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Abstract

In many distributed environments, the primary function of mon-
itoring software is to detectanomalies, that is, instances when
system behavior deviates substantially from the norm. Existing
approaches for detecting such abnormal behavior record system
state at all times, even during normal operation, and thus in-
cur wasteful communication overhead. In this paper, we pro-
pose communication-efficient schemes for the anomaly detection
problem, which we model as one of detecting the violation of
global constraints defined over distributed system variables. Our
approach eliminates the need to continuously track the global sys-
tem state by decomposing global constraints into local constraints
that can be checked efficiently at each site. Only in the occasional
event that a local constraint is violated, do we resort to more ex-
pensive global constraint checking. We formulate the problem of
selecting local constraints as an optimization problem that takes
into account the frequency distribution of individual system vari-
ables, and whose objective is to minimize communication costs.
After showing the problem to be NP-hard, we propose approxi-
mation algorithms for computingprovably near-optimal(in terms
of the number of messages) local constraints. In our experiments
with real-life network traffic data sets, we found that our tech-
niques for detecting global constraint violations can reduce mes-
sage communication overhead by as much as 70% compared to
existing data distribution-agnostic approaches.

1 Introduction
With the proliferation of large-scale distributed systems
(e.g., peer-to-peer systems [22, 26], sensor networks [11,
23, 25]),monitoring applicationsare increasingly required
to handle hundreds of thousands of nodes with dynamically
changing states. The research community has responded to
these new requirements by developing algorithms for con-
tinuously tracking a wide range of statistics over distributed
streams of values – these include sums and averages of nu-
meric values [20], top-k values [3], set-expression cardi-
nality [7], number of distinct values [12], quantiles [6], and
joins [5].
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Unfortunately, the above-mentioned algorithms are ill-
suited for a vast majority of monitoring tasks. This is be-
cause a key goal of monitoring is to ensure smooth system
operation by quickly identifying abnormal system behav-
ior (e.g., overload conditions, DDoS attacks). For detect-
ing abnormalities, the above algorithms that continuously
record global system state at all times are an overkill, and
lead to unnecessary communication even when all is well
[14]. Ideally, we would like algorithms that incur very lit-
tle or no communication when the system is operating nor-
mally, and only in the rare instances when system parame-
ters get close to abnormal regions do they trigger message
communication.

Anomaly detection problem. At a very high level, anom-
aly detection involves the identification of system states
that deviate substantially from the norm. The norm is typi-
cally captured using a global constraintG defined over sys-
tem variables at the geographically distributed sites. As
long asG holds, the system is considered to be in a normal
state. Thus, the anomaly detection problem can be stated
as follows:Identify all the instances when system variable
values violate the global constraintG. We focus on solving
this problem in the paper.

The ability to detect global constraint violations is a crit-
ical requirement for monitoring software in IP networks,
P2P systems, sensor networks, and the Web. For instance,
the following global constraint can be used to detect DDoS
attacks in an IP network: the total TCP SYN packet rate
for a destination observed across the network’s edge routers
does not exceed a specified limit. Similarly, for an Enter-
prise that is connected to the Internet via multiple links, if
the cumulative traffic on the links exceeds a threshold, then
this could be used to trigger actions like activating backup
links or requesting additional link capacity (from the Ser-
vice Provider). And for a Voice over IP call, QoS can be
ensured using a global constraint that specifies that the sum
of link delays observed at routers along the call path is at
most 200 msec.

In P2P systems, if files beyond a certain size limit are ex-
changed between peer nodes, then system parameters may
need to be modified to optimize overall performance. Sim-
ilarly, in sensor networks (e.g., for environmental monitor-



ing), collecting every individual reading (e.g., of temper-
ature or humidity), besides being too expensive, may also
be unnecessary; only extreme sensor readings that are ei-
ther too low or too high may be of interest. And finally, for
Web sites that are replicated at geographically distributed
servers, knowledge of popular pages (for whom the overall
number of hits exceeds a threshold) can be crucial for load
balancing, charging for advertisements, etc.

The above-mentioned applications impose the follow-
ing two requirements on our constraint violation detection
algorithms:
1. Real-time detection.For effective problem resolution,
global constraint transgressions should be detected in a
timely manner.
2. Low communication overhead.In general, it is desirable
to keep monitoring traffic as low as possible, since this
opens up more bandwidth for user applications. This is
especially important in wireless networks, where links typ-
ically have low bandwidths, and in sensor networks, where
nodes have limited battery lives. Ideally, our schemes
should transmit messages only when global constraints are
in danger of being breached.

Brute force solutions. Traditional monitoring systems are
based onpolling. A central coordinator periodically polls
system variables distributed across the various sites, and
checks to see ifG is violated. The problem with such a
polling-based approach is that timely detection of global
constraint violations will require frequent polling at short
intervals, which in turn will lead to high message over-
head. An alternative to polling is to continuously track the
statistics forG using recently proposed data streaming al-
gorithms for distributed environments. However, these too
can result in a large number of message transmissions.

A major drawback of the above brute force schemes for
checking the validity of global constraintG is that they are
oblivious of the system state with respect toG. Essentially,
the schemes incur the same communication overhead irre-
spective of how close the system variables are to violating
G.

Our approach. Our approach is based on the following
two key observations:
1. A local constraint involving only system variables at a
site can be checked locally and efficiently at the site without
any message communication.
2. A large class of global constraintsG that occur in prac-
tice can be decomposed into local constraintsL1, . . . ,Ln

such that ifG is violated, then one ofL1, . . . ,Ln must also
be violated.

