The OLAP-XML Federation System

Xuepeng Yin

Torben Bach Pedersen

Department of Computer Science, Aalborg University, 9220 Aalborg @, Denmark
{xuepeng, tbp} @cs.aau.dk

Abstract

We present the logical “OLAP-XML Federation System”
that enables the external data available in XML format to
be used as virtual dimensions. Unlike the complex and
time-consuming physical integration of OLAP and external
data in current OLAP systems, our system makes OLAP
queries referencing fast-changing external data possible.
This demo shows the uses of XML data for selection and
grouping and explains the query optimization and evalua-
tion processes with a concrete example.

1 Introduction

The changing data requirements of todays dynamic busi-
ness environments are not handled well by current On-Line
Analytical Processing (OLAP) systems. Physically inte-
grating unexpected data into such systems is a long and
time-consuming process requiring the cube to be rebuilt[3,
4], thereby making logical integration the better choice in
many situations. The increasing use of Extended Markup
Language (XML), e.g. in business-to-business (B2B) ap-
plications, suggests that the required data will often be
available as XML data. Thus, making XML data acces-
sible to OLAP systems is greatly needed.

Our overall solution is to logically federate the OLAP
and XML data sources, enabling data analysis on historical
data as well as the newest information. The OLAP-XML
federation system presented here decorates the OLAP cube
with virtual dimensions based on external XML data, al-
lowing selections and aggregations to be performed over
the decorated cube. We present a case study based on
the Transaction Processing Council (TPC) TPC-H bench-
mark [9]. The system is implemented in MS Visual J++
6.0 on top of the MS SQL Server 2000 SP3 and COM[7]
interfaces including MS XML and database object models.

The demonstrated system implements the following
novel contributions to logical federation of OLAP and
XML data sources.

e a logical algebra and query semantics for OLAP and
XML federation.

International Conference on Management of Data
COMAD 2006, Delhi, India, December 14-16, 2006
©Computer Society of India, 2006

a physical query algebra that models the federation
queries with concrete component data retrieval and
manipulation operations.

e evaluation techniques of the federation queries, in-
cluding component query construction, execution, and
scheduling.

e rule-based and cost-based query optimization tech-
niques including algebraic query rewriting and inlin-
ing.

e an OLAP-XML query engine implemented with the
above techniques.

We believe that we are the first to implement a fully
functioning query engine for logical OLAP-XML feder-
ations, including techniques from logical design to query
evaluation and optimization.

2 OLAP-XML Federations

A federation contains an OLAP cube, the XML documents,
and the links between OLAP data and XML nodes for dec-
oration. Cubes are multidimensional views of data that are
typically categorized into data being analyzed (measures)
or dimensions, which are mostly textual and characterize
the facts. Dimensions are structured using levelsthat corre-
spond to the required levels of detail. The fundamental part
of an XML document is the element node, which can con-
tain other element nodes. Links between OLAP data and
XML data make it easy to reference XML data in OLAP
queries. The fundamental linking mechanism is a relation
between one dimension value in a cube and one node in an
XML document. Figure 1 shows an example link, Nation

Suppliers ! B <Nations>
Dimension | i 8 <Nation>
All ! ! <NationName>Denmark</NationName>
| ! ! <Population>5.3</Population>
Region : ! </Nation>
; i 8 <Nation>
Supplier : : B9 <Nation>
I 1 -
i i </Nations>
OLAP : XML

Figure 1: The link between OLAP and XML

link (NIlink), that connects the dimension values of Nations

to the Nation nodes that have the same text values in the
sub-nodes, NationName, in the XML document. The di-
mension schema is based on the TPC-H benchmark [9] and
the XML document is composed of nation names and pop-
ulation data (in millions). The plus/minus symbol in a box
indicates whether the element is folded/unfolded. Below is
an example federation query, where Brand is a level from
the Parts dimension with the schema (All-Manufacture-
Brand-Part).

