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Abstract Unfortunately, the above-mentioned algorithms are ill-

suited for a vast majority of monitoring tasks. This is be-
In many distributed environments, the primary function of mon- cause a key goal of monitoring is to ensure smooth system
itoring software is to detecinomalies that is, instances when operation by quickly identifying abnormal system behav-
system behavior deviates substantially from the norm. Existingor (e.g., overload conditions, DDoS attacks). For detect-
approaches for detecting such abnormal behavior record systeing abnormalities, the above algorithms that continuously
state at all times, even during normal operation, and thus inrecord global system state at all times are an overkill, and
cur wasteful communication overhead. In this paper, we prodead to unnecessary communication even when all is well
pose communication-efficient schemes for the anomaly detectiofil4]. Ideally, we would like algorithms that incur very lit-
problem, which we model as one of detecting the violation oftle or no communication when the system is operating nor-
global constraints defined over distributed system variables. Oumally, and only in the rare instances when system parame-
approach eliminates the need to continuously track the global sysers get close to abnormal regions do they trigger message
tem state by decomposing global constraints into local constraintsommunication.
that can be checked efficiently at each site. Only in the occasional

event that a local constraint is violated, do we resort to more ex!/'\nomaly detection problem. At a very high level, anom-

pensive global constraint checking. We formulate the problem o2y détection involves the identification of system states
selecting local constraints as an optimization problem that taked1at deviate substantially from the norm. The norm is typi-

into account the frequency distribution of individual system vari- cally captured using a global constraghtlefined over sys-

ables, and whose objective is to minimize communication costst.em variables at the geographically distributed sites. As

After showing the problem to be NP-hard, we propose approxi-Iong asg holds, the system is con_SIdered to be in a normal
mation algorithms for computingrovably near-optima(in terms state. Thus, thPf anomaly_ detection problem can be_stated
of the number of messages) local constraints. In our experiment"éIS fOHOWS: Identify all the InStanges when system Va_”ab'e
with real-life network traffic data sets, we found that our tech-Values violate the global constraigit We focus on solving

niques for detecting global constraint violations can reduce mest-h's problem in the paper.

sage communication overhead by as much as 70% compared to The ability to detect global constraint violations is a-crit

existing data distribution-agnostic approaches. ical requirement for monitoring software in IP networks,
P2P systems, sensor networks, and the Web. For instance,
1 Introduction the following global constraint can be used to detect DDoS

attacks in an IP network: the total TCP SYN packet rate
With the proliferation of large-scale distributed systemstor 5 destination observed across the network’s edge muter
(e.g., peer-to-peer systems [22, 26], sensor networks [1}oes not exceed a specified limit. Similarly, for an Enter-
23, 25]),monitoring applicationsare increasingly required prise that is connected to the Internet via multiple links, i
to handle hundreds of thousands of nodes with dynamicallyhe cumulative traffic on the links exceeds a threshold, then
changing states. The research community has respondedg§ls could be used to trigger actions like activating backup
these new requirements by developing algorithms for continks or requesting additional link capacity (from the Ser-
tinuously tracking a wide range of statistics over distiélill  yice Provider). And for a Voice over IP call, QoS can be
streams of values — these include sums and averages of nénsured using a global constraint that specifies that the sum

meric values [20], top-k values [3], set-expression cardiof |ink delays observed at routers along the call path is at
nality [7], number of distinct values [12], quantiles [6hdx  most 200 msec.

joins [5]. In P2P systems, if files beyond a certain size limit are ex-

. changed between peer nodes, then system parameters may
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ing), collecting every individual reading (e.g., of temper to be ascertained. Thus, in our scheme, each site is respon-
ature or humidity), besides being too expensive, may alssible for continuously and locally monitoring its own local
be unnecessary; only extreme sensor readings that are @enstraintZ;. In case a site detects a local constraint viola-
ther too low or too high may be of interest. And finally, for tion, it triggers global constraint checking using one @& th
Web sites that are replicated at geographically distribute brute force solutions (based on either polling or contirsuou
servers, knowledge of popular pages (for whom the overaltracking) described earlier.
number of hits exceeds a threshold) can be crucial for load The bottom line here is that most of the time, system
balancing, charging for advertisements, etc. variables will be well within the bounds specified @yand

The above-mentioned applications impose the follow-so local constraints will hold and there will be no need for
ing two requirements on our constraint violation detectionmessage transmissions to ch&tkOnly in the rare cases
algorithms: when the system state takes on extreme values, will local
1. Real-time detectionFor effective problem resolution, constraints be violated, causing additional communicatio
global constraint transgressions should be detected in @ checkG. Thus, our approach can lead to dramatically
timely manner. lower message overhead compared to brute force solutions.