For example, the global constraintX1 +X2 ≤ 5 defined
over system variablesX1 andX2 can be decomposed into
the following two local constraints:L1 = X1 ≤ 2 and
L2 = X1 ≤ 3. It is easy to see that(L1 ∧ L2) → G.

The implication here is that as long as the local con-
straintsLi are satisfied, there is no need to checkG since
it must hold as well. Only in the event of an occasional vi-
olation of a local constraintLi does the validity ofG need

to be ascertained. Thus, in our scheme, each site is respon-
sible for continuously and locally monitoring its own local
constraintLi. In case a site detects a local constraint viola-
tion, it triggers global constraint checking using one of the
brute force solutions (based on either polling or continuous
tracking) described earlier.

The bottom line here is that most of the time, system
variables will be well within the bounds specified byG, and
so local constraints will hold and there will be no need for
message transmissions to checkG. Only in the rare cases
when the system state takes on extreme values, will local
constraints be violated, causing additional communication
to checkG. Thus, our approach can lead to dramatically
lower message overhead compared to brute force solutions.

Our contributions. A primary contribution of this paper
is a general framework for detecting global constraint vi-
olations. While the idea of using local constraints to de-
tect global constraint violations is not new [9, 14, 16, 24],
many of the existing schemes [9, 14, 16] consider very spe-
cific forms of global and local constraints. In contrast, our
framework allows for arbitrary global and local constraints,
and only specifies the relationship that must hold between
them. In addition, we make the following contributions.
• In much of the prior work [9, 14, 16], with the excep-
tion of [24], global constraints are restricted to be simple
linear expressions over system variables. In contrast, we
permit more general constraints containing aggregate oper-
ators MIN and MAX, as well as boolean conjunctions and
disjunctions, in this paper.
• There can be multiple possible local constraints for a
given global constraint. We propose algorithms for select-
ing the “best” among these that minimize communication
costs by taking into account the frequency distribution of
individual system variables.

We show that it is possible to formulate the problem of
selecting the best local constraints (that minimize commu-
nication costs) as an optimization problem whose objective
function aims to maximize the frequency of occurrence of
system states covered by the local constraints. We estimate
the state occurrence frequencies using the frequency dis-
tributions of individual system variables (assuming vari-
able independence), and show that the corresponding op-
timization problem is NP-hard. After proposing a pseudo-
polynomial time algorithm for optimally computing local
constraints, we go on to devise an FPTAS1 that yieldsprov-
ably near-optimallocal constraints.
• Our experimental results with a real-life network traf-
fic data set demonstrate the effectiveness of our local
constraint selection algorithms. Compared to naive
approaches that assume a uniform data distribution, our
techniques that take into account the frequency distribution
of system variables reduce message communication over-
head (due to local threshold violations) by as much as 70%.

1A Fully Polynomial-Time Approximation Scheme(FPTAS) is an ap-
proximation algorithm which (1) for a givenε > 0, returns a solution
whose cost is within(1 ± ε) of the optimal cost, and (2) has a running
time that is polynomial in the input size and1/ε.



Organization of the paper. Section 2 compares our pro-
posed schemes with related work. In Section 3, we de-
scribe the local constraint selection problem that is tackled
in this paper. We first present schemes for computing local
constraints when global constraints are simple linear ex-
pressions in Section 4. We then describe extensions to our
schemes for handling more complex constraints containing
MIN, MAX, conjunctions and disjunctions in Section 5. In
Section 6, we present the results of our experiments with
real-life data sets. And finally, Section 7 contains conclud-
ing remarks.

2 Related work

Aggregate statistics computation over distributed data
streams has attracted considerable attention in the recent
past. Algorithms have been proposed for tackling a broad
array of problems, including computing the top-k set [3],
sums and counts [20], set expressions [7], number of dis-
tinct values [12], quantiles [6], and joins [5]. However,
these data streaming algorithms track system state contin-
uously, and are thus too expensive for detecting constraint
violations.

There has been some previous work [10, 15, 19, 29]
on intelligent polling-based solutions for monitoring global
anomaly conditions – these try to reduce unnecessary
polling by exploiting past statistics. But a shortcoming of
pure polling-based approaches is that they may miss con-
straint violations unless the polling interval is set to be
small enough. On the other hand, our approach combines
local-event-reporting or ‘triggering’ with polling to ensure
guaranteed detection of every alarm condition.

Constraint checking is performed today by implementa-
tions of embeddedtriggersor predicates in database query
engines. The topic has also been extensively researched
in the context of so-called “active databases”[28]. How-
ever, the focus of research on distributed active databases
has thus far been primarily on how to decompose the trig-
gering rules and distribute them across sites so that they
can be evaluated correctly. To the best of our knowledge,
none of the prior work in this field addresses the problem of
evaluating a distributed triggering condition with minimal
communication overhead.

The works most closely related to our approach are
those of [9, 14, 16, 24]. The pioneering work of [9] pro-
posed the idea of using local constraints for monitoring
global constraints, and presented a simple solution for se-
lecting local constraints assuming uniform data distribu-
tions for system variables. In [14], the authors discuss
the research challenges in building a distributed trigger-
ing mechanism to maintain system-wide invariants. And
more recently, Keralapura et al. [16] studied the problem
of monitoring thresholded countswith bounded error, but
only when their value exceeds a pre-specified threshold.
To detect instances when the distributed count breaches the
threshold (so that accurate tracking of it can be begun), they

propose an adaptive algorithm that dynamically adjusts lo-
cal constraints each time there is a violation.

The recent work of Sharfman et al. [24] represents
the state-of-the-art in detecting distributed constraintvio-
lations. In [24], global constraints are permitted to con-
tain an arbitrary function over weighted sums of system
variables. A geometric approach is proposed which allows
each site to constrain the possible values for the weighted
sums based on their locally observed values. Thus, each
site can locally determine if the global constraint is poten-
tially violated, and if so, initiate local constraint adjustment
by balancing local variable values across the sites. A key
difference with our work is that [24] does not take into ac-
count the data distribution of system variables.

