
Semantic and Structure Based XML Similarity:
An Integrated Approach

Joe Tekli

LE2I Laboratory CNRS
University of Bourgogne

21078 Dijon Cedex
France

joe.tekli@khali.u-bourgogne.fr

Richard Chbeir

LE2I Laboratory CNRS
University of Bourgogne

21078 Dijon Cedex
France

richard.chbeir@u-bourgogne.fr

Kokou Yetongnon

LE2I Laboratory CNRS
University of Bourgogne

21078 Dijon Cedex
France

kokou.yetongnon@u-bourgogne.fr

Abstract

Since the last decade, XML has gained growing
importance as a major means for information
management, and has become inevitable for complex data
representation. Due to an unprecedented increasing use of
the XML standard, developing efficient techniques for
comparing XML-based documents becomes crucial in
information retrieval (IR) research. A range of algorithms
for comparing hierarchically structured data, e.g. XML
documents, have been proposed in the literature.
However, to our knowledge, most of them focus
exclusively on comparing documents based on structural
features, overlooking the semantics involved. In this
paper, we deal with this problem and introduce a
combined structural/semantic XML similarity approach.
Our method integrates IR semantic similarity assessment
in an edit distance algorithm, seeking to amend similarity
judgments when comparing XML-based documents.
Different from previous works, our approach comprises of
an original edit distance operation cost model, introducing
semantic relatedness of XML element/attribute labels, in
traditional edit distance computations. A discussion about
our similarity method’s properties, chiefly symmetricity
and triangular inequality, with respect to existing
measures in the literature is provided here. A prototype
has been developed to evaluate the performance of our
approach. Experimental results were noticeable.

1. Introduction
In recent years, W3C’s XML (eXtensible Mark-up
Language) has been accepted as a major means for
efficient data management and exchange. The use of
XML ranges over information formatting and storage,

database information interchange, data filtering, as well as
web services interaction. Due to the ever-increasing web
exploitation of XML, an efficient approach to compare
XML-based documents becomes crucial in information
retrieval (IR).

Notionally, an XML document should conform to a
given grammar (DTD - Document Type Definition - or
XML Schema), the latter defining the overall structure of
the corresponding XML document (elements, associated
attributes, as well as the rules to which those
elements/attributes should obey in the XML document)
[19]. However, XML documents published on the Web
are often found without grammars, in particular those
created from legacy HTML [17]. Therefore, the need to
compare heterogeneous XML documents arises. This
study focuses on the problem of identifying similarities
between XML documents that lack DTDs/Schemas.

A range of algorithms for comparing semi-structured
data, e.g. XML documents, have been proposed in the
literature. All of these approaches focus exclusively on
the structure of documents, ignoring the semantics
involved. However, in the field of information retrieval
(IR), estimating semantic similarity between web pages is
of key importance to improving search results [15]. The
relevance of semantic similarity in IR research, as well as
the unprecedented abundant use of XML-based
documents on the web, incited us to expand XML
structural similarity so as to take into account semantic
relatedness while comparing XML documents.

In order to stress the need for semantic relatedness

assessment in XML document comparisons, consider the
examples in Figure 1.

 International Conference on Management of Data

COMAD 2006, Delhi, India, December 14-16, 2006
©Computer Society of India, 2006

mailto:joe.tekli@khali.u-bourgogne.fr
mailto:richard.chbeir@u-bourgogne.fr
mailto:kokou.yetongnon@u-bourgogne.fr

 <?XML>
 <Academy>
 <Department>
 <Laboratory>
 <Professor> </Professor>
 <Student> </Student>
 </Laboratory>
 </Department>
 </Academy>

 <?XML>
 <College>
 <Department>
 <Laboratory>
 <Lecturer> </Lecturer>
 </Laboratory>
 </Department>
 </College>

 <?XML>
 <Factory>
 <Department>
 <Laboratory>
 <Supervisor> </Supervisor>
 </Laboratory>
 </Department>
 </Factory>

Sample A Sample B Sample C

Fig. 1. Examples of XML documents

Using traditional edit distance computations, the same
structural similarity value is obtained when document A is
compared to documents B and C (structural similarity
computations are detailed in Section 3.1.2). However,
despite having similar structural characteristics, one can
obviously recognize that sample document A shares more
semantic characteristics with document B than with C.
Pairs Academy-College and Professor-Lecturer, from
documents A and B, are semantically similar while
Academy-Factory and Professor-Supervisor, from
documents A and C, are semantically different. It is such
semantic resemblances/differences that we aim to take
into consideration while estimating similarity between
XML documents. In this study, we integrate semantic
similarity assessment in a structured XML similarity
approach, in order to provide an improved XML
similarity measure for comparing heterogeneous XML
documents.

The remainder of this paper is organized as follows.
Section 2 briefly reviews background in both XML
structural similarity approaches and IR semantic
similarity methods. Section 3 develops our integrated
semantic and structure based XML similarity approach.
Section 4 discusses our method’s properties, mainly
symmetricity and triangular inequality. Section 5 presents
our prototype and experimental tests. Section 6 concludes
the paper and outlines future research directions.

2. Background

2.1 XML data model

XML documents represent hierarchically structured
information and can be modeled as Ordered Labeled
Trees (OLTs) [27]. Nodes in a traditional DOM
(Document Object Model) ordered labeled tree represent
document elements and are labeled with corresponding
element tag names. Element attributes mark the nodes of
their containing elements. However, to incorporate
attributes in their similarity computations, the authors in
[17, 29] have considered OLTs with distinct attribute
nodes, labeled with corresponding attribute names.
Attribute nodes appear as children of their encompassing
element nodes, sorted by attribute name, and appearing
before all sub-element siblings [17]. In addition, in [17]

and [8], both authors agree on disregarding
element/attribute values while studying the structural
properties of XML documents.

2.2 XML structural similarity

Various methods, for determining structural similarities
between hierarchically structured data, particularly XML
documents, have been proposed in the literature. Most of
them derive, in one way or another, the dynamic
programming techniques for finding edit distance between
strings [12, 25]. In essence, all these approaches aim at
finding the cheapest sequence of edit operations that can
transform one tree into another. Nevertheless, tree edit
distance algorithms can be distinguished by the set of edit
operations that are allowed as well as overall complexity
and performance levels.

