto the upper part of the plan. To use less tem-
porary space and reduce data transfer between the OLAP
component and the temporary component, we try to push
a federation selection below a decoration operator if the
predicate does not reference the level expression.

Rule 3 (Pushing Federation Selection Below Decora-
tion ) Let Sθ be the set of levels involved in θ and lxp be
a level expression. If lxp /∈ Sθ, the following rule holds:
σFed[θ](δlxp(F)) → δlxp(σFed[θ](F)).

Example 4.1 σFed[Customer=“Customer# 01”](δNation/Nlink/

Population(FTC)) is equivalent to δNation/Nlink/Population(σFed[

Customer=“Customer# 01”](FTC)). The second plan first filters
the facts before it is decorated and the same decoration
dimension can still be created using the unchanged
dimension values and linked data.

As Rule 3 implies, a federation selection operator can-
not be pushed below a decoration operator if the predicate
references a level expression. However, the rule can still be
applied if a new predicate which does not involve the level
expression but selects the same facts is used to replace the
old predicate. The technique to generate the new predicate
based on the original one is inlining [13].

Rule 4 (Inlining of Decoration in Federation Selection)
If the predicate θ contains references to the level expres-
sion lxp, the following rule holds: σFed[θ](δlxp(F)) →
δlxp(σFed[θ′](F)), where, θ′ no longer refers to XML data,
and is a placeholder at optimization time for the real pred-
icate having the same filtering effects as θ, with references
only to regular dimension levels and constants.

Example 4.2 σFed[lpop=1017645163](δlpop(FTC)) = δlpop

(σFed[(lpop=1017645163)′ ](FTC)) where lpop represents
Nation/Nlink/Population. The predicate (lpop =1017645163)′
becomes a placeholder in the second plan and will be
rewritten to Nation=“India” by inlining at execution time.
The two predicates have the same selection effect because
only India has exactly a population of 1017645163.

A logical federation generalized projection removes all
dimensions that are not present in the parameters, and rolls
up the remaining dimensions to the specified levels. There-
fore, a decoration operator can be removed if the federation
generalized projection above does not reference the deco-
ration data through the level expression.

Rule 5 (Redundant Decoration Below Federa-
tion Generalized Projection) If lxp /∈ L, then
ΠFed[L]<F(M)>(δl[SEM]/link/xp(F)) → ΠFed[L]<F(M)>(F)
holds.

There are situations where the federation projection op-
erator above a decoration operator references the data of
the dimension produced by the decoration operator below
through the level expression. In that case, the equivalent
plan has a new federation generalized projection below the
decoration, which aggregates the cube as much as possible,
while still allowing the decoration operator to be applied.

Rule 6 (Pushing Federation Generalized Projection
Below Decoration) If the level expression of the
decoration operator is a projection parameter, i.e.,
lxp ∈ L, the following holds: ΠFed[L]<F(M)>(δlxp(F)) ↔
ΠFed[L]<F(M)>(δlxp(ΠFed[L′]<F(M)>(F))), where L′ does
not contain lxp but still allows δlxp to build the decoration
dimension.

Example 4.3 ΠFed[Customer, Brand,lpop]<SUM(Quantity)>(δlpop(
FTC)) is equivalent to ΠFed[Customer, Brand,lpop]<SUM(Quantity)>

(δlpop(ΠFed[Customer,Brand,Nation]<SUM(Quantity)>(FTC))), where
lpop represents Nation/Nlink/Population. The new projection
operator also has the levels Customer and Brand. But the
level expression is replaced by Nation, which still allows
the decoration dimension to be built through Nlink.

5 Performance Study
Here, the query engine is observed w.r.t., 1) the query eval-
uation performance, 2) the effectiveness of the query opti-
mization, and 3) the feasibility of the federation system.
Query Evaluation Performance To study the behavior of
the query engine, four groups of queries of different types
and selectivities were evaluated. Groups 1 to 4 have selec-
tivities of 0.01%, 0.1%, 1% and 10%, respectively. Each
group has ten types of queries. Queries with larger type
numbers tend to return more data than the smaller ones.
The line chart in Figure 3 illustrate execution performance
of queries with different selectivities. The chart shows that
the more the cube is reduced by selection and aggregation,
the better the query performs.
Query Optimization Effectiveness The same types of
queries as above were evaluated on the query engines with
and without optimizations. except that the WHERE clause
now refers to external XML data and only has a selectiv-
ity of 10%, e.g., WHERE Nation/Nlink/Population IN (45860000,

59128187, 31787647). Figure 4 presents the executions of the
initial plans and the optimized plans by the top and bottom
lines respectively. The lines indicates optimized plans are
executed seven to fifty times faster than the straightforward
initial plans. The experiments show the optimization is ef-
fective in reducing intermediate data and data-transfer.
Federation Feasibility We compare the performance when
the external XML data is in 1) the XML component (fed-
erated), 2) in the local, relational temporary component
(cached), and 3) physically integrated in the OLAP cube
itself (integrated). The same query types are defined as
above and evaluated with optimizations. A large(11.4 MB)
XML document and and a small (2KB) one were used, both
generated from the TPC-H benchmark [12]. As dimensions
in OLAP cubes are not typically very large, we believe the



0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Query Type

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
.)