In summary, our effort represents the first attempt at for-
mulating local constraint selection as a combinatorial op-
timization problem that (1) incorporates the knowledge of
system variable data distributions, and (2) seeks to mini-
mize communication costs.

3 Problem Definition

3.1 System Model

Our distributed system consists ofn remote sites1, . . . , n
and a central coordinator site 0. Each remote sitei contains
a variableXi which takes non-negative integer values from
the domain[0,Mi]. Intuitively, the integer values taken by
Xi reflect a measurement of some aspect of sitei’s state;
depending on the application,Xi could be any of the fol-
lowing: the SYN packet rate (packets/sec) for a specific
destination seen at routeri, the traffic (in bytes) on network
link i, or the number of times a particular Web page is ac-
cessed at sitei.

Global constraints. A global constraintG defined over
variablesXi specifies the system states that are considered
to be normal. Thus, anomalies correspond to violations of
G. In its full generality,G is an arbitrary boolean expres-
sion overatomic conditionsconnected using conjunctions
(∧) and disjunctions (∨). Each atomic condition has the
form agg exp op T , whereagg exp is an expression in-
volving Xi and zero or more aggregate operators MAX,
MIN and SUM, op is one of≥ or ≤, andT is an arbi-
trary integer constant. The aggregate expressionagg exp
is defined recursively as follows: (1) each termAiXi is an
aggregate expression – hereAi is an arbitrary integer con-
stant, (2) ifa1 anda2 are aggregate expressions, then so are
SUM{a1, a2} (or a1 + a2) and MIN/MAX{a1, a2}.

Note that the syntax of our global constraintG is pow-
erful enough to express anomaly conditions for most prac-
tical applications (including those mentioned in Section 1).
Furthermore, it can also capture SQL queries contain-
ing the standard aggregate operators like SUM, COUNT,
MAX, MIN and AVG. An example global constraint is:
((3X1 +X2 ≥ 1)∨ (MIN{X1, 2X3 −X2} ≤ 5))∧ (X1 +
MAX {3X2,X3} ≥ 4).

For simplicity, in the remainder of the paper, we will
assume thatAi and T are positive integers, and thatop



is ≤. Our proposed techniques can be extended to han-
dle scenarios when this assumption may not hold. Further-
more, in the remainder of this Section (and the next two
Sections), we will only consider simple constraints of the
form

∑
i AiXi ≤ T . In Section 5, we will show how our

schemes for handling these simple types of constraints can
be extended to deal with general, more complex global con-
straints (containing MIN, MAX, conjunctions and disjunc-
tions).

Local constraints. Our goal is to devise solutions that
would enable the coordinator site to detect global constraint
violations in a timely manner and with minimal message
overhead. As described earlier in Section 1, we achieve
this by installing at each sitei a local constraintLi of the
form Xi ≤ Ti, whereTi is a local threshold value. Each
site i locally and continuously checks constraintLi, and
sends an alarm to the coordinator every time it detects a vi-
olation of the local constraint. On receiving the alarm, the
coordinator starts tracking the quantity

∑
i AiXi to check

if the global constraintG is also violated. It does this us-
ing either continuous polling or the algorithms of Olston et
al. [20] for estimating

∑
i AiXi with a very small relative

errorε.
The coordinator continuously tracks

∑
i AiXi only as

long as at least one of the local constraints is violated.
Thus, in order to ensure that no global constraint violation
goes undetected, we require the local constraints to satisfy
the followingcovering property.

(L1 ∧ L2 ∧ · · · Ln) → G

The covering property ensures that ifG is violated, then
someLi will be violated as well, thus causing the global
constraint to be checked at the coordinator, and its violation
to be detected.

3.2 Local Threshold Selection Problem

A key question that we need to answer is: what values
should we choose for the local thresholdsTi? We focus
on answering this question for a given global thresholdT .

For the covering property to be satisfied, we require the
thresholdsTi to satisfy

∑
i AiTi ≤ T . Furthermore, it is

straightforward to see that if
∑

i AiTi ≤ T , then the cover-
ing property is indeed satisfied.

Now, for a givenT , there may be many choices forTi

that satisfy the covering property. For example, consider
the global constraintG = X1 + 2X2 ≤ 5. Then, both
(T1, T2) = (1, 2) and(T1, T2) = (3, 1) satisfy the covering
property. So the question is which local threshold values
should we choose? Is there a way to determine if one set of
threshold values is better than another?

The answer to the above questions lies in the observation
that not all local constraint violations correspond to global
constraint violations. Basically, there can befalse alarms
where a local constraint is violated, but the global con-
straint still holds. For example, for theG above, and local
thresholds(T1, T2) = (1, 2), if the system enters a global

state in which(X1,X2) = (2, 1), then the local constraint
X1 ≤ 1 at site 1 will be violated even though(X1,X2)
does not violate the global constraintX1 + 2X2 ≤ 5.

Every time a local constraint is violated, irrespective
of whether or not it is a false alarm, the coordinator
and remote sites exchange messages to track the quantity∑

i AiXi. Thus, to minimize communication overhead,
we should select local thresholds such that the local con-
straint violation frequency is minimized. (Note that, due
to the covering property, this is equivalent to minimizing
the number of false alarms. Although it may be impossible
to completely eliminate false alarms since each site only
knows the value of its own local variableXi.)