2. Low communication overheath general, it is desirable oyr contributions. A primary contribution of this paper
to keep monitoring traffic as low as possible, since thisis 5 general framework for detecting global constraint vi-
opens up more bandwidth for user applications. This isyjations. While the idea of using local constraints to de-
especially important in wireless networks, where links-typ tect global constraint violations is not new [9, 14, 16, 24],
ically have Iovx_/ b'andW|dths, ar)d in sensor networks, Wheremany of the existing schemes [9, 14, 16] consider very spe-
nodes have limited battery lives. Ideally, our schemessfic forms of global and local constraints. In contrast, our
should transmit messages only when global constraints afigamework allows for arbitrary global and local constraint
in danger of being breached. and only specifies the relationship that must hold between
them. In addition, we make the following contributions.
Brute force solutions. Traditional monitoring systems are o |n much of the prior work [9, 14, 16], with the excep-
based orpolling. A central coordinator periodically polls  tjon of [24], global constraints are restricted to be simple
system variables distributed across the various sites, anghear expressions over system variables. In contrast, we
checks to see ifj is violated. The problem with such a permit more general constraints containing aggregate oper
polling-based approach is that timely detection of globalators MIN and MAX, as well as boolean conjunctions and
constraint violations will require frequent polling at $ho  gjisjunctions, in this paper.
intervals, which in turn will lead to high message over- There can be multiple possible local constraints for a
head. An alternative to polling is to continuously track thegiven global constraint. We propose algorithms for select-
statistics forg using recently proposed data streaming al-jng the “hest” among these that minimize communication

gorithms for distributed environments. However, these t0q,,t5 by taking into account the frequency distribution of
can result in a large number of message transmissions.  nqividual system variables.

A major drawback of the above brute force schemes for  \y show that it is possible to formulate the problem of
checking the validity of global constraigtis that they are  ggjecting the best local constraints (that minimize commu-
oblivious of the system state with respectioEssentially,  pication costs) as an optimization problem whose objective
the schemes incur the same communication overhead g ction aims to maximize the frequency of occurrence of
spective of how close the system variables are to violating, stem states covered by the local constraints. We estimate

g. the state occurrence frequencies using the frequency dis-
Our approach. Our approach is based on the following tributions of individual system variables (assuming vari-
two key observations: able independence), and show that the corresponding op-

1. A local constraint involving only system variables at a timization problem is NP-hard. After proposing a pseudo-
site can be checked locally and efficiently at the site withoupolynomial time algorithm for optimally computing local
any message communication. constraints, we go on to devise an FPFAlSat yieldsprov-

2. Alarge class of global constraints that occur in prac-  ably near-optimalocal constraints.

tice can be decomposed into local constraifits. . ., £, e Our experimental results with a real-life network traf-
such that ifG is violated, then one of+, ..., £, mustalso fic data set demonstrate the effectiveness of our local
be violated. constraint selection algorithms.  Compared to naive

For example, the global constraikit + X, < 5 defined  approaches that assume a uniform data distribution, our

over system variable¥; and X, can be decomposed into techniques that take into account the frequency distobuti
the following two local constraints; = X; < 2 and  Of system variables reduce message communication over-

Ly = X; < 3. Itis easy to see thdiC; A L) — G. head (due to local threshold violations) by as much as 70%.

The implication here is that as long as the local con . — o )
straints£; are satisfied, there is no need to chéckince A Fully Polynomial-Time Approximation ScherféPTAS) is an ap-
v ! proximation algorithm which (1) for a givea > 0, returns a solution

it must hold as well. Only in the event of an occasional Vi- yhose cost is withir(1 + ¢) of the optimal cost, and (2) has a running
olation of a local constrainf; does the validity off need time that is polynomial in the input size ande.




propose an adaptive algorithm that dynamically adjusts lo-
Organization of the paper. Section 2 compares our pro- cal constraints each time there is a violation.
posed schemes with related work. In Section 3, we de- The recent work of Sharfman et al. [24] represents
scribe the local constraint selection problem that is &kl the state-of-the-art in detecting distributed constraiot
in this paper. We first present schemes for computing localations. In [24], global constraints are permitted to con-
constraints when global constraints are simple linear extain an arbitrary function over weighted sums of system
pressions in Section 4. We then describe extensions to owariables. A geometric approach is proposed which allows
schemes for handling more complex constraints containingach site to constrain the possible values for the weighted
MIN, MAX, conjunctions and disjunctions in Section 5. In sums based on their locally observed values. Thus, each
Section 6, we present the results of our experiments witisite can locally determine if the global constraint is peten
real-life data sets. And finally, Section 7 contains conelud tially violated, and if so, initiate local constraint adjosent
ing remarks. by balancing local variable values across the sites. A key
difference with our work is that [24] does not take into ac-
count the data distribution of system variables.
2 Related work In summary, our effort represents the first attempt at for-

mulating local constraint selection as a combinatorial op-

Aggregate statistics computation over d_|str|_buted dat"’{imization problem that (1) incorporates the knowledge of
streams has attracted considerable attention in the rece tstem variable data distributions, and (2) seeks to mini-

past. Algorithms hqve be_en propose_d for tackling a broa ize communication Costs.

array of problems, including computing the top-k set [3],

sums and counts [20], set expressions [7], number of dis- o

tinct values [12], quantiles [6], and joins [5]. However, 3 Problem Definition

these data streaming algorithms_ track system state cont_ir:g_ 1 System Model

uously, and are thus too expensive for detecting constraint

violations. Our distributed system consists ofremote sited, ..., n
There has been some previous work [10, 15, 19, 29pnd a central coordinator site 0. Each remote:sitentains

on intelligent polling-based solutions for monitoringpid @ variableX; which takes non-negative integer values from

anomaly conditions — these try to reduce unnecessarifie domain0, Mf;]. Intuitively, the integer values taken by

polling by exploiting past statistics. But a shortcoming of X reflect a measurement of some aspect of &itstate;

pure polling-based approaches is that they may miss corflepending on the applicatiork; could be any of the fol-

straint violations unless the polling interval is set to belowing: the SYN packet rate (packets/sec) for a specific

small enough. On the other hand, our approach combine@estination seen at routgrthe traffic (in bytes) on network