SELECT SUM(Quantity),Brand,
Nation/Nlink/Population

FROM TC

WHERE Nation/Nlink/Population<30

GROUP BY Brand, Nation/Nlink/Population

The above query shows the total quantity of the parts of
each brand sold by each nation, where a nation is decorated
with its population. Nation/Nlink/Population, is a level ex-
pression [10], where Population is a relative XPath [1] ex-
pression applied to the XML nodes in Nlink to identify new
nodes. A level expression allows decoration of dimension
values (e.g., nation names) with XML values (e.g., popula-
tions) in the context defined through links.

3 TheOLAP-XML System

The overall architecture of the federation system is shown
in Figure 2. Besides the OLAP and the XML components,
three auxiliary components have been introduced to hold
meta data, link data, and temporary data. The temporary
component is the temporary database on SQL Server, and
the OLAP component uses MS Analysis Services, and is
queried with SQL [6]. The XML component is the local
file system based on the XML data retrieved from the Web
with MS SQLXML [5] on top.

The query engine has three components: query ana-
lyzer, query optimizer, and query evaluator. Given a query,
the query engine parses and analyzes the query, and gener-
ates the initial logical plan. The query optimizer generates
a plan space for the initial plan, where all the logical plans
produce the same output as the original one. Furthermore,
the optimizer converts all the logical plans into physical
plans by converting the logical operators into physical op-
erators. Then, costs of the plans can be estimated. Finally,
the optimizer searches for the best execution plan (which
has the least execution time) and passes the plan on to the
query evaluator. The evaluator executes the operators in
the given plan and generates the final result. Specifically,
the component queries modeled by the execution plan are
evaluated in the OLAP and XML components and the data
is transferred to the temporary component, which is then
processed by SQL operations to produce the final result.

Generally, the component queries are evaluated in the
OLAP and XML components in parallel, which sometimes
causes a large amount of OLAP data to be transfered to
the temporary database and then selected by predicates ref-
erencing XML data. To reduce the inter-component data
transfer, an optimization, inlining (see [10] for a formal

User Interface

query

D Datal -
i Query Analyzer Link data

Initial Plan

Query Optimize

Execution Plan

Query Evaluator
OLAP DB|_'Data ‘-_|Dat= XML DB

l Data
Temp DB

Figure 2: Architecture of the query engine

i

Query Engine

I‘_ _I‘-

definition), retrieves the relevant XML data first and uses it
to rewrite the predicates to reference dimension values and
constants only but perform the same selection. Then, selec-
tions can be performed in the OLAP component, thereby
reducing the amount of OLAP data to be transferred to the
temporary component effectively.

Besides inlining, the query optimizer also rewrites the
query plans to reduce intermediate data. The optimizer is
based on the Volcano optimizer [2] and composed of four
phases: plan rewriting, plan conversion, cost estimation,
and plan pruning. The input is the initial logical plan as
shown in Figure 2. In the first phase, plan re-writing, the
logical plans generating the equivalent output federations
are enumerated for the input logical plan. Transforma-
tion rules are applied to enumerate equivalent plans. In
the second phase, physical plans are generated for the log-
ical plans from Phase 1, which are then cost-estimated in
Phase 3. Phase 4 removes expensive logical plans from
the plan space, based on the cost of their physical plans.
The cheap plans then again participate in plan rewriting in
phase 1. This process goes on until all the operators in the
initial plan are visited and selects the physical plan with the
least cost as the execution plan. Experiments on query opti-
mization effectiveness indicate that the optimized plans are
executed seven to fifty times faster than the straightforward
initial plans. The more the OLAP cube is reduced by selec-
tion and aggregation, the more effective the optimization
is.

We have also observed the federation system with re-
spect to the feasibility of the federation system. Exper-
iments suggest that the federated approach has almost the
same performance as the physical integration, where exter-
nal data has been physically integrated in the OLAP cube
itself, when the amount of the XML data is small (i.e., a
few kilobytes). More efficient query performance can be
gained by caching the external data locally in the local, re-
lational component, which will become the most common
case in the applications of OLAP-XML federations.

4 The Demonstration

The demonstration will first show the interface of the feder-
ation system. Next, query processing will be demonstrated

by means of concrete federation queries. We show the op-
timizations and component query construction, which are
specialized for OLAP-XML federations. Supporting ma-
terial in the form of slides and posters will be used in the
demonstration.