Early approaches [28, 23] allow insertion, deletion and
relabeling of nodes anywhere in the tree. However, they
are relatively greedy in complexity. For instance, the
approach in [23] has a time complexity O(|A||B| depth(A)
depth(B)) when finding the minimum edit distance
between two trees A and B (|A| and |B| denote tree
cardinalities while depth(A) and depth(B) are the depths
of the trees). In [4, 6], the authors restrict insertion and
deletion operations to leaf nodes and add a move operator
that can relocate a sub-tree, as a single edit operation,
from one parent to another. However, corresponding
algorithms do not guaranty optimal results. Recent work
by Chawathe [5] restricts insertion and deletion operations
to leaf nodes, and allows the relabeling of nodes
anywhere in the tree, while disregarding the move
operation. The overall complexity of Chawathe’s
algorithm is of O(N2). Nierman and Jagadish [17] extend
the approach provided by Chawathe in [5] by adding two
new operations: insert tree and delete tree to allow
insertion and deletion of whole sub-trees within in an
OLT. Their approach’s overall complexity simplifies to
O(N2). Experimental results, given by Nierman and
Jagadish [17], show that their algorithm outperforms that
of Chawathe [5], which in turn yields better results than
the algorithm presented in [23]. However, the authors in
[17] state that their algorithm is conceptually more
complex than its predecessor and that it requires a pre-
computation phase, relative to determining the costs of
tree insert and delete operations, which complexity is of
O(2N+N2).

An original structural similarity approach is presented
in [8]. It disregards OLTs and utilizes the Fast Fourier
Transform to compute similarity between XML
documents. However, the authors in [8] didn’t compare

their algorithm’s optimality to existing edit distance

approaches.

2.3 Semantic similarity

Measures of semantic similarity are of key importance in
evaluating the effectiveness of web search mechanisms in
finding and ranking results [15]. In the fields of Natural
Language Processing (NLP) and Information Retrieval
(IR), knowledge bases (thesauri, taxonomies and/or
ontologies) provide a framework for organizing words
(expressions) into a semantic space [10]. Therefore,
several methods have been proposed in the literature to
determine semantic similarity between concepts in a
knowledge base. They can be categorized as: edge-based
approaches and node-based approaches.

The edge-based approach is a natural and
straightforward way to evaluate semantic similarity in a
knowledge base. In [18, 11], the authors estimate the
distance between nodes corresponding to the concepts
being compared: the shorter the path from one node to
another, the more similar they are. Nevertheless, a widely
known problem with the edge-based approach is that it
often relies on the notion that links in the knowledge base
represent uniform distances [20, 10]. In real knowledge
bases, the distance covered by a single link can vary with
regard to network density, node depth and information
content of corresponding nodes [21, 10]. Jiang and
Conrath [10] add that link distances could also vary
according to link type.

On the other hand, node-based approaches get round
the problem of varying link distances. In [20], Resnick
puts forward a central node-based method, where the
semantic similarity between two concepts is approximated
by the information content of their most specific common
ancestor1.

Resnick’s experiments [20] show that his similarity
measure is a better predictor of human word similarity
ratings, in comparison with a variant of the edge counting
method [18, 11]. Resnick [20] adds that his measure is not
sensitive to the problem of varying distances, since it
targets the information content of concepts rather than
their distances from one another. Improving on Resnick’s
method [20], Lin [13] presents a formal definition of the
intuitive notion of similarity, and derives an information
content measure from a set of predefined assumptions
regarding commonalities and differences2. Lin’s
experiments [13] show that the latter information content
measure yields higher correlation with human judgment in

1
 Note that the information content of a concept/class is
approximated by estimating the probability of occurrence of
the concept/class words in a text corpus.

2 Following Lin [13], the commonality between tow concepts is
underlined by the information content of their lowest common
ancestor (identified by Resnick’s measure [20]). However, the
difference between two concepts depends on their own
information contents (which are overlooked by Resnick’s
measure [20]). Lin’s measure [13] is developed subsequently.

comparison with Resnick’s measure [20]. Furthermore,
Lin’s measure is generalized by Maguitman et al. [15] to
deal with ontologies of hierarchical (made by IS-A links)
and non-hierarchical components (made by cross links of
different types), the Lin measure (as most semantic
similarity measures) targeting hierarchical structures
(taxonomies).

In recent years, there have been a few attempts to
integrate semantic and structural similarity in the XML
comparison process. The authors in [2, 3, 22] identify the
need to support tag similarity (synonyms and stems3)
instead of tag syntactic equality while comparing XML
documents. However, the approaches in [2, 3, 22] are
based on heuristic measures which disregard the edit
distance computations (w.r.t. structure) and only consider
the synonymy/stem relations (w.r.t. semantic similarity).

In this study, we aim to combine IR semantic
similarity (taking into account the various semantic
relations encompassed in the taxonomy/ontology
considered in the comparison process) and an edit
distance structural similarity algorithm, in order to define
a semantic/structural similarity measure for comparing
XML documents.

3. Proposal
Our approach consists of an original edit distance
operation cost model in which semantic relatedness of
XML element/attribute labels is introduced in traditional
edit distance computations. In Section 3.1, we present the
edit distance process utilized in our study. Section 3.2
develops our integrated semantic/structure based method.

3.1 Structural similarity

Our investigations of the various structural similarity
methods proposed in the literature led us to adopt
Chawathe’s approach [5], his algorithm’s performance
being recognized and, therefore, further specialized by
Nierman and Jagadish [17]. In addition, Chawathe’s
approach [5] is a direct adaptation of Wagner and Fisher’s
algorithm [25] which optimality was accredited in a broad
variety of computational applications [1, 26]. Note that
integrating semantic similarity assessment in Chawathe’s
algorithm [3] denotes a straightforward integration of
semantic similarity in [17]’s approach, the latter being a
strict generalization of the former. On the other hand, we
adopt [17]’s XML data model (Chawathe [5] considering
generic hierarchical structured data), which will be
explicitly developed in following paragraphs. In fact, we
are in agreement with [8, 17]’s decision to disregard
element/attribute values while focusing on the structural
properties of XML documents adding that, in order to

3 Stems designate the morphological variants of a term: an

acronym and its expansions, a singular term and its plural, …

compare element/attribute values, corresponding types
should be previously known, which requires prior
knowledge of related XML schemas (recall that this study
focuses on comparing XML documents lacking
DTDs/XML Schemas).

3.1.1 Basic definitions

Definition 1 - Ordered Labeled Tree (OLT): It is a
rooted tree in which nodes are ordered and labeled. In the
rest of this paper, the term tree means OLT (cf. Figure 2).