local-event-reporting or ‘triggering’ with polling to enge  link 7, or the number of times a particular Web page is ac-

guaranteed detection of every alarm condition. cessed at site

Constraint checking is performed today by implementa-Global constraints. A global constraintG defined over
tions of embeddettiggersor predicates in database query variablesX; specifies the system states that are considered
engines. The topic has also been extensively researchad be normal. Thus, anomalies correspond to violations of
in the context of so-called “active databases’[28]. How-G. In its full generality,G is an arbitrary boolean expres-
ever, the focus of research on distributed active databaseson overatomic conditionsonnected using conjunctions
has thus far been primarily on how to decompose the trig{A) and disjunctions\(). Each atomic condition has the
gering rules and distribute them across sites so that thefporm agg_exp op T, whereagg_exp is an expression in-
can be evaluated correctly. To the best of our knowledgevolving X; and zero or more aggregate operators MAX,
none of the prior work in this field addresses the problem oMIN and SUM, op is one of> or <, andT is an arbi-
evaluating a distributed triggering condition with minima trary integer constant. The aggregate expressignexp
communication overhead. is defined recursively as follows: (1) each teAnX; is an

The works most closely related to our approach areaggregate expression — hetgis an arbitrary integer con-
those of [9, 14, 16, 24]. The pioneering work of [9] pro- stant, (2) ifa; anda, are aggregate expressions, then so are
posed the idea of using local constraints for monitoringSUM{a1, a2} (or a1 + a2) and MIN/MAX{a1, as}.
global constraints, and presented a simple solution for se- Note that the syntax of our global constraghis pow-
lecting local constraints assuming uniform data distribu-erful enough to express anomaly conditions for most prac-
tions for system variables. In [14], the authors discusdical applications (including those mentioned in Sectipn 1
the research challenges in building a distributed triggerfurthermore, it can also capture SQL queries contain-
ing mechanism to maintain system-wide invariants. Anding the standard aggregate operators like SUM, COUNT,
more recently, Keralapura et al. [16] studied the problemMAX, MIN and AVG. An example global constraint is:
of monitoringthresholded counteith bounded error, but  ((3X; + X2 > 1)V (MIN{X1,2X5 — X5} <5))A (X1 +
only when their value exceeds a pre-specified thresholdMAX {3X,, X3} > 4).

To detect instances when the distributed count breaches the For simplicity, in the remainder of the paper, we will
threshold (so that accurate tracking of it can be beguny, theassume thatd; andT' are positive integers, and thap



is <. Our proposed techniques can be extended to harstate in which(X;, X5) = (2, 1), then the local constraint

dle scenarios when this assumption may not hold. FurtherX; < 1 at site 1 will be violated even though¥;, X5)

more, in the remainder of this Section (and the next twodoes not violate the global constraiki{ + 2X, < 5.

Sections), we will only consider simple constraints of the Every time a local constraint is violated, irrespective
form ). A; X; < T. In Section 5, we will show how our of whether or not it is a false alarm, the coordinator
schemes for handling these simple types of constraints casnd remote sites exchange messages to track the quantity
be extended to deal with general, more complex global con3 ", A, X;. Thus, to minimize communication overhead,
straints (containing MIN, MAX, conjunctions and disjunc- we should select local thresholds such that the local con-
tions). straint violation frequency is minimized. (Note that, due

Local constraints. Our goal is to devise solutions that [© the covering property, this is equivalent to minimizing

would enable the coordinator site to detect global corsttrai the number of false alarms. Although it may be impossible
violations in a timely manner and with minimal messageto completely ellml_nate false aIarrr_ls since each site only
overhead. As described earlier in Section 1, we achiev&NOWS the value of its own local variabké;.)
this by installing at each sitea local constraint; of the Let £ = A;L;. Thus, we are looking to minimize the
form X; < T,, whereT; is a local threshold value. Each NUmber of instances whefi = false, or alternately, to
site i locally and continuously checks constraifif, and ~Maximize P(L = true), the probability that local con-
sends an alarm to the coordinator every time it detects a vi2raints hold. To comput&(L = true), we need to in-
olation of the local constraint. On receiving the alarm, thelroduce additional notation. Let = [vy, ..., v,] denote
coordinator starts tracking the quanty, A; X; to check ~ the vector of values taken by variablds, ..., X,,. Fur-
if the global constraing is also violated. It does this us- ther. Ietf denote the joint frequency distribution of vari-
ing either continuous polling or the algorithms of Olston et@P1€S Xi; thus, forv. = [v1,...,vn], f(v) is the fre-
al. [20] for estimating)", A, X; with a very small relative ~9ueNcy with which the variableX’, ..., X;, take the val-
errore. ueswy, ..., vy, respectively. We will say that satisfiesC

The coordinator continuously tracks, A; X; only as if £ evaluates t@grue whenv; is substituted fotX;. Then

i Aiks only isfies. /

long as at least one of the local constraints is violatedP(L = true) = W.