Let L = ∧iLi. Thus, we are looking to minimize the
number of instances whenL = false, or alternately, to
maximizeP (L = true), the probability that local con-
straints hold. To computeP (L = true), we need to in-
troduce additional notation. Letv = [v1, . . . , vn] denote
the vector of values taken by variablesX1, . . . ,Xn. Fur-
ther, letf denote the joint frequency distribution of vari-
ablesXi; thus, for v = [v1, . . . , vn], f(v) is the fre-
quency with which the variablesX1, . . . ,Xn take the val-
uesv1, . . . , vn, respectively. We will say thatv satisfiesL
if L evaluates totrue whenvi is substituted forXi. Then

P (L = true) =

P
v satisfiesL f(v)P

v
f(v) .

Unfortunately, the joint frequency distributionf may
not be known. We could try to compute a multi-
dimensional histogram for theXi variables based on past
observations and use this to estimatef – however, con-
structing multi-dimensional histograms is in general a dif-
ficult problem [21, 27], and may require too much commu-
nication in a distributed setting.

So instead, we consider a more practical alternative
from a computation perspective in which we estimate the
frequency distributionfi of eachXi. We then use this in
conjunction with the assumption that the variablesXi are
independent to derive an estimate forP (L = true). Now,
let Fi be the cumulative frequency distribution forXi, that
is, Fi(j) =

∑
k≤j fi(k). Then, for a vectorv, assuming

variable independence,f(v)P
v

f(v) =
∏n

i=1
fi(vi)

Fi(Mi)
. Thus, we

get that

P (L = true) =
n∏

i=1

Fi(Ti)

Fi(Mi)

Thus, sinceFi(Mi)s are constant, our local threshold se-
lection problem is the following.

Problem statement: Given positive integersAi andT , a
cumulative frequency distribution functionFi for each vari-
ableXi, compute positive integer valuesT1, . . . , Tn such
that n∏

i=1

Fi(Ti) is maximum, and

n∑

i=1

AiTi ≤ T

Note that we can estimate eachfi by maintaining con-
cise histograms ofXi values locally. Since each histogram



is for one-dimensional values at a single site, it can be con-
structed efficiently for a sequence ofXi values using cen-
tralized streaming algorithms described in [13], and for a
recent window of values using the techniques of [8, 18].

Now, observe that the frequency distributionfi may not
be static and may vary with time. To deal with this, we
can use the change detection algorithms of [17] to identify
the points in time when the underlying distributionfi has
changed. Once a change is detected, we immediately trig-
ger the recomputation of histograms for the stream ofXi

values, and then use these to compute new local thresholds
Ti. Thus, we can ensure that the threshold valuesTi are
always based on the most current data distributionfi.

We should point out here that we do not expect threshold
recomputations to occur very frequently, since in most ap-
plications, shifts in data distributions usually happen grad-
ually rather than abruptly. For instance, in our experiments
with real-life network traffic data sets, we found link traffic
distributions to be fairly stable from week to week; essen-
tially, link traffic histograms for one week were good pre-
dictors of link traffic distributions for the following weeks.

4 Threshold Selection
In this section, we present schemes for computing thresh-
olds for local variablesX1,X2, . . . ,Xn assuming that each
variable is statistically independent of the others. Re-
call from the previous section that the problem here is to
compute integer threshold valuesT1, T2 . . . , Tn such that∑n

i=1 AiTi ≤ T and
∏n

i=1 Fi(Ti) is maximum.
We can devise a simple pseudo-polynomial time dy-

namic programming algorithm to optimally solve the above
problem. LetVi(S) be defined as follows:

Vi(S) = max{

i∏

k=1

Fk(Tk) :

i∑

k=1

AkTk ≤ S} (1)

Then,Vn(T ) yields the optimal thresholds for our problem.
The value ofVn(T ) can be computed recursively using the
following relation:

Vi(S) = max{Fi(j)Vi−1(S − Aij) : j ∈ [1, T/Ai]} (2)

One can compute the value ofVn(T ) in O(nT 2) opera-
tions, as there areO(nT ) values ofVi(S) to be computed,
and each computation involves computing a maximum over
at mostT/Ai elements. A problem here, however, is that
the running time of the algorithmO(nT 2) is not polyno-
mial in the input size. Consequently, sinceT can be large
in practice, such a pseudo-polynomial time algorithm may
not really be practical.

Unfortunately, the following theorem implies that it may
be difficult to devise an efficient polynomial time algorithm
for the threshold selection problem. (Due to space con-
straints, we omit the proof of NP-hardness here. It can be
found in [2].)

Theorem 1 The local threshold selection problem is NP-
hard.

In the following, we present an FPTAS for the problem,
that is, an approximation algorithm that runs in time poly-
nomial in the input size and approximates the optimal so-
lution to within ε relative error for an arbitrarily smallε.
Thus, our results are thebest possiblein terms of approxi-
mation guarantees.

We will like to make a brief comment here regarding the
histograms for variablesXi that are used to estimate the
distributionsFi. Although Mi, the size ofXi’s domain,
can be quite large in practice, the histograms themselves
are rather coarse with very few buckets (much smaller than
Mi). Thus, the input size is much smaller thanMi, and in
order for the running times of algorithms to be polynomial
in the input size, their time complexities will need to have
a logarithmic as opposed to a polynomial dependence on
Mi.