Tree A Tree B Tree C

Fig. 2. OLTs corresponding to sample documents A, B and C

The number next to a node is its preorder rank and
serves as node identifier. Please note that there is no
correspondence between node identifiers when given two
trees to compare. Node correspondence can only be
achieved through node labels, taking into account their
positions in the trees.

Definition 2 – First level Sub-tree: Given an ordered
tree T, with a root node r of degree1 k, the first-level sub-
trees, T1, T2, …, Tk of T are the sub-trees rooted at r1, r2,
…, rk [17].

Chawathe [5] models changes to trees using three
basic tree edit operations:

Definition 3 - Insertion: Given a node x of degree 0 (leaf
node) and a node p in tree T with first level sub-trees p1,
…, pm, Ins(x, i, p, λ(x)) is a node insertion operation
applied to p at position i that yields p’ with first level sub-
trees p1, … , pi, x, pi+1, … , pm+1, x bearing λ(x) as its label.

Definition 4 - Deletion: Given a leaf node x, x being the
ith child of p, Del(x, p) is a node deletion operation
applied to node p that yields p’ with first level sub-trees
p1, … , pi-1, pi+1, … , pm

Definition 5 - Update: Given a node x in tree T, and
given a label l, Upd(x, l) is a node update operation
applied to x resulting in T’ which is identical to T except
that in T’, λ(x) = l. The update operation could be also

1 The degree of a node n underscores the number of sub-trees

encompassed by n.

formulated as follows: Upd(x, y) where y.l denotes the
new label to be assumed by λ(x).

Following [5], we presume that the root of a tree
cannot be deleted or inserted.

Definition 6 - Edit Script: An edit script ES is a
sequence of edit operations. When applied to a tree T, the
resulting tree T’ is obtained by applying edit operations of
ES to T, following their order of appearance in the script.

By associating costs with each edit operation,
Chawathe [5] defines the cost of an edit script to be the
sum of the costs of its component operations. The author
in [5] subsequently states the problem of comparing trees:
Given two rooted, labeled, ordered trees A and B, find a
minimum cost edit script that transforms A to a tree that is
isomorphic to B. Note that two trees are said to be
isomorphic if they are identical except for node identifiers.

3.1.2 Structural similarity algorithm

In [5], Chawathe employed edit graphs in his edit
distance process. However, our study of the edit distance
algorithm literature showed that the edit graph used in [5]
is a direct application of the famous Wagner-Fisher
algorithm [25], updated to take into account tree
structures (the Wagner-Fisher algorithm being originally
designed for sequence/string comparisons). Therefore, we
propose to develop Chawathe’s algorithm [5], using the
Wagner-Fisher algorithm [25], and introducing
Chawathe’s tree structure updates.

Before proceeding, let us report the ld-pair
representation of a tree node introduced in [5]. It is
defined as the pair (l, d) where: l and d are respectively
the node’s label and depth in the tree. As in [5], we use p.l
and p.d to refer to the label and the depth of an ld-pair p
respectively. Subsequently, the ld-pair representation of a
tree is the list, in preorder, of the ld-pairs of its nodes (cf.
Figure 3). In [5]’s process, trees are always treated in
their ld-pair representations. Given a tree in ld-pair
representation A = (a1, a2, …, an), A[i] refers to the ith
node ai of tree A. Consequently, A[i].l and A[i].d denote,
respectively, the label and the depth of the ith node of A.

A = ((Academy, 0), (Department, 1), (Laboratory, 2),
 (Professor, 3), (Student, 3))
B = ((College, 0), (Department, 1), (Laboratory, 2),
 (Lecturer, 3))
C = ((Factory, 0), (Department, 1), (Laboratory, 2),
 (Supervisor, 3))

Fig. 3. Ld-pair representation of XML sample trees A, B and C

The edit distance algorithm, employed in this study, is
developed in Figure 4. The ld-pair representation as well
as the added conditions make up Chawathe’s updates [5]

Factory

Laboratory

Supervisor

Department

College

Laboratory

Lecturer

Department

5 Student Professo

2

3

1 1 Academy 1

2 2 Department

3 3 Laboratory

4 4 4

to the classic edit distance approach [25]. Chawathe [5]
succeeded in transforming trees into modified sequences
(ld-pairs), making them suitable for standard edit
distance computations. He subsequently added specific
conditions so that the edit distance process could take into
account tree structures:

− Condition1 limits update operations to nodes having

identical depths
− Condition2 intuitively implies that, in order to delete

an internal node, all corresponding descendent nodes
must be first deleted

− Condition3 implies that, a node must be inserted
before inserting any of its descendents

Input: Trees A and B (in ld-pair representations)
Output: Edit distance between A and B

Begin
 1

Dist [][] = new [0...|A|][0…|B|]
Dist[0][0] = 0

For (i = 1 ; i ≤ |A| ; i++) { Dist[i][0] = Dist[i-1][0] + CostDel(ai) }
For (j = 1 ; j ≤ |B| ; j++) { Dist[0][j] = Dist[0][j-1] + CostIns(bi) } 5

For (i = 1 ; i ≤ |A| ; i++)
{

For (j = 1 ; j ≤ |B| ; j++)
{

Dist[i][j] = min{ 10
If (Condition1 true) { Dist[i-1][j-1] + CostUpd(ai, bj) }
If (Condition2 true) { Dist[i-1][j] + CostDel(ai) }
If (Condition3 true) { Dist[i][j-1] + CostIns(bj) }

 }
} 15

}

Return Dist[|A|][|B|] // Distance (similarity) between trees A and B

End

The Chawathe conditions:
Condition1 { (A[i].d = B[j].d) }
Condition2 { ((A[i].d ≥ B[j].d) or (j = |B|)) }
Condition3 { ((A[i].d ≤ B[j].d) or (i = |A|)) }

Fig. 4. Structural similarity algorithm

Note that the distance value between two trees A and B
denotes, in a roundabout way, the similarity between them
(the smaller the distance between A and B, the more
similar they are).

1Sim(A, B) =
1 + Dist(A, B)

 (1)

Similarity measures based on edit (or metric) distance

are generally computed as in (1), conforming to the
formal definition of similarity [7]:

− Sim(x, y) Є [0, 1].

− Sim(x, y) = 1 x = y (x and y are identical)1.
− Sim(x, y) = 0 x and y are different and have no

common characteristics.
− Sim(x, x) = 1 similarity is reflexive.
− Similarity and distance are inverse to each other.
− Sim(x, y) = Sim(y, x) similarity is symmetric

(Note that symmetricity is controversially discussed
[7] and is domain and application-oriented2).