Thus, in order to ensure that no global constraint violation  Unfortunately, the joint frequency distributiofi may
goes undetected, we require the local constraints to gatishot be known. We could try to compute a multi-

the followingcovering property dimensional histogram for th&, variables based on past
observations and use this to estimgte- however, con-
(LyNLaN---Ln) =G structing multi-dimensional histograms is in general a dif

. o ficult problem [21, 27], and may require too much commu-
The covering property ensures thatdfis violated, then  nication in a distributed setting.

some/; will be violated as well, thus causing the global g4 instead, we consider a more practical alternative
constraint to be checked at the coordinator, and its vatati fom a computation perspective in which we estimate the

to be detected. frequency distributiory; of eachX;. We then use this in
) conjunction with the assumption that the variahlésare
3.2 Local Threshold Selection Problem independent to derive an estimate o = true). Now,

A key question that we need to answer is: what valued€t £ be the cumulative frequency distribution f4F;, that

should we choose for the local thresholBl® We focus 'S Fi(j) = Zkéj fi(k). Then, for a vectow, assuming

on answering this question for a given global threstitld  variable independenc% =11, I{i((;;f). Thus, we
For the covering property to be satisfied, we require theyet that v o

thresholdsT; to satisfy) -, A,7; < T. Furthermore, it is " R(TY)
straightforward to see that}f", A,7; < T', then the cover- P(L = true) = H AT
ing property is indeed satisfied. -1 Fi(M)

Now, for a givenT’, there may be many choices f6f  Thys, sinceF;(1;)s are constant, our local threshold se-
that satisfy the covering property. For example, considefection problem is the following.

he global ing = X; +2X,; < 5. Th h .
the global constraing 12X < 5 en, bot Problem statement: Given positive integersl; andT, a

T1,T5) = (1,2) and(Ty,T>) = (3, 1) satisfy the coverin . L ; .
E)rtl)pezrzy éo tr)le qu(esltior?)is V\Ehicrz Iocalnt/hreshold Va?uescumulatlve frequency distribution functidn for each vari-
’ ble X;, compute positive integer valuds, ..., T,, such

should we choose? Is there a way to determine if one set cﬁmt
threshold values is better than another?

: S . F;(T;) is maximum, and
The answer to the above questions lies in the observation 1:[1 (73)

that not all local constraint violations correspond to gllob T

constraint violations. Basically, there can faése alarms Z AT <T |

where a local constraint is violated, but the global con- i=1

straint still holds. For example, for thg above, and local Note that we can estimate eaghby maintaining con-

thresholdg T3, T2) = (1,2), if the system enters a global cise histograms ak; values locally. Since each histogram



is for one-dimensional values at a single site, it can be con- In the following, we present an FPTAS for the problem,
structed efficiently for a sequence &f values using cen- that is, an approximation algorithm that runs in time poly-
tralized streaming algorithms described in [13], and for anomial in the input size and approximates the optimal so-
recent window of values using the techniques of [8, 18]. lution to within e relative error for an arbitrarily smadl.
Now, observe that the frequency distributimrmay not  Thus, our results are theest possiblén terms of approxi-
be static and may vary with time. To deal with this, we mation guarantees.
can use the change detection algorithms of [17] to identify We will like to make a brief comment here regarding the
the points in time when the underlying distributignhas  histograms for variableX; that are used to estimate the
changed. Once a change is detected, we immediately trighistributions F;. Although M;, the size ofX;'s domain,
ger the recomputation of histograms for the streankpf can be quite large in practice, the histograms themselves
values, and then use these to compute new local thresholdse rather coarse with very few buckets (much smaller than
T;. Thus, we can ensure that the threshold vallieare  M;). Thus, the input size is much smaller th&f, and in
always based on the most current data distribufion order for the running times of algorithms to be polynomial
We should point out here that we do not expect thresholdn the input size, their time complexities will need to have
recomputations to occur very frequently, since in most apa logarithmic as opposed to a polynomial dependence on
plications, shifts in data distributions usually happeadyr  M;.
ually rather than abruptly. For instance, in our experiraent
with real-life network traffic data sets, we found link traffi 4.1 FPTAS
distributions to be fairly stable from week to week; essen-
tially, link traffic histograms for one week were good pre-
dictors of link traffic distributions for the following wesk  Wwe begin by exploring the basic intuition under the fol-
lowing simplistic assumption: for all, j pairs, values of
4 Threshold Selection F(j) areintegral powers of a knownv > 1. Thus,F;(T;)
: . . will correspond tax": for some integer;, and maximizing
In this section, we present schemes for computing threshern =, =277 R
olds for local variables(y, X X, assuming thateach 1=l F4(T) will correspond to maximizing:=-i=1 ™. Let
. . Lo B2y s 9 I;(r) denote the smallest value such thatz;(r)) = o, if
variable is statistically independent of the others. Re- . . P .
. ) .. such a value exists, or is set to infinity otherwise. Replac-
call from the previous section that the problem here is ta
. ing T; by I;(r;), the problem can now be reformulated as
compute integer threshold valug&s, T ..., T, such that one of findingr,’s such that
Sor AT, <Tand[[, Fi(T;) is maximum. t
We can devise a simple pseudo-polynomial time dy-
namic programming algorithm to optimally solve the above
problem. LetV;(S) be defined as follows:

Intuition

n
Z r; is maximum, and
=1

Vi(s) = max{[[ Fu(T) - S ATy <8} (@) 2 Aditr) < T
k=1 k=1
Note that this is essentially a variant of the knapsack
Then,V,,(T') yields the optimal thresholds for our problem. problem, and can be solved using dynamic programming
The value ofi/, (T) can be computed recursively using the [4]. The running time of the algorithm will depend on the
following relation: total number ofr;’s possible, which is polynomial in the
input size, thus making it a polynomial time algorithm.
Now, if the values off;s are not integral powers af,
One can compute the value ,(7) in O(nT?) opera- _then we will simply round down eacﬁi(j) to the largest
tions, as there ar@(nT") values ofV;(S) to be computed, ntegral power ofx smaller than#;(j), and then solve the
and each computation involves computing a maximum oveProPlem. By doing so, intuitively, we will introduce an
at mostT'/A; elements. A problem here, however, is that @PProximation factor ot for each: because our new;
the running time of the algorithr®(nT2) is not polyno- vglu_es are within an fact_or of the originalF; yalue. Thls
mial in the input size. Consequently, sirifecan be large  Will infroduce an approximation factor ef" in the final
in practice, such a pseudo-polynomial time algorithm mayso!ution. By choosing appropriately, we can get as close
not really be practical. Eg’ the pptm:‘atlhsokitlontﬂs desired.
Unfortunately, the following theorem implies that it may verview ot the Algorithm .