4.1 FPTAS

Intuition

We begin by exploring the basic intuition under the fol-
lowing simplistic assumption: for alli, j pairs, values of
Fi(j) areintegral powers of a knownα > 1. Thus,Fi(Ti)
will correspond toαri for some integerri, and maximizing∏n

i=1 Fi(Ti) will correspond to maximizingα
P

n

i=1
ri . Let

Ii(r) denote the smallest value such thatFi(Ii(r)) = αr, if
such a value exists, or is set to infinity otherwise. Replac-
ing Ti by Ii(ri), the problem can now be reformulated as
one of findingri’s such that

n∑

i=1

ri is maximum, and

n∑

i=1

AiIi(ri) ≤ T

Note that this is essentially a variant of the knapsack
problem, and can be solved using dynamic programming
[4]. The running time of the algorithm will depend on the
total number ofri’s possible, which is polynomial in the
input size, thus making it a polynomial time algorithm.

Now, if the values ofFis are not integral powers ofα,
then we will simply round down eachFi(j) to the largest
integral power ofα smaller thanFi(j), and then solve the
problem. By doing so, intuitively, we will introduce an
approximation factor ofα for eachi because our newFi

values are within anα factor of the originalFi value. This
will introduce an approximation factor ofαn in the final
solution. By choosingα appropriately, we can get as close
to the optimal solution as desired.
Overview of the Algorithm
Let us assume that we have chosen anα to work with. The
algorithm essentially has two phases, computingIi(r)s and
dynamic programming.

1. Computing Ii(r)s: Ii(r) is computed as the smallestj
such thatαr ≤ Fi(j) ≤ αr+1. We choose the minimum
suchj because we are looking to minimize the weighted
sum ofTis and such a choice is the best possible one. If no



suchj exists, then we do not want the correspondingr to
appear in the solution and hence we setIi(r) to infinity.

2. Dynamic Programming: Let us first introduce some
notation. LetP̄ =

∏n

i=1 Fi(Mi) denote the maximum pos-
sible value of the product ofFis. Let l denote the small-
est power ofα that is greater than or equal tōP (thus,
l = d log(P̄ )

log(α) e). Our dynamic programming algorithm builds
a table withn rows andl columns whose entries are de-
noted byS(i, p). EachS(i, p) corresponds to the minimum
value for

∑i

j=1 AjIj(rj) such that
∑i

j=1 rj = p. Thus, we
are interested in the largestp such thatS(n, p) ≤ T . Now,
the table ofS(i, p) values can be constructed as follows:

1. S(1, p) = A1I1(p)

2. S(i + 1, p) = minr{Ai+1Ii+1(r) + S(i, p − r)}

To compute the solution to our problem, we first identify
the largestp such thatS(n, p) ≤ T . Theri values corre-
sponding to thisp value then give us our desired threshold
valuesTi = Ii(ri).

Analysis of the Algorithm
First, let us analyze the running time of the algorithm. Let
M̄ = max{M1, . . . ,Mn}. In the first phase, a table ofnl
Ii(r)s is constructed. EachIi(r) value can be computed
using binary search over the domain ofXi in log Mi steps.
Thus, the running time for the first phase isO(nl log M̄).
The second phase, dynamic programming, populates the
nl S(i, p) table entries. Computing each entry will take at
most l computations because there are at mostl possible
values ofr in step 2 above. Thus, the running time of the
second phase isO(nl2). So the overall running time of the
algorithm isO(nl(l + log M̄)).

Before analyzing the approximation guarantee pro-
vided by the algorithm, let us introduce some more no-
tation. LetT ∗

1 , T ∗
2 , ..., T ∗

n denote optimal thresholds, and
r1, r2, . . . , rn denote theri values returned by our algo-
rithm (recall thatIi(ri) are the threshold valuesTi in our
solution). Also, letr∗i denote the largestr such thatIi(r) ≤

T ∗
i . By definition, this implies thatαr∗

i ≤ Fi(T
∗
i ) ≤

αr∗

i
+1. Now, the cost of our solution is

∏n

i=1 Fi(Ii(ri))
and the cost of the optimal solution is

∏n

i=1 Fi(T
∗
i ).

Any ri will satisfy αri ≤ Fi(Ii(ri)) ≤ αri+1, by de-
finition. Using this, it is easy to see that cost of our so-
lution,

∏n

i=1 Fi(Ii(ri)) ≥
∏n

i=1 αri . Also, sinceαr∗

i ≤

Fi(T
∗
i ) ≤ αr∗

i
+1, we haveαr∗

i ≥
Fi(T

∗

i
)

α
, which implies

that
∏n

i=1 αr∗

i ≥
Q

n

i=1
Fi(T

∗

i
)

αn .
Note that

∑n

i=1 AiIi(r
∗
i ) ≤

∑n

i=1 AiT
∗
i ≤ T . Among

all the ris satisfying
∑n

i=1 AiIi(ri) ≤ T , our solution
has the maximum

∑n

i=1 ri, which implies that
∑n

i=1 ri ≥∑n

i=1 r∗i . From these, we finally derive the following:

n∏

i=1

Fi(Ii(ri)) ≥

n∏

i=1

αri ≥

n∏

i=1

αr∗

i ≥

∏n

i=1 Fi(T
∗
i )

αn

.
Since, T ∗

i is the optimal solution, it follows that our
algorithm approximates the optimal solution by a factor

of αn. Clearly, this gives an algorithm that runs in time
O(nd log(P̄ )

log(α) )e(d
log(P̄ )
log(α) )e + log M̄)) and provides an ap-

proximation guarantee ofαn.

Theorem 2 (FPTAS) Let P̄ denote the maximum possible
product ofFi’s and M̄ denote the maximum domain size
of Xi’s. Then for anyε > 0, our dynamic programming
algorithm returns a1+ ε approximation and has a running
time ofO(n2

ε
log(P̄ )(n log(P̄ )

ε
+ log M̄)).

Proof: Chooseα = 1+ ε
2n

. Then the approximation factor
of our algorithm becomes(1+ ε

2n
)n ≤ 1+

∑n

i=1 ni( ε
2n

)i ≤

1 +
∑n

i=1(
ε
2 )i ≤ 1

1− ε

2

≤ 1 + ε.