− Sim(x, z) ≤ (Sim(x, y) + Sim(y, z)) Triangular
inequality (as with symmetricity, triangular inequality
is not always true3).

On the other hand, a central question in most edit
distance approaches is how to choose operation cost
values. An intuitive and natural way would be to assign
identical costs to insertion and deletion operations (CostIns
= CostDel = 1), as well as to update operations only when
the newly assigned label is different from the node’s
current label (CostUpd(a ,b) = 1 when a.l ≠ b.l, otherwise,
when the labels are the same, CostUpd = 0, underlining that
no changes are to be made to the label of node a). By
applying the preceding intuitive cost model (ICM), the
edit distance between XML sample trees A and B, Dist(A,
B), would be equal to 3. It is the cost of the following edit
script:

− Upd(A[1], B[1]), Upd(A[4], B[4]), Del(A[5], A[3])

The corresponding edit distance computations are
shown in Table 1. The minimum-cost ES contribution to
the edit distance computation process is emphasized in
bold format. Note that an identical edit distance result is
attained when comparing sample documents A and C
(Dist(A, C) = 3).

Tab. 1. Computing edit distance for XML trees A and B4

 0 B[1]
(Coll., 0)

B[2]
(Dept., 1)

B[3]
(Lab., 2)

B[4]
(Lect., 3)

0 0 1 2 3 4
A[1] (Acd., 0) 1 1 2 3 4
A[2] (Dept., 1) 2 2 1 2 3
A[3] (Lab., 2) 3 3 2 1 2
A[4] (Prof., 3) 4 4 3 2 2
A[5] (Std., 3) 5 5 4 3 3

As previously mentioned in our motivation paragraph,
comparing sample documents A, B and C, via strict

1 This property isn’t always verified in the literature [14]. It

depends on the chosen similarity measure. However, x = y
Sim(x, y) = 1 is true regardless of the measure employed.

2 Several authors have proposed asymmetric measures [9, 14].
3 Both symmetricity and triangular inequality will be discussed

in Section 4.
4 In the edit distance computational tables developed throughout

the paper, node labels are abbreviated (i.e. prof instead of
professor) due to paper format constraints.

structural evaluation, yields identical similarity values, the
semantics involved being disregarded:

− Sim(A,B) = Sim(A, C) = 1/(1+3) = 0.25

In order to amend precision and accuracy of XML
similarity, we propose the use of an original cost scheme,
integrating IR semantic relatedness in the structure-based
similarity algorithm.

3.2 Integrated semantic & structure based similarity

Apparently, intuitive cost schemes (like the one used
previously) do not affect the correctness of the structural
similarity algorithm. However, they fail to capture the
semantics of XML documents. In this study, we propose
to complement Chawathe’s edit distance approach [5],
with a cost scheme integrating semantic assessment.

3.2.1 Semantic similarity measure

Our investigation of the IR semantic similarity literature
led us to consider Lin’s similarity measure [13], in our
XML comparison process. Lin’s measure was proven
efficient in evaluating semantic similarity. Its
performance and theoretical basis are recognized and
generalized by [15] to deal with hierarchical and non-
hierarchical structures. Please bear in mind that our XML
similarity process is not sensitive, in its definition, to the
semantic similarity measure used. However, choosing a
performing measure would yield better similarity
judgment.

Following Lin [13], the semantic similarity between
two words (expressions) can be computed as:

0
Sem 1 2 Sem 1 2

1 2

2 log p(c)Sim (w , w) = Sim (c , c) =
log p(c) + log p(c)

 (2)

− c1 and c2 are concepts, in a knowledge base of

hierarchical structure (taxonomy), subsuming words
w1 and w2 respectively.

− c0 is the most specific common ancestor of concepts c1
and c2.

− p(c) denotes the occurrence probability of words
corresponding to concept c. It can be computed as the
relative frequency: p(c) = freq(c) / N.

• : sum of the number of

occurrences, of words subsumed by c, in a corpus.
()

() count(w)
w words c

freq c
∈

= ∑

• N: total number of words in the corpus.

In information theory, the information content of a
class or concept c is measured by the negative log
likelihood -log p(c) [20, 15]. While comparing two
concepts c1 and c2, Lin’s measure takes into account each
concept’s information content (-log p(c1) + -log p(c2)), as

well as the information content of their most specific
common ancestor (-log p(c0)), in a way to increase with
commonality (information content of c0) and decrease
with difference (information content of c1 and c2) [13].
Lin’s measure produces values limited to the [0, 1]
interval, and conforms to the formal definition of
similarity [7] except for triangular inequality (which will
be discussed in Section 4).

3.2.2 Label semantic similarity cost

To take into account semantic similarity in XML
comparisons, while utilizing the edit distance algorithm,
we propose to vary operation costs according to the
semantics of concerned nodes. While comparing XML
sample documents A-B and A-C for example, the
similarity evaluation process should realize that elements
Academy-College have higher semantic similarity than
Academy-Factory. Likewise, Professor-Lecturer have
higher semantic similarity than Professor-Supervisor.
Therefore, overall similarity Sim(A, B) should be of
greater value vis-à-vis Sim(A, C). Such semantic
relatedness would be taken into consideration by varying
operation costs as follows:

CostSem_Upd(x, y) = 1 – SimSem(x.l, y.l) (3)

The more the initial and the replacing node labels (x.l

and y.l respectively) are semantically similar, the lesser
the update operation cost, which transitively yields a
lesser minimum cost ES (higher similarity value). When
labels are identical, semantic similarity is of maximum
value, SimSem(x.l, y.l) = 1, yielding CostUpd(x, y) = 0 (no
changes to be made). When labels are completely
different, semantic similarity is of minimum value,
SimSem(x.l, y.l) = 0, which brings us to CostUpd(x, y) = 1.
Following the same logic, we consider varying insertion
and deletion costs.

CostSem_Ins(x, i, p, λ(x)) = 1 – SimSem(λ(x), p.l) (4)

CostSem_Del(x, p) = 1 – SimSem(x.l, p.l) (5)

While inserting or deleting a node from an XML

document, we evaluate semantic relatedness between the
inserted/deleted node’s label and the label of its ancestor
in the document tree. The more an inserted/deleted node
label is semantically similar to its ancestor node label, the
lesser the insertion/deletion operation cost, which
transitively yields a lesser cost ES (higher similarity
value). When labels are identical or completely different,
insertion/deletion costs would be equal to 0 or 1,

respectively1 (as with the update operation). Such
semantic assessments would reflect semantic relatedness
between inserted/deleted nodes and their context, in the
XML document, affecting overall similarity accordingly.
Furthermore, our investigations of semantic similarity, in
XML documents, led us to consider varying operation
costs with respect to node depth.

