
Stream Mining via Density Estimators:
A concrete Application

Christoph Heinz, Bernhard Seeger

Department of Mathematics and Computer Science
University of Marburg

Germany
{heinzch, seeger}@mathematik.uni-marburg.de

Abstract

Many real-world applications share the property that
the data they process arrives in streams. The transient
and volatile nature of these streams renders the appli-
cation of common processing and analysis techniques
difficult. In particular, the mining of streams has
proved to be a difficult task due to the rigid process-
ing requirements that must be met within the data
stream scenario. We propose to exploit kernel density
estimation for stream mining. Kernel density estima-
tion as a technique from the area of mathematical sta-
tistics found its way into many mining related topics
and applications. However, its heavy computational
cost makes the direct application to streams impos-
sible. On account of this, we developed in a previ-
ous work a sophisticated adaptation that continuously
computes kernel density estimators over streams. By
means of these estimators, we can tackle a variety of
mining tasks over streaming data. We illustrate some
of them against the background of a concrete appli-
cation in a medical environment. More precisely, we
will demonstrate a prototypical implementation of a
medical monitor that visualizes an online analysis of
the vital signs of patients. Besides demonstrating the
monitor, we will also present the concepts underlying
its implementation.

1 Introduction

In recent years, a plethora of real-world applications
based on continuously arriving data has emerged,
e.g. facility monitoring, traffic management. The sheer
volume of the data combined with the limited compu-
tational resources makes an adequate processing and
analysis of the streams difficult. Even though the
storage facilities are continuously increasing, which of-
fers to store large parts of a stream, the handling of

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14–16, 2006
c©Computer Society of India, 2006

data streams still poses a lot of open questions. Typ-
ically, the data often accumulates faster than it can
be processed or analyzed. For that reason, research
academia has been developing appropriate techniques
[1, 3] to circumvent these limitations, typically at the
expense of an approximate instead of an exact solu-
tion.

In our work, we concentrate on a basic building
block of many data mining and analysis techniques,
namely density estimation. The essence of density es-
timation is to reveal the unknown density of a distri-
bution by exploiting a representative set of observa-
tions. By means of a suitable density estimate, we can
explore the main features and characteristics of the
data. In mathematical statistics, density estimation is
among the core topics. A theoretically and also practi-
cally approved approach for density estimation uses so-
called kernels as main ingredients [10]. Kernel density
estimation is a convenient approach as it combines sim-
plicity with guaranteed convergence for arbitrary dis-
tributions. Therefore, it has been successfully applied
in diverse application scenarios. However, computing
a kernel density estimator comes along with a heavy
computational burden. In fact, kernel density estima-
tors can not directly be applied in the data stream
scenario since their computational complexity collides
with the processing requirements of streams. In [7], we
tackled this problem and developed a suitable adapta-
tion that meets the rigid processing requirements of
streams. Generally, our online kernel density estima-
tors can prepare the ground for diverse mining tech-
niques over data streams.

The objective of our demonstration is to convey
an idea of stream mining via density estimators by
means of a concrete application. Specifically, we ex-
amine the analysis of vital signs of sleeping patients in
a sleep laboratory and demonstrate a tailor-suit mon-
itor that continuously visualizes the analytical results.
Besides the demonstration of the monitor and its fea-
tures, we will also address its implementation within
PIPES [9], our infrastructure for processing and ex-



ploring streams.
Before we go into the details of the demonstration,

let us first briefly introduce kernel density estimators
over data streams and discuss how to use them for
stream mining.

2 Kernel Density Estimators over Data
Streams

Point of origin is a given set of observations of an un-
known random variable X. To understand X and its
characteristics, the knowledge of its probability den-
sity function f is indispensable. With f , we have a
comprehensive description of the distribution of X,
i.e., we know the probabilities of all possible outcomes
of X. To determine the probability of X being in an
interval [a, b], we simply have to integrate f with re-
spect to [a, b]. However, in real-world scenarios neither
X nor its associated density are known. Typically, the
only information we have is a sample of representative
values.

Kernel density estimation provides a convenient so-
lution to this problem in form of a well-defined esti-
mate of f . For a sample of independent and identically
distributed observations X1, ..., Xn, a kernel density
estimator (KDE) is defined as

f̂(x) :=
1
n

n∑
i=1

1
h

K

(
x−Xi

h

)
(1)

with bandwidth h and kernel function K. Note that
a KDE essentially spreads the weight of each observa-
tion; h controls the width of this spread. It is worth
mentioning that an appropriate setting of the band-
width is crucial for the quality of a KDE while the
setting of the kernel function is minor. For a detailed
discussion of the principles of kernel density estima-
tion, we refer to [10, 11].