be difficult to devise an efficient polynomial time algorithm Let us assume that we have choseman work with. The
for the threshold selection problem. (Due to space conff]llgor'thm essentlally has two phases, compufig)s and
straints, we omit the proof of NP-hardness here. It can béjynamm programming.
found in [2].) 1. Computing I;(r)s: I;(r) is computed as the smallest

such thata” < F;(j5) < a™*. We choose the minimum
Theorem 1 The local threshold selection problem is NP- suchj because we are looking to minimize the weighted
hard. O sum ofT;s and such a choice is the best possible one. If no

Vi(S) = max{F;(j)Vi-1(S — Aij) : j € [, T/A]}  (2)



suchj exists, then we do not want the correspondirtp  of o™. Clearly, this gives an algorithm that runs in time

appear in t.he solution a-nd hence we.sét.) to infinity. 0<ﬂ[ii§i§§>1((lﬁiiiiﬂ + log M)) and provides an ap-
2. Dynamic Programming: Let us first introduce some proximation guarantee ef”.

notation. LetP = [, F;(M;) denote the maximum pos- ~

sible value of the product af;s. Let/ denote the small- Theorem 2 (FPTAS) Let P denote the maximum possible
est power ofa that is greater than or equal #® (thus, product of F;’'s and M denote the maximum domain size
[ — (log(P)D‘ Our dynamic programming algorithm builds of X;’s. Then for anye > 0, our dynamic programming

log(a . . 4 .
a tableg(vv;thn rows and! columns whose entries are de- algorithm returns al + e approximation and has a running

. ’I’LZ — nlo D —
noted byS (i, p). EachS(i, p) corresponds to the minimum  time ofO(*- log(P)(™%E) + Jog AT)).
value fory i, A;1;(r;)suchthab~’._, r; = p. Thus, we _ . o
are interested in the larggssuch thatS(n, p) < 7. Now, ~ Proof: Choosexr =1+ 4. Thenthe approximation factor
the table ofS(i, p) values can be constructed as follows: ~ Of our algorithm becomeld +57)" < 1+3 ;" n'(57)" <

n €\ 1
1. 5(1,p) = A1 11(p) L+ 2ia(3) S =5 <1+e -
2. S(i+1,p) = ming{A;y1Li41(r) + S, p— 1)} AI_SO’ the running tlrlne(lgf our algorithm |é.>(n.l(l *
log M)), wherel = [%a)]. Thus, substituting for

To compute the solution to our problem, we first identify . o
the largesp such thatS(n, p) < T. Ther; values corre-  108(a) = log(1 + 57) = 57 proves the theorem. U
sponding to thig value then give us our desired threshold

valuesT; = I;(r:). 5 Constraints Containing Boolean Conjunc-

Analysis of the Algorithm tions and Disjunctions

First, let us analyze the running time of the algorithm. LetLet E(X1,..., X, denote a linear expression of the form

M = max{M,..., M,}. In the first phase, a table of N ;
_ . e >, AiX;. So far, we have considered simple global con-
Li(r)s is constructed. Each(r) value can be computed straints of the forme < T containing only a single lin-

using binary search over the domainXf in log M; steps. : . . . .

Thus, the running time for the first phaseQgnllog M). S ex;l)relssblo?. In this Seﬁtlon, we will consider r;c()jr_e
' : ; eneral global constraints that are conjunctions and dis-

The second phase, dynamic programming, populates tl”J%nctions of the simpler constraints < T. Specifi-

nl S(i,p) table entries. Computing each entry will take at . : .
most/ computations because there are at migspssible cally, we will consider global constrain@ of the form

values ofr in step 2 above. Thus, the running time of the /\j (Vi Ejx < Tjx), where Ej . is a linear expression
second phase i9(nl?). So the overall running time of the over variablesXy, ..., X,,, andTj  is an integer threshold
algorithm isO(nl(l + log M)). value. We will refer to these richer constraintstamlean
Before analyzing the approximation guarantee pro-constraints.
vided by the algorithm, let us introduce some more no- Inthe following, we will first show that our boolean con-
tation. LetT},Ty,...,T* denote optimal thresholds, and straints subsume the class of constraints constructed usin
r1,72,...,r, denote ther; values returned by our algo- the SUM, MIN, and MAX operators. We will then present
rithm (recall thatl;(r;) are the threshold valueg in our  an FPTAS for finding local threshold valug&3 for global
solution). Also, let:* denote the largestsuch that’; (r) < constraints containing only disjunctions. (Each local-con
T;y. By definition, this implies thah™ < F;(Ty) <  straintZ; is still of the form X; < T; as before.) For
a1, Now, the cost of our solution B[/, F;(I;(r:)) global constraints containing only conjunctions, we will
and the cost of the optimal solution]i§/"_, F;(T}). prove that finding good approximations for threshold val-
Any r; will satisfy o™ < Fy(I;(r;)) < o"*!, by de- uesliis NP-hard, which implies that the most general form
finition. Using this, it is easy to see that cost of our so-We are considering is hard to approximate, too. Finally, we
lution, [T, Fi(Li(r:)) > [I7_, ™. Also, sincea™ < will propose heuristics to solve the general problem.
Fi(T}) < a’i*', we havea™ > % which implies
that [T, o > = i@, . .
Note thaty" | A ;(r¥) < 32", A;TF < T. Among Consider any constraint of the forngg,exp < T, where
all the r;s sati1s_f§/ing2?il Aifi(;"z_') < i[ our solution the aggregate expressiang_exp |s.e|thera_lmear expres-
has the maximuny_"", ;, which implies tha 7", r; > sion (SUM) or constructed recursively using the operators