3.2.3 Node depth cost

Node depth consideration in XML document comparison
is not original in the literature. Zhang et al. [29] have
already addressed the issue. Following [29], editing the
root node of an XML tree would yield significantly
greater change than editing a leaf node. Notionally, as one
descends in the XML tree hierarchy, information becomes
increasingly specific, consisting of finer and finer details,
its affect on the whole document tree decreasing
accordingly. For example, consider the XML sample tree
A in Figure 2. Editing node A[1] (A[1].l = Academy) by
changing its label to Hospital, would semantically affect
tree A a lot more than deleting node A[4] (A[4].l =
Professor), changing A’s whole semantic context.
Therefore, it would be relevant to vary operation costs
following node depths, assuming that operations near the
root node have higher impact than operations further
down the hierarchy. The following formula, adapted from
[29], could be used for that matter:

Depth_Op
1Cost (x) =

(1 + x.d)
 (6)

− Op is an insert, delete or update operation
− x.d is the depth of the node considered for insertion,

deletion or updating

The preceding formula assigns unit cost (=1,
maximum cost) when the root node is considered and
yields decreasing costs when moving downward in the
hierarchy.

3.2.4 Semantic cost model

In order to take into account semantic meaning while
comparing XML documents, we propose to complement
Chawathe’s edit distance algorithm [5], with the
following cost model:

Op Sem_Op Depth_OpCost (x, y) = Cost (x, y) Cost (x)× (7)

1 In this study, we assume that an XML node and its ancestor

cannot have identical labels. However, such cases this will be
addressed in future work.

− Op denotes an insertion, deletion or update operation

The results attained by applying the semantic cost
model to compare sample XML documents A, B and C are
shown in tables 2 and 3. Note that semantic similarity
values between node labels were estimated using Lin’s
measure [13] (applied on an independently constructed
corpus and taxonomy), and are reported in Table 4.

Tab. 2. Computing edit distance, via our SCM, for XML
sample trees A and B

 0 B[1]
(Coll., 0)

B[2]
(Dept., 1)

B[3]
(Lab., 2)

B[4]
(Lect., 3)

0 0 1 1.5 1.8333 2.0833
A[1] (Acd., 0) 1 0.1148 0.5365 0.8205 0.9824
A[2] (Dept, 1) 1.4217 0.5365 0.1148 0.1425 0.3413
A[3] (Lab., 2) 1.4494 0.5642 0.1425 0.1148 0.3172
A[4] (Prof., 3) 1.651 1.7658 0.3441 0.3164 0.163
A[5] (Std., 3) 1.8466 1.9614 0.5397 0.512 0.3586

Tab. 3. Computing edit distance, via our SCM, for XML trees

A and C
 0 B[1]

(Fact., 0)
B[2]

(Dept., 1)
B[3]

(Lab., 2)
B[4]

(Sup., 3)
0 0 1 1.5 1.8333 2.0833

A[1] (Acd., 0) 1 0.8581 1.2798 1.5638 1.7813
A[2] (Dept., 1) 1.4217 1.2798 0.8581 0.8858 1.0894
A[3] (Lab., 2) 1.4494 1.3075 0.8858 0.8581 1.0647
A[4] (Prof., 3) 1.651 1.5091 1.0874 1.0597 1.0673
A[5] (Std., 3) 1.8466 1.7047 1.283 1.2553 1.2628

By applying our SCM, the edit distances computed

between pairs A-B and A-C are no longer identical (in
comparison with the intuitive cost scheme):

− SCM
SCM

1Sim (A, B) = = 0.7361
(1 + Dist (A,B))

 having

DistSCM(A, B) = 0.3586

− SCM
SCM

1Sim (A, C) = = 0.4418
(1 + Dist (A,C))

 having

DistSCM(A, C) = 1.2628

Considering semantic relatedness, in the comparison
process, reflects the fact that sample documents A and B
are more similar than A and C (SimSCM(A, B) >
SimSCM(A,C)), in spite of sharing identical structural
similarities.

Our SCM, used with a structure-based (edit distance)

similarity algorithm, seems to capture semantic meaning
effectively, while comparing XML documents.

4. Discussion
Similarity is a fundamental concept in many fields,

e.g. information retrieval, and is commonly used in
multidimensional data processing and viewed as a relation
satisfying certain properties [15]. The formal definition of
similarity, given in [7] (cf. Section 3.1.2), identifies such

properties which can be viewed as a concrete explanation
of the generally abstract concept of similarity.

Tab. 4. Word semantic similarities, computed following Lin’s
measure [11]

Word pairs SimLin Word pairs SimLin
Academy College 0.8851 Department Professor 0.2083
Academy Department 0.1566 Department Student 0.2367
Academy Factory 0.1419 Department Supervisor 0.1857
Academy Laboratory 0.1481 Factory Laboratory 0.1963
Academy Lecturer 0.3521 Factory Lecturer 0.1803
Academy Professor 0.3563 Factory Professor 0.1831
Academy Student 0.3876 Factory Student 0.2047
Academy Supervisor 0.1297 Factory Supervisor 0.4672
College Department 0.1566 Laboratory Lecturer 0.1903
College Factory 0.1419 Laboratory Professor 0.1935
College Laboratory 0.1481 Laboratory Student 0.2177
College Lecturer 0.3521 Laboratory Supervisor 0.1738
College Professor 0.3563 Lecturer Professor 0.807
College Student 0.3876 Lecturer Student 0.5028
College Supervisor 0.1297 Lecturer Supervisor 0.1611

Department Factory 0.2117 Professor Student 0.5114
Department Laboratory 0.9169 Professor Supervisor 0.1633
Department Lecturer 0.2047 Student Supervisor 0.1803

Therefore, a newly introduced similarity method, such
as the one developed in this paper, should be normally
evaluated w.r.t to the formal definition of similarity [7] in
order to assess its consistency with the similarity concept.
Our combined semantic and structure based XML
similarity approach follows the formal definition of
similarity [7] except for symmetricity and triangular
inequality which are debated in IR research [13, 14, 15].
Those two properties will be detailed below, the
remaining similarity properties being obvious (cf. Section
3.1.2).

4.1 Symmetricity

Despite combining symmetric edit distance [5] and
semantic similarity [13] measures, our approach is
asymmetric, that is SimSCM(A,B) ≠ SimSCM(B,A). Consider
for example XML trees D and F in Figure 5.