In our context, we assume the stream to be a contin-
uously increasing sequence of observations X1, X2, ...
of an unknown random variable X. Since the stream
processing requirements dictate single-pass algorithms
and restrict the available memory to a constant
amount, KDEs can not directly be applied to data
streams. The approximate solution we present in [7, 5]
continuously provides KDEs over data streams and
inherently ensures that all stream processing require-
ments are met. The basic idea is to represent with one
kernel not only one, but multiple observations. The
overall number of these kernels is confined to a con-
stant due to the limited amount of available memory.
A necessary prerequisite to keep this number constant
is the merge of kernels. Therefore, we developed a
merge scheme that guarantees a minimum loss of ac-
curacy. Besides the merge scheme, we also addressed
suitable strategies for bandwidth and kernel function
setting as well as for the underlying implementation.

3 Stream Mining via Density
Estimators

By means of our online KDEs, a plethora of mining
and analysis tasks for data streams can be tackled.
The corresponding analysis methods use online KDEs
as essential building blocks. As online KDEs are con-
tinuously computed, the methods can inherently keep
pace with the stream. In the following, we briefly list
a few of those methods. For the sake of simplicity, we
concentrate on more basic ones, which already deliver
valuable insights into the stream characteristics.

In order to get a first impression of the stream, we
can plot the current online KDE, which gives a com-
pact visualization of the already processed elements.
By visually exploring the KDE, we can get a good
grasp of the stream’s basic characteristics, e.g., dense
or less dense regions, local extrema. Moreover, a con-
tinuous observation of the plots allows us to capture
current stream trends.

To get deeper insights into the stream, we can ex-
amine statistically important characteristics like mean,
variance, value range, or quantiles. Those summary
statistics deliver reasonable measures of the variabil-
ity of the stream as well as of its general tendencies.
We can efficiently determine them by evaluating the
closed formulas online KDEs provide for their compu-
tation.

Besides plotting the density or computing summary
statistics, we can also exploit online KDEs to draw
more complex conclusions from the stream. Let us il-
lustrate this for two practically relevant tasks: detect-
ing outliers of a stream and estimating the selectivity
of range queries.

In [6], we presented an initial approach to detect
outliers while processing a data stream. The basic
idea is to define an outlier in probabilistic terms. In-
tuitively, an outlier occurs seldom. Thus, if we take
the current online KDE into account, the region the
outlier fell into must have a low probability. More for-
mally, we label an incoming element as an outlier if
the probability for its local neighborhood falls below a
preset threshold. Apparently, this definition has two
main parameters: the width of the neighborhood and
the threshold. These parameters basically control the
sensitivity of the outlier detection. Hence, they must
be appropriately chosen.

Another practically relevant task is to estimate the
selectivity of range queries. Given a range query
[a, b], we want to determine the percentage of already
processed stream elements that fell into [a, b]. An ex-
act computation of this selectivity is unfeasible due
to its storage requirements. Therefore, we propose to
approximate the selectivity with the probability for a
stream element to fall into [a, b]. This probability in
turn can be computed with online KDEs; we only have
to integrate them with respect to the interval [a, b].



4 Implementation in PIPES

To implement stream mining tasks based on online
KDEs, we make use of PIPES, our public infrastruc-
ture for processing and exploring streams. We already
demonstrated the rich functionality of PIPES as well
as its implementation concepts in [9, 2, 4]. Therefore,
we only give a brief summary of the implementation
of online KDEs and stream mining tasks in PIPES.

On the one side, PIPES offers the essential func-
tionality to express, implement, and run continuous
queries over data streams. On the other side, PIPES
offers a set of sophisticated techniques, including on-
line KDEs, to estimate the distribution of a data
stream and exploit it for a continuous stream mining.

In order to implement continuous queries or analy-
sis techniques over data streams, we have to construct
directed acyclic operator graphs. For the case of con-
tinuous queries, the nodes correspond to the physical
operators implementing this query. For the case of
analysis techniques, a node corresponds to a specific
operator that implements the analysis functionality.
The advantages of implementing an analysis technique
as an operator are twofold: First, we can unify diverse
analysis tasks within a single operator graph. Second,
one node, i.e. one analysis technique, can serve multi-
ple analysis techniques simultaneously. For example,
we want to plot the density of a data stream and com-
pute its summary statistics. Instead of implementing
these tasks separately, we build an operator graph with
the following nodes: The first node corresponds to the
data source. The second node is connected to the first
one and computes online KDEs. The third and fourth
node are connected to the second node; one computes
the summary statistics and the other one plots the
current KDE.

5 A concrete Application

In the demonstration, we will investigate the exploita-
tion of online KDEs against the background of a real-
world scenario. As data stream within this scenario
serves a time series from the Times Series Data Min-
ing Archive of UC Riverside [8]. This archive com-
prises a variety of heterogeneous time series originat-
ing from diverse applications. The time series we chose
describes the monitoring of vital signs of sleeping pa-
tients in a sleep laboratory. In the demonstration, we
will concentrate on the monitoring of the heart rate.