noo . - Lo MIN, MAX, or SUM (that is, if a; anda, are aggregate
> i, rf. From these, we finally derive the following: expressions, then so are + a, and MINIMAX {ay . as}).

5.1 Constraints containing MIN/MAX

n n n o TI, FA(TY) We show that these aggregate constraints can be ex-
[[F@) =[] =[] = 2= pressed as boolean constraints (that is, all occurrences of
i=1 i=1 i=1 @ MIN/MAX can be replaced with conjunctions and disjunc-

tions). First, note that we can push all the SUM oper-
Since, T* is the optimal solution, it follows that our ators inside MIN/MAX. For instance, consider the con-
algorithm approximates the optimal solution by a factorstraint (A + MIN{B,C}) < T. This is equivalent to



MIN{A+ B, A+ C} < T. Thus, we now have constraints

with MIN/MAX as the outermost operators. These can be The first inequality follows because such a product is
replaced with conjunctions and disjunctions as follows. Fo maximum for disjunctj = j*, the second inequality is true
instance, MIN A, B} < T can be rewritten as the boolean because our solution isla- e approximation to the optimal
constraint(A < T') v (B < T), and MAX{A,B} < T  solution, and the third inequality holds because the ogtima
can be transformed toA < T') A (B < T). Note that thresholds satisfy disjungt. This proves the lemma. O
these transformations can blow up the input constraint size

exponentially, and so may not be feasible for constraintstheorem 4 There is an FPTAS for the problem of comput-
containing a large number of MIN/MAX operators. ing local thresholds for a global constraint containing gnl

_ o o disjunctions over linear inequalities.
5.2 Constraints containing only disjunctions

Now let us consider boolean constraints containing only”r00f: From Lemma 3, it follows that our algorithm that
disjunctions, that is, constraints of the fogn=\/, (E; < :ettuhrns ”:_resrl‘O'dFZ;E = T;:J* tghlves'tal' + T appm)'c(rl}maFtch))?AS
R o the optimal solution. Further, it simply runs the

T;). We want to compute local threshold@ for eachX; P ply

. . . . (from Section 4) for each disjunct which amountsitouns
such that the covering property is satisfied, that is, when( is the number of disjuncts) of the FPTAS whose time

everg is violated, one of thé&;s is also violated. This cov- complexity is given in Theorem 2. Thus, its running time
ering property implies that it is necessary and sufficient fo ;¢ polynomial in the input size ang. 0

theT}s to satisfy the constrait ; (£; (T4, ..., T;) < ;).

So the problem is to find threshold valuEssuch that ) o o
5.3 Constraints containing only conjunctions

HF ) is maximum, and N . . .
ext, let us consider boolean constraints containing only
) conjunctions, that is, constraints of the fogin= A (E; <
\/(Ej (Ty,....Tn) < T) T;). Our problem is to compute local thresholdor each
J X, such that
To solve the above problem, we compute thresholds for F,(T;) is maximum, and
each disjunctt; < Tj separately using our FPTAS (from Py
Section 4) with approximation factar+ e. LetT; ; denote
the ith threshold (for variableX;) in our solution for dis- /\(Ej (Ty,...,T,) < jjj)

junct E; < Tj. Further, letj* be the disjuncy for which

[, Fi(T; ;) is maximum. Then we choose the local thresh-

old valuesT; = T; ;-. In the following, we show that our In[2], we prove the following theorem regarding the hard-

solution is within a factor ot + ¢ of the optimal solution.  ness of obtaining good approximations to the above prob-
lem.

J

Lemma 3 The thresholdd; = T; ;- are a solution to our
threshold computation problem for constraints with only Theorem 5 For an arbitrary constanp > 0, the problem
disjunctions. Moreover, if the optimal threshold values ar ©f finding local thresholds for a global constraint that is

T;, then a conjunction of linear inequalities is hard to approximate
within a factor ofn” unless P = NP. O
[T, F(TF) " .
: 11+ p—— 17T <[ F:(T) Thus, it is hard to achieve a satisfactory approxima-
i=1 i=1 tion for our local threshold computation problem when