Tree D Tree F

Fig. 5. XML ordered labeled trees

Edit distance computations, using Section 3.1.2’s

intuitive cost model (Chawathe’s classical approach [5]),
yield the following values:

− SimICM(D, F) = SimICM(D, F) = 0.25 having DistICM(D,

F) = DistICM(F, D) = 3
− Edit script(D, F) : Upd(D[1], F[1]), Del(D[2], D[1]),

Del(D[3], D[1])
− Edit script(F, D) : Upd(F[1], D[1]), Ins(D[2], 1, F[1],

Professor), Ins(D[3], 2, F[1], Student)

On the other hand, when using our SCM, similarity
values become as follows:

− SimSCM(D, F) = 0.4022 > Sim SCM(F, D) = 0.3753

That is due to the varying semantic costs of

insert/delete operations. In traditional cost models (e.g.
the ICM considered in this paper), insert/delete operations
are treated equally (costIns = costDel). However,
insert/delete operation costs, in our SCM, depend on the
semantic relatedness between the node label being
inserted/deleted and the label of its ancestor in the
document tree. Therefore:

− CostSem_Del(D[2], D[1]) = 1 – SimSem(Professor,

Academy) = 0.6437
− CostSem_Ins(D[2], 1, F[1], Professor) = 1 –

SimSem(Professor, Factory) = 0.8169

Likewise for remaining insert/delete operations, which
yield different overall ES costs (hence similarity values)
for D/F and F/D transformations respectively. In other
words, deleting nodes D[2] (Professor) and D[3]
(Student) form ancestor D[1] (Academy)’s sub-tree does
not affect, semantically, tree D as much as inserting those
nodes in tree F, under F[1] (Factory). That is because
labels Professor and Student are relatively more similar to
label Academy than to Factory. Therefore, D[2] and
D[3]’s deletions do not induce a major change in tree D’s
meaning. However, their insertions under root node F[1]
(Factory) introduce relatively new semantic meaning to
tree F, since their labels are relatively dissimilar to
Factory (cf. Table 4).

Nevertheless, as mentioned earlier in Section 3.1.2, we
keep in mind that symmetricity is widely discussed [7] and
might prove to be useful, depending on the nature of the
XML-based data being compared, as well as the scenario
at hand. Therefore, in cases where asymmetricity is
inadequate, a symmetric score, between XML trees D and
F for example, can be defined as the arithmetic mean of
the two asymmetric scores (as with the average similarity
degree measure utilized in our experimental evaluation,
cf. Section 5.2).

(Sim(D, F) + Sim(F, D)) Ave(D, F) =
2

 (8)

4.2 Triangular inequality

While triangular inequality is an axiom for metric
distance functions, and is verified for our edit distance
approach (SimSem(A, C) ≤ SimSem(A, B) + SimSem(B, C)
considering sample XML documents A, B and C), and
despite appearing to be intuitive, it is not always true.

Factory

Academy

Professor Student

1

1

2 3

Lin’s similarity measure, as well as most semantic
similarity measures proposed in the literature [13, 15, 20],
do not satisfy triangular inequality:

Sem Sem SemSim (x, z) (Sim (x, y) + Sim (y, z)) ≤ (9)

Triangular inequality does not seem to be proper for

semantic similarity measures. An example by Tversky
[24], reported by Maguitman [15] illustrates the
impropriety of triangular inequality with an example
about the similarity between countries: “Jamaica is
similar to Cuba (because of geographical proximity);
Cuba is similar to Russia (because of their political
affinity); but Jamaica and Russia are not similar at all”.
Since we take into account semantic similarity (between
XML element/attribute tags) via Lin’s measure [13], in
our semantic cost model SCM, our integrated
semantic/structural approach does not transitively satisfy
triangular inequality (in agreement with existing semantic
similarity approaches [13, 15, 20]).

5. Experimental evaluation

5.1 Prototype

To validate our approach, we have implemented (using
C#) a prototype, entitled “XML SS Similarity” (XS3),
encompassing a validation component, verifying the
integrity of XML documents, and an edit distance
component undertaking XML similarity computations
following the algorithm adopted in our study. In addition,
a synthetic XML data generator was also implemented in
order to produce sets of XML documents based on given
DTDs. The synthetic XML generator accepts as input: a
DTD document and a MaxRepeats1 value designating the
maximum number of times a node will appear as child of
its parent (when * or + options are encountered in the
DTD). Furthermore, a taxonomic analyzer was also
introduced so as to compute semantic similarity values
between words (expressions) in a given taxonomy. Our
taxonomic analyzer accepts as input a hierarchical
taxonomy and corresponding corpus-based word
occurrences. Consequently, concept frequencies are
computed and, thereafter, used to compute semantic
similarity between pairs of nodes in the knowledge base.

5.2 Experimental results

Various experiments were conducted in order to test the
performance of our integrated similarity model. Real and
generated (synthetic) XML documents as well as a

1 A greater MaxRepeats value underlines a greater variability

when + and * are encountered.

number of hierarchical taxonomies where considered. In
the following, we present the results attained using
synthetic XML documents (cf. Figure 6) and a WordNet2
based hierarchical taxonomy comprising of 677 nodes.

<!DOCTYPE DTD1 [
<!ELEMENT Academy (Administrative unit+)>
 <!ELEMENT Administrative unit (Branch?)>
 <!ELEMENT Branch (Educator?, Student+)>
 <!ELEMENT Educator (#PCDATA)>
 <!ELEMENT Student (#PCDATA)>]>

<!DOCTYPE DTD2 [
<!ELEMENT School (Administrative unit+)>
 <!ELEMENT Administrative unit (Section?)>
 <!ELEMENT Section (Educator?, Scholar*)>
 <!ELEMENT Educator (#PCDATA)>
 <!ELEMENT Scholar (#PCDATA)>]>

<!DOCTYPE DTD3 [
<!ELEMENT Government (Administrative unit+)>
 <!ELEMENT Administrative unit (Section?)>
 <!ELEMENT Section (Professional?, Worker+)>
 <!ELEMENT Professional (#PCDATA)>
 <!ELEMENT Worker (#PCDATA)>]>

<!DOCTYPE DTD4 [
<!ELEMENT Student (Academic degree*, Educational institution+,
Studies, Experience*, Perspective?)>
 <!ELEMENT Academic degree (#PCDATA)>
 <!ELEMENT Educational institution (#PCDATA)>
 <!ELEMENT Studies (#PCDATA)>
 <!ELEMENT Experience (#PCDATA)>
 <!ELEMENT Perspective (#PCDATA)>]>