The typical method to gain insight into the sleep-
ing disorders the patients exhibit is to analyze the
recorded measurements manually in a post-processing
phase. On the contrary, we propose to analyze the
streams online to get insights while the patient is sleep-
ing. As discussed above, we can use online KDEs for
this purpose. Specifically, we can use them to describe
the long-term sleeping behavior of the patient since
they rely on all processed elements. To describe the

short-term sleeping behavior, we additionally maintain
a KDE over a sliding time window.

In the demonstration, we will present how to ex-
ploit both techniques for analyzing the heart rate of a
sleeping patient.

6 Demonstration Content

The objective of our demonstration is to convey an
impression of how to use KDEs for stream mining.
With respect to the sleep laboratory scenario, we will
demonstrate a prototypical heart rate monitor that vi-
sualizes the online analysis of the heart rate of a sleep-
ing patient. Besides demonstrating the monitor, we
will also present the implementation of its functional-
ity in PIPES.

6.1 Heart Rate Monitor

Let us briefly describe the components of the heart rate
monitor with the screenshot given in Figure 1. To refer
to the components, we marked them with numbers.

The component marked with 1 displays the incom-
ing heart rate measurements. Based on these mea-
surements, we continuously compute two KDEs: one
to analyze the short-term sleeping behavior and the
other one to analyze the long-term sleeping behavior.

The KDEs for the short-term behavior base on a
sliding time window over the last 10 minutes. By
means of these KDEs, we compute summary statis-
tics (3) for the current window. Additionally, we plot
the current KDE (4). In another component (5), we
observe how deep the patient sleeps (5): We partition
the value range equidistantly and associate each parti-
tion with a range query. By estimating the selectivity
of these range queries, we can determine whether the
heart rate was high or low in the last 10 minutes.

To analyze the long-term behavior, we use online
KDEs. Again, we plot the current KDE (5) and com-
pute the according summary statistics (6). In addition
to, we display the measurements labeled as outliers (7)
with respect to the current KDE.

Overall, we see that we can unify a set of analysis
tasks within a single monitor. By means of this mon-
itor, a medical examiner can get a rough picture of a
patient’s sleep as well as more detailed insights.

6.2 Implementation Details

Besides demonstrating the monitor and its features, we
will also go into the details of its implementation. As
Figure 1 already suggests, we implemented the func-
tionality underlying the monitor as an operator graph
in PIPES. In the demonstration, we will discuss the
construction of this graph as well as the functionality
implemented within the different nodes. Besides this
concrete example, we will also show how the existing
graph can be extended to integrate further analysis
functionality.



Figure 1: Heart Rate Monitor

7 Our Contributions

Finally, let us recapitulate the main contributions of
this demonstration:

• For a concrete medical application, we discussed
how the estimated density of a data stream can
be exploited to tackle diverse mining and analysis
tasks.

• We developed a prototypical medical monitor that
continuously visualizes the results of the analysis
in an intuitive way.

• We discussed how the complex functionality un-
derlying the monitor can be efficiently imple-
mented as an operator graph in our infrastructure
PIPES.

Acknowledgements

We thank all members of the PIPES team, in partic-
ular Maxim Schwarzkopf, for their valuable contribu-
tions. This work has been supported by the German
Research Society (DFG) under grant no. SE 553/4-3.

References

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and Issues in Data Stream
Systems. In PODS, 2002.

[2] M. Cammert, C. Heinz, J. Krämer, T. Riemen-
schneider, M. Schwarzkopf, B. Seeger, and
A. Zeiss. Stream Processing in Production-to-
Business Software. In Proc. of ICDE, 2006.

[3] M. Gaber, A. Zaslavsky, and S. Krishnaswamy.
Mining data streams: a review. SIGMOD Record,
34(2), 2005.

[4] C. Heinz and B. Seeger. Exploring Data Streams
with Nonparametric Estimators. In Proc. of SS-
DBM, 2006.

[5] C. Heinz and B. Seeger. Resoure-Aware Kernel
Density Estimators over Streaming Data. In Proc.
of CIKM (to appear), 2006.

[6] C. Heinz and B. Seeger. Statistical Modeling of
Sensor Data and its Application to Outlier De-
tection. Technical report, University of Stuttgart,
Germany, 2006.

[7] C. Heinz and B. Seeger. Towards Kernel Den-
sity Estimation over Streaming Data. In Proc. of
COMAD (to appear), 2006.

[8] E. Keogh and T. Folias. The UCR
Time Series Data Mining Archive.
www.cs.ucr.edu/~eamonn/TSDMA, 2002.

[9] J. Krämer and B. Seeger. PIPES - A Public In-
frastructure for Processing and Exploring Data
Streams. In Proc. of ACM SIGMOD, 2004.

[10] D. W. Scott. Multivariate Density Estimation :
Theory, Practice, and Visualization. John Wiley
& Sons, 1992.

[11] B. Silverman. Density Estimation for Statistics
and Data Analysis. Chapman and Hall, 1986.