Also, the running time of our algorithm isO(nl(l +

log M̄)), where l = d log(P̄ )
log α

e. Thus, substituting for
log(α) = log(1 + ε

2n
) ≈ ε

2n
proves the theorem.

5 Constraints Containing Boolean Conjunc-
tions and Disjunctions

Let E(X1, . . . ,Xn) denote a linear expression of the form∑
i AiXi. So far, we have considered simple global con-

straints of the formE ≤ T containing only a single lin-
ear expression. In this Section, we will consider more
general global constraints that are conjunctions and dis-
junctions of the simpler constraintsE ≤ T . Specifi-
cally, we will consider global constraintsG of the form∧

j(
∨

k Ej,k ≤ T̂j,k), whereEj,k is a linear expression

over variablesX1, . . . ,Xn, andT̂j,k is an integer threshold
value. We will refer to these richer constraints asboolean
constraints.

In the following, we will first show that our boolean con-
straints subsume the class of constraints constructed using
the SUM, MIN, and MAX operators. We will then present
an FPTAS for finding local threshold valuesTi for global
constraints containing only disjunctions. (Each local con-
straintLi is still of the form Xi ≤ Ti as before.) For
global constraints containing only conjunctions, we will
prove that finding good approximations for threshold val-
uesTi is NP-hard, which implies that the most general form
we are considering is hard to approximate, too. Finally, we
will propose heuristics to solve the general problem.

5.1 Constraints containing MIN/MAX

Consider any constraint of the formagg exp ≤ T , where
the aggregate expressionagg exp is either a linear expres-
sion (SUM) or constructed recursively using the operators
MIN, MAX, or SUM (that is, if a1 anda2 are aggregate
expressions, then so area1 + a2 and MIN/MAX{a1, a2}).
We show that these aggregate constraints can be ex-
pressed as boolean constraints (that is, all occurrences of
MIN/MAX can be replaced with conjunctions and disjunc-
tions). First, note that we can push all the SUM oper-
ators inside MIN/MAX. For instance, consider the con-
straint (A + MIN{B,C}) ≤ T . This is equivalent to



MIN{A+B,A+C} ≤ T . Thus, we now have constraints
with MIN/MAX as the outermost operators. These can be
replaced with conjunctions and disjunctions as follows. For
instance, MIN{A,B} ≤ T can be rewritten as the boolean
constraint(A ≤ T ) ∨ (B ≤ T ), and MAX{A,B} ≤ T
can be transformed to(A ≤ T ) ∧ (B ≤ T ). Note that
these transformations can blow up the input constraint size
exponentially, and so may not be feasible for constraints
containing a large number of MIN/MAX operators.

5.2 Constraints containing only disjunctions

Now let us consider boolean constraints containing only
disjunctions, that is, constraints of the formG =

∨
j(Ej ≤

T̂j). We want to compute local thresholdsTi for eachXi

such that the covering property is satisfied, that is, when-
everG is violated, one of theLis is also violated. This cov-
ering property implies that it is necessary and sufficient for
theTis to satisfy the constraint

∨
j(Ej(T1, . . . , Tn) ≤ T̂j).

So the problem is to find threshold valuesTi such that
n∏

i=1

Fi(Ti) is maximum, and

∨

j

(Ej(T1, . . . , Tn) ≤ T̂j)

To solve the above problem, we compute thresholds for
each disjunctEj ≤ T̂j separately using our FPTAS (from
Section 4) with approximation factor1+ ε. LetTi,j denote
the ith threshold (for variableXi) in our solution for dis-
junct Ej ≤ T̂j . Further, letj∗ be the disjunctj for which∏

i Fi(Ti,j) is maximum. Then we choose the local thresh-
old valuesTi = Ti,j∗ . In the following, we show that our
solution is within a factor of1 + ε of the optimal solution.

Lemma 3 The thresholdsTi = Ti,j∗ are a solution to our
threshold computation problem for constraints with only
disjunctions. Moreover, if the optimal threshold values are
T ∗

i , then

∏n

i=1 Fi(T
∗
i )

1 + ε
≤

n∏

i=1

Fi(Ti,j∗) ≤
n∏

i=1

Fi(T
∗
i )

Proof: It is easy to see thatTi,j∗ is a feasible solution to the
problem at hand since it satisfies the disjunctEj∗ ≤ T̂j∗ .
Also,

∏n

i=1 Fi(Ti,j∗) ≤
∏n

i=1 Fi(T
∗
i ) is true becauseT ∗

i

is the optimal solution.
Next, we show that the second inequality also holds.

First, observe that the optimal thresholdsT ∗
i must satisfy

one of the disjunctsEj ≤ T̂j . Let this disjunct bej′. Also,
let T ∗

i,j′ denote the optimal solution for disjunctEj′ ≤ T̂j′ .
This means that among all the thresholds for disjunctj′, the
thresholdsT ∗

i,j′ maximize the product of theFis. Hence,∏n

i=1 Fi(T
∗
i,j′) ≥

∏n

i=1 Fi(T
∗
i ) (in fact, the products are

equal sinceT ∗
i is optimal, too). Thus, we get that

nY
i=1

Fi(Ti,j∗) ≥
nY

i=1

Fi(Ti,j′) ≥

Qn

i=1
Fi(T

∗

i,j′)

1 + ε
≥

Qn

i=1
Fi(T

∗

i )

1 + ε

The first inequality follows because such a product is
maximum for disjunctj = j∗, the second inequality is true
because our solution is a1+ε approximation to the optimal
solution, and the third inequality holds because the optimal
thresholds satisfy disjunctj′. This proves the lemma.