4.1 User Interface

NI=TE

< ||

QUEW I Query planl Query result |

SELECT SUM{Quantity), Brand(Part), Mation[ANY]/Mlink/Population ;I
FROR TC

WHERE Mation[ANY|/Nlink/Population<30

GROUP BY Brand({Part), Nation[ANY]/Mlink/Population

o o

- |

-
K} »
Ready to start, v

Figure 3: The GUI of the federation query engine

Figure 3 shows a screen shot of the prototypical query
engine. Using the query engine, users can pose queries in
the Query tab and execute the query by pressing the button
with a red flash. The Query plan tab in the middle shows
the execution plan of the posed query. To its right is the
Query result tab, where the result data is shown in table
format. Messages indicating the processing progress of the
posed query are shown in the bottom text box. The current
prototype does not have a sophisticated interface, and is
only used for experimental purposes. The core techniques
will later be integrated with the business analysis products
of a Danish Business Intelligence (BI) tool vendor, TAR-
GIT [8].

4.2 Query Processing

The query analyzer parses the query posed in the query tab
(the same query as the example in Section 2) and generates
the initial logical query plan below. The DECORATION
operator instantiates the level expression and builds a vir-
tual dimension, which consists of the population data to
decorate the associated suppliers’ nations through Nlink.
The SELECTION operator slices the cube using the popu-
lation data, and finally the PROJECTION operator rolls up
the levels of dimensions to Brand, Population, and All (the
top level of the dimensions not referenced in the SELECT
clause), which leaves only the Parts and Suppliers dimen-
sions in the federation, and produces the final aggregate
results. Since the virtual dimension containing the decora-
tion data (e.g., population) can only be constructed in the
temporary component, in the actual evaluation process, the
selection and projection operations referencing the decora-
tion data are also performed in the temporary component.

PROJECTION [SUM(Quantity),

| Brand, Nation/Nlink/Population]
|—SELECTION [Nation/Nlink/Population<30]

| DECORATION [Nation/Nlink/Population]

The initial plan is then passed on to the optimizer and
yields the optimized execution plan below (also shown in
the query plan tab in Figure 4), which is integrated with
the inlining optimization and aims to use the OLAP and
XML components as much as possible so as to reduce
the intermediate data transfered to the temporary compo-
nent. The predicate in the SELECTION operator with a
special mark first yields the inlining process, which evalu-
ates the predicate in the XML component and generates a
new predicate using the satisfying nation values (e.g., Na-
tion="IRAQ’ OR Nation="PERU’ OR Nation="KENYA").
Then, the SELECTION and PROJECTION operators slice
and aggregate the OLAP cube using the new predicate,
which reduces the OLAP cube significantly and leaves only
the Parts and Suppliers dimensions in the cube. The DEC-
ORATION operator builds the virtual dimension. The fi-
nal PROJECTION operator further rolls up the dimensions,
Parts, Suppliers, and the virtual dimension, to Brand, All,
and Population, respectively, and aggregates the measures,
which produces the same results as the PROJECTION in
the initial plan, but is much faster based on the significantly
reduced cube by the lower PROJECTION operator in the
same plan.

PROJECTION [SUM(Quantity),
Brand, Nation/Nlink/Population]
| —DECORATION [Nation/Nlink/Population]
|——PROJECTION [SUM(Quantity), Brand, Nation]
| SELECTION [(Nation/Nlink/Population<30)]

[l SQLxm Executor

Query Query plan | Query lesultl
PROJECTION [SUM{Quantity) Brand Nation/NlinkPopulation] =]
|--DECORATION [Nation/Nink/Population]

|-—--PROJECTION [SUM(Quantity),Brand Nation]
 — SELECTION [(Nation/Nlink/Population<30)']

=10l x|

Done. 7~

Figure 4: The query plan tab

When the above plan is passed on to the evaluator, it
is processed as follows. The inlining optimization uses
INSERT INTO statements, which are extended with an
OPENXML function mapping an XML document into a
table through a schema definition. The following query is
issued against the example XML document in Figure 1.