<!DOCTYPE DTD5 [
<!ELEMENT Epistemology (Science+)>
 <!ELEMENT Science (Scientists)>
 <!ELEMENT Scientists (Publication?)>
 <!ELEMENT Publication (Document*, Book*, Encyclopedia?)>
 <!ELEMENT Document (#PCDATA)>
 <!ELEMENT Book (#PCDATA)>
 <!ELEMENT Encyclopedia (#PCDATA)>]>

Fig. 6. DTDs inducing sets of synthesized XML documents

We evaluate our model’s efficiency by assessing
similarity results to the a priori know DTDs (inducing
document sets). Therefore, average inter-set and intra-set3
similarities are depicted in a matrix where element (i, j)
underscores the average similarity value, Sim(Si, Sj),
corresponding to every pair of distinct documents such
that the first belongs to the set Si (DTDi) and the second to
the set Sj (DTDj).

Note that the asymmetricity of our approach is

reflected by the intra-set similarity values: Sim(Si, Sj) ≠
Sim(Sj, Si) using our SCM, while symmetricity is
preserved using the ICM (Chawathe’s classical approach
[5]) (cf. tables 5 and 6).

Tab. 5. Inter/intra set similarities via ICM

2 WordNet is an online lexical reference system (taxonomy),

developed by a group of researchers at Princeton University
NJ USA, where nouns, verbs, adjectives and adverbs are
organized into synonym sets, each representing a lexical
concept [16].

3 Intra-set similarities are computed between documents of the
same set Si, reported as (i, i) values in the similarity matrix.
Remaining (i, j) values correspond to intra-set similarities,
computed between documents belonging to sets Si and Sj

 S1 S2 S3 S4 S5
S1 0.5886 0.0951 0.0982 0.0774 0.0237
S2 0.0951 0.1515 0.0945 0.0735 0.0234
S3 0.0982 0.0945 0.4110 0.0732 0.0234
S4 0.0774 0.0735 0.0732 0.4164 0.0252
S5 0.0237 0.0234 0.0234 0.0252 0.0981

Tab. 6. Inter/intra set similarities via SCM

 S1 S2 S3 S4 S5
S1 0.8877 0.3407 0.3240 0.2331 0.1104
S2 0.3400 0.4392 0.3303 0.2238 0.1092
S3 0.3410 0.3423 0.6400 0.2193 0.1035
S4 0.1953 0.1905 0.2337 0.7701 0.0987
S5 0.1674 0.1647 0.2046 0.1644 0.4704

First of all, results show that our SCM produces higher

similarity values, in comparison with the ICM,
underlining similarities (of semantic nature) that were
undetected using the latter. On the other hand, a straight
distinction between documents belonging to a set and
others outside that set is attained with our SCM, as with
the ICM (comparing highlighted values, in tables 5 and 6,
remaining values).

Furthermore, our SCM captures semantic affinities

between documents corresponding to different sets,
inducing changes in the relative ranking between values
belonging to the ICM matrix and those corresponding to
the SCM matrixes. In order to reflect semantic affinities
between XML documents of different sets, we define the
average similarity degree between two sets of documents:
Ave(S1, S2) as the arithmetic mean of the average intra-set
similarity values Sim(S1, S2) and Sim(S2, S1)
corresponding to those sets, as given in (8) (thus attaining
a symmetric measure for comparing XML document
sets). Consequently, we identified a higher average
similarity degree between sets S1 and S2 (AveSCM(S1, S2) =
0.3403, DTDs 1 and 2 revealing semantic similarities),
using our SCM, in comparison with S1 and S3 (AveSCM(S1,
S3) = 0.3325), the average similarity degree between S1/S2
(AveICM(S1, S2) = 0.0951) being lesser than that of S1/S3
(AveICM(S1, S3) = 0.0982) using the ICM (cf. Table 7,
Figure 7).

Tab. 7. Average similarity degrees between S1/S2 & S1/S3

 ICM SCM
Ave(S1, S2) 0.0951 0.3403
Ave(S1, S3) 0.0982 0.3325

0.093

0.094

0.095

0.096

0.097

0.098

0.099

ICM

0.328

0.330

0.333

0.335

0.338

0.341

0.343

SCM

S1/S2

S1/S3

Fig. 7. Average similarity degrees between sets S1/S2 and S1/S3
– graphical representation.

5.3 Timing analysis

The combined structural/semantic XML similarity results,
reached using our SCM, aren’t attained without affecting
overall time complexity.

First of all, recall that Chawathe’s edit distance

process [3], which we developed in this paper, is linear in
the number of nodes of each tree, and polynomial
(quadratic) in the size of the two trees being compared:
O(|A||B|) (which can be simplified to O(N2), N being the
maximum number of nodes in trees A and B). This linear
dependency on the size of each tree is experimentally
verified, timing results being presented in figures 8 and 9.
The timing experiments were carried out on a Pentium 4
PC (2.8 GHz CPU, 798 MHz bus, 512 MB RAM).

One can see that the time to compute similarity grows

in an almost perfect linear fashion, when using the classic
ICM (cf. Figure 8). However, when introducing our
SCM, it incrementally shifts towards a polynomial
(quadratic) function, following the growing number of
taxonomic nodes involved (cf. Figure 9). Naturally,
Figure 9 reflects, not only the time complexity of the edit
distance process, but also that of the taxonomic analysis
process (SCM).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100

Ti
m

e
(in

 s
ec

on
ds

)

Number of nodes (in each tree)

Fig. 8. Timing results while using the ICM

0

10

20

30

40

50

60

70

20 40 60 80 100

Ti
m

e
(in

 m
in

ut
es

) SCM100

SCM200

SCM300

SCM400

SCM500

SCM600

SCM677

Fig. 9. Timing results after introducing our SCM

To our knowledge, time complexity for Lin’s measure
[13] was not conducted previously. Therefore, we
estimated its complexity via our implementation
components: Depth(T)2 where T is the taxonomy
considered and Depth(T) is the maximum taxonomic
depth. Consequently, in order to reduce our model’s
overall complexity, we computed semantic similarity for
each pair of nodes in the taxonomy considered (which
took more than 7 CPU hours), stored semantic similarity
results in a dedicated indexed table (Oracle 9i DB)1, and
accessed that table to acquire semantic values when using
our SCM (instead of traversing the taxonomy to compute
semantic similarity each time it is needed). An average of
0.25 seconds per pair-wise semantic similarity assessment
was saved, when exploiting the 677 words WordNet-
based taxonomy, owing to that procedure (cf. Figure 9).