Proof: Itis easy to see thd, ;- is a feasible solution to the the global constraint is a conjunction of linear inequali-
problem at hand since it satisfies the disjufigt < 7;..  ties. A simple heuristic that employs our FPTAS (from
Also, [T, Fi(Ti;-) < TIi-, Fi(Ty) is true becaus@} Section 4) is as follows. First, we compute thresholds
is the optimal solution. for each conjunciy; < T; separately using our FPTAS.
Next, we show that the second inequality also holdsLet T; ; denote theth threshold in our solution for con-
First, observe that the optimal thresholfls must satisfy  junct £; < 7. Now, we choose the local threshold values
one of the disjunct¥; < T;. Let this disjunctbg’. Also, T, = min; {7 ; }.
let 77, denote the optimal solution for disjungt, < TJ It is easy to see that our threshold values will satisfy
This means that among all the thresholds for disjyhdhe  every conjunctt; < T3, since we have choseh < T; ;
thresholdsT’;";, maximize the product of thé;s. Hence, and theT; ;s are a feasible solution for conjungt Also,
[Tim, F(Ty;) > =, Fi(T}) (in fact, the products are note that there may still be scope for improving the thresh-
equal sincel’* is optimal, too). Thus, we get that olds since increasing some of the threshold values may still
satisfy all the linear inequalities. One option here is té un
ﬁF- > ﬁF Ti,) > [, Fi(T3;0) > ITiZ, Fi(T7)  formly increase all the threshold values as long as no linear
- 1+e 1+e inequality is violated.

i=1



5.4 Handling general boolean constraints 40000 : : ‘
—— FPTAS

e ETail e R
Now, we are in a position to show how our threshold se- 300 [} —*—  Evaue ** T
lection techniques from the previous two subsections can |- * ,
be used to handle general boolean constraints of the formy, ¥><
N (Vi Ejre < Tj.1). Note that since this is a generaliza- ? S - 1
tion of the conjunction case discussed in Section 5.3, it iSE so000 B |

hard to approximate. Here, we describe a two-step heuristi
for computing local thresholds; that utilizes our schemes e
from the previous two subsections. 10000 o BTTETT

e Compute thresholds for disjunctions: Each conjunct
j is a disjunction of the form/, (E; < Tj), and thus
thresholdsT; ; for each such disjunction can be computed o
using the method described in Section 5.2. Actual global threshold violations (%)

e Compute thresholds for conjunction: Next, we use

the method from Section 5.3 to compute the final local Figure 1: Experimental Results (Nov 17 - Dec 12, 2003)
thresholdsT; using the threshold values; ; obtained in

Step 1 for each conjungt Basically, for each, choose can be expected to be good only if the data distribution at
T; = min;{T; ;}, and then increase the thresholds as longeach remote site is uniform.

as they satisfy\ ;(\/;, Ejr < Tjx). Equal-Tail. A more intelligent heuristic makes use of the
knowledge of the frequency distributions (estimated using
histograms) for the various remote sites. We know, based
on earlier discussion, that the probability of violation of

In this Section, we quantitatively assess the utility of oura local thresholdZ; is given by the right tail distribution
FPTAS for selecting local threshold values using a real{1 — gi((ﬁi))). This heuristic tries to minimize this tail for
life data set. Our findings indicate that, compared to simeachX;, and sets the local threshol@issuch that the right
ple heuristics for computing thresholds, our FPTAS consistail is equal and the minimum possible across all the sites
tently reduces message communication costs (due to loc@vhile satisfying ", 4;7; < T).

constraint violations) by a factor of 2-3. A drawback of the Equal-Tail heuristic is that it indi-
vidually minimizes the violation probability for each Idca
constraint rather than minimizing the overall joint proba-

bility (1 — T, gi((]f;;)) that one or more local constraints

lOurIgIobaI cqnstra_\ingfishoffthe form<2i Xi ShT. Each  are violated (asis done by our FPTAS). In the optimal solu-
ocal constraintz; is of the form.X; < 7,. Whenever a ., e |ocq] threshold violation probabilitiés— -7 )

local variableX; exceeds its thresholfi;,, the correspond- Fi(M,)

ing remote site triggers an alarm to the central coordipator©" (e variousX;s may not be equal; rather, they may be
and the central coordinator issues a global poll. In addiYastly different depending on the frequency distributign

tion to our FPTAS, we consider the following heuristics for for eachX;.
selecting the local thresholds. Geometric. Unlike the above schemes, the Geometric

FPTAS. We implement the FPTAS described in Section 4 ls_cheme [24] dyngmically adjusts local threshdl@sgach_
with an.approximation factor of.05 (¢ = 0.05). The cu- “time a remote site reports a local constraint violation.
mulative frequency distributiof, 'for each)fi is éstimated First, the coordinator polls local variablég to determine

. ; eir most recent values, and then it distributes the slack
gﬁéng histograms constructed on past data observed at tlﬁ 3. X,) equally among the sites. Thus, the new thresh-

T_Zi Xi

Numb&?

15000

5000

6 Performance Evaluation

6.1 Schemes Considered

Equal-Value2 This sch is based traightt doIdTi at sitei is set toX; + —=+—. Observe that with the
qual-vaiue. IS scheme IS based on a straightiorwardz o o metric scheme, each local constraint violation leads to
partitioning of the global threshold equally among the N-wwo rounds of message exchanges between the coordinator

g,'vijuﬁl _?_':].esh"e'.’ ;[.he. chﬁme se:cstheaghtlogalt t.gret_shol nd remote sites, one to colle&t values and a second to
; = ;- This heuristic is oblivious of the data distribution <.+ ihe local threshold valies

at the various sites, and thus the selected threshold values

2This scheme was callegimple-Valugn [9]. We do not consider the 6.2 Performance Metric