Theorem 4 There is an FPTAS for the problem of comput-
ing local thresholds for a global constraint containing only
disjunctions over linear inequalities.

Proof: From Lemma 3, it follows that our algorithm that
returns thresholdsTi = Ti,j∗ gives a1 + ε approximation
to the optimal solution. Further, it simply runs the FPTAS
(from Section 4) for each disjunct which amounts tom runs
(m is the number of disjuncts) of the FPTAS whose time
complexity is given in Theorem 2. Thus, its running time
is polynomial in the input size and1

ε
.

5.3 Constraints containing only conjunctions

Next, let us consider boolean constraints containing only
conjunctions, that is, constraints of the formG =

∧
(Ej ≤

T̂j). Our problem is to compute local thresholdsTi for each
Xi such that

n∏

i=1

Fi(Ti) is maximum, and

∧

j

(Ej(T1, . . . , Tn) ≤ T̂j)

In [2], we prove the following theorem regarding the hard-
ness of obtaining good approximations to the above prob-
lem.

Theorem 5 For an arbitrary constantp > 0, the problem
of finding local thresholds for a global constraint that is
a conjunction of linear inequalities is hard to approximate
within a factor ofnp unless P = NP.

Thus, it is hard to achieve a satisfactory approxima-
tion for our local threshold computation problem when
the global constraint is a conjunction of linear inequali-
ties. A simple heuristic that employs our FPTAS (from
Section 4) is as follows. First, we compute thresholds
for each conjunctEj ≤ T̂j separately using our FPTAS.
Let Ti,j denote theith threshold in our solution for con-
junct Ej ≤ T̂j . Now, we choose the local threshold values
Ti = minj{Ti,j}.

It is easy to see that our threshold values will satisfy
every conjunctEj ≤ T̂j , since we have chosenTi ≤ Ti,j

and theTi,js are a feasible solution for conjunctj. Also,
note that there may still be scope for improving the thresh-
olds since increasing some of the threshold values may still
satisfy all the linear inequalities. One option here is to uni-
formly increase all the threshold values as long as no linear
inequality is violated.



5.4 Handling general boolean constraints

Now, we are in a position to show how our threshold se-
lection techniques from the previous two subsections can
be used to handle general boolean constraints of the form∧

j(
∨

k Ej,k ≤ T̂j,k). Note that since this is a generaliza-
tion of the conjunction case discussed in Section 5.3, it is
hard to approximate. Here, we describe a two-step heuristic
for computing local thresholdsTi that utilizes our schemes
from the previous two subsections.
• Compute thresholds for disjunctions: Each conjunct
j is a disjunction of the form

∨
k(Ej,k ≤ T̂j,k), and thus

thresholdsTi,j for each such disjunction can be computed
using the method described in Section 5.2.
• Compute thresholds for conjunction: Next, we use
the method from Section 5.3 to compute the final local
thresholdsTi using the threshold valuesTi,j obtained in
Step 1 for each conjunctj. Basically, for eachi, choose
Ti = minj{Ti,j}, and then increase the thresholds as long
as they satisfy

∧
j(

∨
k Ej,k ≤ T̂j,k).

6 Performance Evaluation

In this Section, we quantitatively assess the utility of our
FPTAS for selecting local threshold values using a real-
life data set. Our findings indicate that, compared to sim-
ple heuristics for computing thresholds, our FPTAS consis-
tently reduces message communication costs (due to local
constraint violations) by a factor of 2-3.

6.1 Schemes Considered

Our global constraintG is of the form
∑

i Xi ≤ T . Each
local constraintLi is of the formXi ≤ Ti. Whenever a
local variableXi exceeds its thresholdTi, the correspond-
ing remote site triggers an alarm to the central coordinator,
and the central coordinator issues a global poll. In addi-
tion to our FPTAS, we consider the following heuristics for
selecting the local thresholdsTi.

FPTAS.We implement the FPTAS described in Section 4.1
with an approximation factor of1.05 (ε = 0.05). The cu-
mulative frequency distributionFi for eachXi is estimated
using histograms constructed on past data observed at the
site.

Equal-Value.2 This scheme is based on a straightforward
partitioning of the global threshold equally among the in-
dividual sites, i.e., the scheme sets each local threshold
Ti = T

n
. This heuristic is oblivious of the data distribution

at the various sites, and thus the selected threshold values

2This scheme was calledSimple-Valuein [9]. We do not consider the
Improved-Valuealgorithm of [9] in our experiments because like Equal-
Value, it also assumes uniform data distribution and sets alllocal thresh-
olds to be equal. Furthermore, in [9], the authors do not really address the
issue of computing local thresholds for Improved-Value. Instead, they
propose a naive scheme which reduces to Simple-Value when domain
sizesMi are large, and comparable to the threshold valueT , which is
the case for our traffic data sets.
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Figure 1: Experimental Results (Nov 17 - Dec 12, 2003)

can be expected to be good only if the data distribution at
each remote site is uniform.

Equal-Tail. A more intelligent heuristic makes use of the
knowledge of the frequency distributions (estimated using
histograms) for the various remote sites. We know, based
on earlier discussion, that the probability of violation of
a local thresholdTi is given by the right tail distribution
(1 − Fi(Ti)

Fi(Mi)
). This heuristic tries to minimize this tail for

eachXi, and sets the local thresholdsTi such that the right
tail is equal and the minimum possible across all the sites
(while satisfying

∑
i AiTi ≤ T ).