INSERT INTO
SELECT
FROM

tmp_pop

DISTINCT *

OPENXML(@hdoc, *INations/Nation’,2)

WITH(NationName varchar(25),
Population float)

NationName IN (’China’,..., ’Kenya’)

AND Population <30

WHERE

NationName | Population
IRAQ 23.1
KENYA 29.3
PERU 27.1

Table 1: tmp_pop

In the above query, the temporary table, tmp pop (shown
in Table 1), contains the satisfying nation names and their
population data. The IN predicate in the WHERE clause
ensures that only the XML nodes referenced in Nlink are
selected and @hdoc is the handle of the document.

Quantity Brand Nation
1865 | Brand#11 IRAQ
1757 | Brand#11 | PERU

629 | Brand#11 | KENYA

Table 2: Example tmp _facts

The rewritten predicate by inlining is “Nation="IRAQ’
OR Nation="PERU’ OR Nation="KENYA’.” For the
SELECTION and PROJECTION operators, the evaluator
issues the following query against the OLAP component,
which transfers the results to the temporary compo-
nent in the table, tmp_facts (partially shown in Table 2).

SELECT ~*
INTO tmp_facts
FROM OPENQUERY(OLAP_SVR,

SELECT SUM(Quantity), Brand, Nation
FROM TC
WHERE Nation="IRAQ’ OR

Nation="PERU’ OR
Nation="KENYA’
GROUP BY Brand, Nation)

The DECORATION operator uses the table, tmp_pop,
as the dimension table for the virtual dimension, since
the population and the decorated nations are already
available in one table. The final query that pro-
duces the query results in the temporary component
is below. Figure 5 shows that the query results are
displayed in the Query result tab of the query engine.

SELECT SUM(Quantity), Brand, Population
INTO tmp_results

FROM tmp_facts t1, tmp_pop t2

WHERE t1.Nation=t2.NationName

GROUP BY Brand, Population
5 Conclusion

In this demo, we have explained the logical “OLAP-XML
federation system” and shown the federation query opti-

-

Query | Querpplan Query IBW“]
|| Quantity Brand

1865 Brand#11
1757 Brandt11

629 Brand#11

384 Brand#12

1407 Brand#12

95 Brand#12

152 Brand#13

=101]

27135689
29250541
29260541
27135689
23150926
23150926

Figure 5: The query result tab

mization and processing techniques with a concrete exam-
ple on an OLAP-XML query engine. We believe that we
are the first to develop a full set of techniques for logical
federation of OLAP and XML data sources.

Acknowledgements

This work was supported by the Danish Research Council
for Technology and Production Sciences under grant no.
26-02-0277.

References

[1] J. Clark and S. DeRose. XML Path Language
(XPath). www.w3.0org/TR/xpath. Current as of Oct.
13, 2006.

[2] G. Graefe and W.J.McKenna. The \Wolcano Opti-
mizer Generator: Extensibility and Efficient Search.
In Proc. of ICDE, pages 209-218, 1993.

[3] R. Kimball and M. Ross. The Data Warehouse
Toolkit: The Complete Guide to Dimensional Mod-
eling. John Wiley & Sons, 2002.

[4] Lahiri T.etal. Ozone: Integrating Structured and
Semistructured Data. In Proc of DBLP, pages 297-
323, 1999.

[5] Microsoft corp. SQLXML. Books Online, version
5.2.3790.

[6] Microsoft corp. Supported SQL SELECT Syntax.
Books Online, version 5.2.3790.

[7] Microsoft corporation. Com: Component object
model technologies. http://www.microsoft.com/com.
Current as of Oct. 13, 2006.

[8] D. Pedersen and T. B. Pedersen. Integrating XML
data in the TARGIT OLAP system. In Proc of ICDE,
pages 778-781, 2004.

[9] Transaction Processing Performance Council. TPC-
H. www.tpc.org/tpch. Current as of Oct. 13, 2006.

[10] X. Yin and T. B. Pedersen. Evaluating XML-
Extended OLAP Queries Based on a Physical Alge-
bra. Journal of Database Management, 17(2):85-
116, 2006.