Improved-Valuealgorithm of [9] in our experiments because like Equal- :
Value, it also assumes uniform data distribution and seteedll thresh- In order to compare the various schemes, we use as the

olds to be equal. Furthermore, in [9], the authors do notyealtiress the ~ P€rformance metric the number of messages exchanged be-
issue of computing local thresholds for Improved-Value. dasf they
propose a naive scheme which reduces to Simple-Value when domai  3In[24], collection of values and threshold adjustment itiatly done
sizesM; are large, and comparable to the threshold valuevhich is for a small subset of sites — this set is randomly increased ras tlee
the case for our traffic data sets. global constraint remains unsatisfied.




tween the coordinator and remote sites when one or mortakes into account the frequency distributions of variable
local thresholds are violated. This includes alarm messagevhen computing local thresholds, and also selects thresh-
from remote sites and global poll messages from the coorelds such that the joint probability of one or more local
dinator. Recall that every local constraint violation may constraints being violated is minimized.

not correspond to a global constraint violation — as a re- Further, observe that even thoufhis estimated using
sult, schemes with more local constraint violations lead tadata from a previous week, FPTAS is able to reduce lo-
higher unnecessary polling of remote sites by the centratal threshold violations on the following weeks by a factor

site. of 2-3 compared to the other schemes. This goes on to
show that, in practice, histograms constructed using past
6.3 Real-life Data Sets observations yield accurate enough estimates, and so

the thresholds computed by FPTAS using past histograms

We use a real-life SNMP network usage data set in ougnoyld be quite effective in reducing communication over-
experiments. This is obtained from the Dartmouth Wire-naad in real-world environments.

less Network Trace Archive [1]. It contains data sets from

polling around 500 Wireless Access Points installed in th .

Dartmouth University campus every five minutes over th;}7 Conclusions

period of Fall 2003/2004; each poll returns the number ofin this paper, we presented a novel scheme for detecting
bytes transmitted and received during roughly five-minuteglobal constraint violations while incurring minimal com-
intervals. We use data sets for 10 Access Points, with onenunication overhead. Instead of continuously pollingssite
variable X; per Access Point, whose value is equal to theto check global constraints, our scheme decomposes global
number of bytes transmitted by the Access Point per fivegonstraints into local constraints that can be checked effi-
minute interval. Thus) . X; is the total bytes transmitted ciently at each site. Only in the rare instances that a lo-
by the 10 Access Points per five-minute interval, and wecal constraint is violated, is global polling triggered. We

require this to be below the global threshé@ld showed that by taking into account the data distributions
at remote sites, local constraint thresholds can be sét inte
6.4 Experimental Results ligently so that the overall probability of local constriain

. violations (and thus, global polling) is minimized. We de-

Our rgsults with SNMP network usage data for fo_ur CON-yeloped an FPTAS that computasar-optimallocal con-
secutive weeK¢Nov 17 - Dec 12, 2003) are shown in Fig- graint threshold values, and via empirical evaluation on a
ure 1. We plot the number of messages exchanged dugg|jife network traffic data set, showed that it can reduce
to local threshold V|oIat|on_s for the various schem&P-  ommunication costs by a factor of 2-3 compared to simple
TAS Equal-Valug Equal-TailandGeometric- as the global  peyristics.
threshold!” is varied. In the figures, the-axis shows the We are pursuing several promising research directions.
fraction (%) of observations for which the sum exceededyr constraint specification language currently allows the
the chosen gIoba] thresholfl, and they-axis plots the SQL aggregate operators SUM, MIN and MAX over scalar
number of transmitted messages. variables. A major research challenge is to permit richer

_For FPTAS, we use one week’s (Nov 10-14) data (con-gperators like quantiles, top-k, etc., and even SQL Join
taining 1435 observations) to obtain an initial estimate ofyeries over relational tuples. Also, instead of a single lo
the frequency distributiong’; for the X; variables, and ¢4 constraint threshold at each site, it may be possible to
construct equi-depth histograms (100 buckets) on thetrangther reduce global polling overhead (albeit, at the ex-
mitted bytes in five-minute intervals. We use 'these hls-pense of increased complexity) by maintaining multiple lo-
tograms to set the local thresholds for the following weeks 4| thresholds per site and tracking each threshold viola-
When a change in the underlying distribution is detected l0+jg locally. We need to explore further the trade-off here

cally at a site, we trigger the recomputation of histogramssetween the additional traffic because of more threshold vi-
for the stream ofX; values, and then use these to com-ations and the savings due to reduced polling.

pute new local thresholds;. In our experiments on four
weeks (Nov 17-Dec 12) data, the recomputation was trig

gered only once, for the week of Nov 24-28. The threshold?eferences

were recomputed using this week’s histograms and used fof1] Dartmouth wireless network traces.

the following two weeks. http://crawdad.cs.dartmouth.edu/data/dartmouth.html.
From Figure 1, it is easy to see that FPTAS consistently [2] S. Agrawal, S. Deb, K. V. M. Naidu, and R. Rastogi. Effi-

outperformsEqual-Valug Equal-TailandGeometric FP- cient detection of distributed constraint violations. Techni-

TAS generally results in 70% fewer communication mes- cal Report ITD-06-46857G, Bell Labs Technical Memoran-

sages compared tBqual-Valueand 50% fewer messages dum, 2006.

compared tdseometricandEqual-Tail The superior per- 3] B. Babcock and C. Olston. Distributed top-k monitoring. In
formance of FPTAS can be attributed to the fact that it SIGMOD, 2003.

4Since network usage patterns are very different for weekdad [4] T. Corman, C. Leiserson, and R. Rivesintroduction to
weekends, we restrict ourselves to data only for weekdays. Algorithms MIT Press, 1990.
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