6. Conclusion and futur work
In this paper, we proposed an integrated semantic and
structure based XML similarity approach, taking into
account the semantic meaning of XML element/attribute
labels in XML document comparison. To our knowledge,
this is the first attempt to combine edit distance structural
similarity computations with IR semantic similarity
assessment, in an XML (structured data) context.
Experimental results confirmed the positive impact of
semantic meaning on XML similarity values, and
reflected its heavy impact regarding complexity.

Future directions include exploiting semantic
similarity to compare, not only the structure of XML
documents (element/attribute labels), but also their
information content (element/attribute values). In such a
framework, XML Schemas seem unsurpassable,
underlining element/attribute data types, required to
compare corresponding element/attribute values. Our
future goals will also incorporate studying applied
multimedia similarity computations (MPEG7, SVG
documents, …), taking into consideration structural,
semantic, as well as multimedia-specific criterion (if

1 Oracle uses the B-Tree indexing technique

necessary) while comparing XML-based multimedia
documents. The semantic complexity problem will also be
tackled in upcoming studies.

Number of nodes in
each taxonomy

References

1. Aho A., Hirschberg D., and Ullman J., Bounds on the
Complexity of the Longest Common Subsequence
Problem. Journal of the Association for Computing
Machinery, 23(1):1-12, January 1976.

Number of nodes (in each tree)

2. Bertino E., Guerrini G., Mesiti M., Rivara I. and Tavella C.,
Measuring the Structural Similarity among XML
Documents and DTDs, Technical Report, University of
Genova, 2002, http://www.disi.unige.it/person/MesitiM.

3. Bertino E., Guerrini G., Mesiti M., A Matching Algorithm
for Measuring the Structural Similarity between an XML
Documents and a DTD and its Applications, Elsevier
Computer Science, 29 (23-46), 2004.

4. Chawathe S., Rajaraman A., Garcia-Molina H., and Widom
J., Change Detection in Hierarchically Structured
Information. In Proceedings of the ACM Int. Conf. on
Management of Data (SIGMOD), Montreal, Canada, 1996.

5. Chawathe S., Comparing Hierarchical Data in External
Memory. In Proceedings of the Twenty-fth International
Conference on Very Large Data Bases, p. 90-101, 1999.

6. Cobéna G., Abiteboul S. and Marian A., Detecting Changes
in XML Documents. In Proc. of the IEEE Int. Conf. on
Data Engineering, p. 41-52, 2002.

7. EHRIG M. and SURE Y., Ontology Mapping - an
Integrated Approach. In Proceedings of the First European
Semantic Web Symposium, volume 3053 of LNCS, pages
76-91, Heraklion, Greece, 2004

8. Flesca S., Manco G., Masciari E., Pontieri L., and Pugliese
A., Detecting Structural Similarities Between XML
Documents. In Proceedings of WebDB 2002, 2002.

9. Ganesan P., Garcia-Molina H. And Windom J., Exploiting
Hierarchical Domain Structure To Compute Similarity.
ACM Transactions on Information Systems (TOIS), Volume
21, Issue 1, 64 – 93, 2003

10. Jiang J. and Conrath D., Semantic Similarity based on
Corpus Statistics and Lexical Taxonomy. In Proceedings
of the International Conference on Research in
Computational Linguistics, 1997.

11. Lee J.H., Kim M.H. and Lee Y.J., Information Retrieval
Based on Conceptual Distance in IS-A Hierarchies. Journal
of Documentation, 49(2):188-207, 1993.

12. Levenshtein V., Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Sov. Phys. Dokl.,
6:707-710, 1966.

13. Lin D., An Information-Theoretic Definition of Similarity.
In Proceedings of the 15th International Conference on
Machine Learning, 296-304, 1998.

14. Ma Y. and Chbeir R., Content and Structure Based
Approach for XML Similarity, CIT, 136-140, 2005

15. Maguitman A. G., Menczer F., Roinestad H. and
Vespignani A., Algorithmic Detection of Semantic
Similarity. In Proceedings of the 14th International WWW
Conference, 107-116, Japan, 2005.

16. Miller G., WordNet: An On-Line Lexical Database. Int.
Journal of Lexicography, 1990.

http://www.disi.unige.it/person/MesitiM

17. Nierman A. and Jagadish H. V., Evaluating structural
similarity in XML documents. In Proceedings of the 5th
International Workshop on the Web and Databases, 2002.

18. Rada R., Mili H., Bicknell E. and Blettner M.,
Development and Application of a Metric on Semantic
Nets. IEEE Transactions on Systems, Man, and
Cybernetics, 19:17-30, 1989.

19. Ray E.T., Introduction à XML. Edition O’Reilly, Paris, 327
p., 2001

20. Resnik P., Using Information Content to Evaluate Semantic
Similarity in a Taxonomy. In Proc. of the 14th IJCA-95,
Vol. 1, 448-453, Montreal, Canada, 1995.

21. Richardson R. and Smeaton A.F., Using WordNet in a
Knowledge-based approach to information retrieval. In
Proceedings of the 17th Colloquium on Information
Retrieval, 1995.

22. Sanz I., Mesiti M., Guerrini G. and Berlanga Lavori R.,
Approximate Subtree Identification in Heterogeneous XML
Documents Collections. XSym, 192-206, 2005.

23. Shasha D. and Zhang K., Approximate Tree Pattern
Matching. In Pattern Matching in Strings, Trees and
Arrays, chapter 14, Oxford University Press, 1995.

24. Tversky A., Features of Similarity. Psychological Review,
84(4):327-352, 1977

25. Wagner J. and Fisher M., The String-to-String correction
problem. Journal of the Association of Computing
Machinery, 21(1):168-173, 1974.

26. Wong C. and Chandra A., Bounds for the String Editing
Problem. Journal of the Association for Computing
Machinery, 23(1):13-16, January 1976.

27. WWW Consortium, The Document Object Model,
http://www.w3.org/DOM.

28. Zhang K. and Shasha D., Simple Fast Algorithms for the
Editing Distance Between Trees and Related Problems.
SIAM Journal of Computing, 18(6):1245-1262, 1989.

29. Zhang Z., Li R., Cao S. and Zhu Y., Similarity Metric in
XML documents. Knowledge Management and Experience
Management Workshop, 2003.

http://www.w3.org/DOM