A drawback of the Equal-Tail heuristic is that it indi-
vidually minimizes the violation probability for each local
constraint rather than minimizing the overall joint proba-
bility (1 −

∏
i

Fi(Ti)
Fi(Mi)

) that one or more local constraints
are violated (as is done by our FPTAS). In the optimal solu-
tion, the local threshold violation probabilities(1− Fi(Ti)

Fi(Mi)
)

for the variousXis may not be equal; rather, they may be
vastly different depending on the frequency distributionFi

for eachXi.

Geometric. Unlike the above schemes, the Geometric
scheme [24] dynamically adjusts local thresholdsTi each
time a remote site reports a local constraint violation.
First, the coordinator polls local variablesXi to determine
their most recent values, and then it distributes the slack
(T−

∑
i Xi) equally among the sites. Thus, the new thresh-

oldTi at sitei is set toXi+
T−
P

i
Xi

n
. Observe that with the

Geometric scheme, each local constraint violation leads to
two rounds of message exchanges between the coordinator
and remote sites, one to collectXi values and a second to
set the local threshold values3.

6.2 Performance Metric

In order to compare the various schemes, we use as the
performance metric the number of messages exchanged be-

3In [24], collection of values and threshold adjustment is initially done
for a small subset of sites – this set is randomly increased as long the
global constraint remains unsatisfied.



tween the coordinator and remote sites when one or more
local thresholds are violated. This includes alarm messages
from remote sites and global poll messages from the coor-
dinator. Recall that every local constraint violation may
not correspond to a global constraint violation – as a re-
sult, schemes with more local constraint violations lead to
higher unnecessary polling of remote sites by the central
site.

6.3 Real-life Data Sets

We use a real-life SNMP network usage data set in our
experiments. This is obtained from the Dartmouth Wire-
less Network Trace Archive [1]. It contains data sets from
polling around 500 Wireless Access Points installed in the
Dartmouth University campus every five minutes over the
period of Fall 2003/2004; each poll returns the number of
bytes transmitted and received during roughly five-minute
intervals. We use data sets for 10 Access Points, with one
variableXi per Access Point, whose value is equal to the
number of bytes transmitted by the Access Point per five-
minute interval. Thus,

∑
i Xi is the total bytes transmitted

by the 10 Access Points per five-minute interval, and we
require this to be below the global thresholdT .

6.4 Experimental Results

Our results with SNMP network usage data for four con-
secutive weeks4(Nov 17 - Dec 12, 2003) are shown in Fig-
ure 1. We plot the number of messages exchanged due
to local threshold violations for the various schemes -FP-
TAS, Equal-Value, Equal-TailandGeometric- as the global
thresholdT is varied. In the figures, thex-axis shows the
fraction (%) of observations for which the sum exceeded
the chosen global thresholdT , and they-axis plots the
number of transmitted messages.

For FPTAS, we use one week’s (Nov 10-14) data (con-
taining 1435 observations) to obtain an initial estimate of
the frequency distributionsFi for the Xi variables, and
construct equi-depth histograms (100 buckets) on the trans-
mitted bytes in five-minute intervals. We use these his-
tograms to set the local thresholds for the following weeks.
When a change in the underlying distribution is detected lo-
cally at a site, we trigger the recomputation of histograms
for the stream ofXi values, and then use these to com-
pute new local thresholdsTi. In our experiments on four
weeks (Nov 17-Dec 12) data, the recomputation was trig-
gered only once, for the week of Nov 24-28. The thresholds
were recomputed using this week’s histograms and used for
the following two weeks.

From Figure 1, it is easy to see that FPTAS consistently
outperformsEqual-Value, Equal-TailandGeometric. FP-
TAS generally results in 70% fewer communication mes-
sages compared toEqual-Valueand 50% fewer messages
compared toGeometricandEqual-Tail. The superior per-
formance of FPTAS can be attributed to the fact that it

4Since network usage patterns are very different for weekdays and
weekends, we restrict ourselves to data only for weekdays.

takes into account the frequency distributions of variables
when computing local thresholds, and also selects thresh-
olds such that the joint probability of one or more local
constraints being violated is minimized.

Further, observe that even thoughFi is estimated using
data from a previous week, FPTAS is able to reduce lo-
cal threshold violations on the following weeks by a factor
of 2-3 compared to the other schemes. This goes on to
show that, in practice, histograms constructed using past
observations yield accurate enoughFi estimates, and so
the thresholds computed by FPTAS using past histograms
should be quite effective in reducing communication over-
head in real-world environments.

7 Conclusions

In this paper, we presented a novel scheme for detecting
global constraint violations while incurring minimal com-
munication overhead. Instead of continuously polling sites
to check global constraints, our scheme decomposes global
constraints into local constraints that can be checked effi-
ciently at each site. Only in the rare instances that a lo-
cal constraint is violated, is global polling triggered. We
showed that by taking into account the data distributions
at remote sites, local constraint thresholds can be set intel-
ligently so that the overall probability of local constraint
violations (and thus, global polling) is minimized. We de-
veloped an FPTAS that computesnear-optimallocal con-
straint threshold values, and via empirical evaluation on a
real-life network traffic data set, showed that it can reduce
communication costs by a factor of 2-3 compared to simple
heuristics.

We are pursuing several promising research directions.
Our constraint specification language currently allows the
SQL aggregate operators SUM, MIN and MAX over scalar
variables. A major research challenge is to permit richer
operators like quantiles, top-k, etc., and even SQL Join
queries over relational tuples. Also, instead of a single lo-
cal constraint threshold at each site, it may be possible to
further reduce global polling overhead (albeit, at the ex-
pense of increased complexity) by maintaining multiple lo-
cal thresholds per site and tracking each threshold viola-
tion locally. We need to explore further the trade-off here
between the additional traffic because of more threshold vi-
olations and the savings due to reduced polling.
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