10% 1% 0.1% 0.01%

Figure 3: Line chart for 4 selectivities

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10
Query Type

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
.)

Initial Optimized

Figure 4: Execution time comparisons

1

10

100

1000

1 2 3 4 5 6 7 8 9 10
Query Type

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
.)

Federated Cached Integrated

Figure 5: Using 11.4MB XML data

1

10

100

1 2 3 4 5 6 7 8 9 10
Query Type

E
xe

cu
tio

n 
T

im
 (

in
 s

ec
.)

Federated Integrated

Figure 6: Using 2KB XML data

amounts of XML data used for virtual dimensions are real-
istic. As Figure 5 indicates, the cost of querying the feder-
ation (shown in logarithmic scale), where XML processing
takes most of the time (i.e., about 135 seconds), exceeds the
cost of querying the physical integration by a factor of ten
to twenty. The “Cached” bars stay in between but much
closer to the “Integrated.” Figure 6 demonstrates compar-
isons of queries on two other federated/integrated levels.
The chart suggests that querying the logical federation with
a virtual dimension has almost the same performance as on
the physical integration, when the amount of the XML data
is small, i.e. a few kilobytes. In summary, the federation
can be queried just as if it was a local cube when involving
a small amount of XML data. More efficient query perfor-
mance can be gained by caching the external data locally,
which will be the most common case in the applications of
OLAP-XML federations.

6 Conclusion
We have presented query optimization techniques special-
ized for the OLAP-XML federation system and experimen-
tal results, which suggest that our approach, unlike physi-
cal integration, is a practical solution for integrating fast
changing data into OLAP systems. Our future work will
focus on enhancing the query engine with more advanced
query evaluation techniques and also integrating XML-
based measure data with OLAP systems.

Acknowledgements
This work was supported by the Danish Research Council
for Technology and Production Sciences under grant no.
26-02-0277.

References
[1] R. Goldman and J. Widom. WSQ/DSQ: A Practical Ap-

proach for Combined Querying of Databases and the Web.
In Proc of SIGMOD, pp. 285–296, 2000.

[2] G. Graefe and W.J.McKenna. The Volcano Optimizer Gen-
erator: Extensibility and Efficient Search. In Proc. of ICDE,
pp. 209–218, 1993.

[3] J. Gu, T. B. Pedersen, and A. Shoshani. OLAP++: Pow-
erful and Easy-to-Use Federations of OLAP and Object
Databases. In Proc of VLDB, pp. 599–602, 2000.

[4] J. M. Hellerstein, M. Stonebraker, and R. Caccia. Indepen-
dent, Open Enterprise Data Integration. IEEE Data Engi-
neering Bulletin, 22(1):43–49, 2000.

[5] IBM corp. Information integrator. www.ibm.com/software
/data/integration. Current as of Oct. 20, 2006.

[6] Chawathe S. et al. The TSIMMIS Project: Integration of
Heterogeneous Information Sources. In Proc. of IDS of
Japan, pp. 7–18, 1994.

[7] Lahiri T. et al. Ozone: Integrating Structured and
Semistructured Data. In Proc of DBLP, pp. 297–323, 1999.

[8] Pedersen T. B. et al. Extending OLAP Querying to External
Object Databases. In Proc of CIKM, pp. 405–413, 2000.

[9] Oracle corp. Gateways. www.oracle.com/gateways. Cur-
rent as of Oct. 20, 2006.

[10] D. Pedersen, K. Riis, and T. B. Pedersen. XML-extended
OLAP Querying. In Proc of SSDBM, pp. 195–206, 2002.

[11] R. Ramakrishnan. Database Management Systems.
McGraw-Hill, 2003.

[12] Transaction Processing Performance Council. TPC-H.
www.tpc.org/tpch. Current as of Oct. 20, 2006.

[13] X. Yin and T. B. Pedersen. Algebra-Based Optimiza-
tion of XML-Extended OLAP Queries. DBTR-17, 2006.
www.cs.aau.dk/DBTR. Current as of Oct 20, 2006.

[14] X. Yin and T. B. Pedersen. Evaluating XML-Extended
OLAP Queries Based on a Physical Algebra. Journal of
Database Management, 17(2):85–116, 2006.


