
Supporting Approximate Similarity Queries with Quality
Guarantees in P2P Systems

Qi Zhong†, Iosif Lazaridis‡, Mayur Deshpande‡, Chen Li‡, Sharad Mehrotra‡, Hal Stern‡

† Microsoft Corporation, ‡ University of California, Irvine
qizhong@microsoft.com, {iosif, mayur, chenli, sharad}@ics.uci.edu, sternh@uci.edu

Abstract

In this paper we study how to support similarity
queries in peer-to-peer (P2P) systems. Such queries
ask for the most relevant objects in a P2P network,
where the relevance is based on a predefined similar-
ity function; the user is interested in obtaining ob-
jects with the highest relevance. Retrieving all objects
and computing the exact answer over a large-scale net-
work is impractical. We propose a novel approximate
answering framework which computes an answer by
visiting only a subset of network peers. Users are pre-
sented with progressively refined answers consisting of
the best objects seen so far, together with continu-
ously improving quality guarantees providing feedback
about the progress of the search. We develop statisti-
cal techniques to determine quality guarantees in this
framework. We propose mechanisms to incorporate
quality estimators into the search process. Our work
makes it possible to implement similarity search as a
new method of accessing data from a P2P network,
and shows how this can be achieved efficiently.

1 Introduction

Peer-to-peer (P2P) systems have emerged as a pow-
erful and popular alternative to traditional central-
ized system architectures. These systems provide
many advantages: scalability, resilience to failures,
self-organization, and the ability to harness remote re-
sources. For instance, in a file-sharing P2P system,
a user provides keywords to search for relevant files
in the network. As an example, if a user provides a
query with keywords {Beatles, Comes, Sun}, then
the search process will return files in the network that
are relevant to these keywords, presumably files of the
song Here Comes the Sun by the Beatles.

We envisage a more powerful search model for P2P
systems where queries are no longer simply sets of
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keywords, but can consist of similarity predicates de-
fined over attributes of objects stored in peers. Con-
sider, for instance, a network of peers storing digital
content, such as images, photographs, music, or elec-
troencephalograhic (EEG) databases in the case of a
network of hospitals. Similarity retrieval over P2P
networks in the new model will allow users to search
not just on keywords, but also on matches based on
features extracted from media, such as color, texture,
time series properties, etc. Users can submit queries
such as “Find images similar to a given image” and
“find songs similar to Here Comes the Sun.” Such
a search paradigm could also enable P2P-based shop-
ping/trading applications, in which sellers of used cars,
homes, etc. can be organized into a network of peers.
Buyers can issue queries by specifying an approximate
price, an item description, and/or other conditions to
ask for the best matches, e.g., “find used cars with a
price around $6000, color close to green, and year of
manufacture around 1999.” Such a generalized search
model can significantly enhance current usage of P2P
systems, and provide opportunities to extend benefits
of P2P computing to new application domains.

A naive approach to answering a similarity query in
a P2P system is to propagate the query to the entire
network, collect the best answers from each peer, and
merge the results at the querying node. This exhaus-
tive search approach is, however, prohibitively expen-
sive in a large-scale P2P network with a large amount
data. For example, the Morpheus network had 470,000
users sharing a total of 0.36 petabytes of data as of Oc-
tober 2001 [25]. Ranking all the resources or accessing
all the peers for a similarity query is virtually impos-
sible. On the other hand, if we limit the search to a
subset of peers in the network, we cannot guarantee
that the best objects found so far are really the best
ones in the entire network, since there could still be
better objects in peers that have not been examined.

In this paper, we propose a novel framework to
support approximate answering of similarity queries
in P2P networks. When a query is posed, the search
over the network commences, and the best objects seen
so far are continuously presented to the user. These



are accompanied with quality estimates which improve
progressively, as more peers are searched. The user
can decide to terminate the search at any time, if she
is finds some objects of interest, and is satisfied with
the quality of the current answers.

The rationale behind this framework is the follow-
ing. First, computing the exact best answers to a simi-
larity query requires accessing all peers in the network.
Even if one peer is not accessed in the search, there
could be objects in it that are more relevant than all
the seen ones. Such an exhaustive search is, unfortu-
nately, impractical for large-scale P2P networks. Sec-
ond, given the inherent fuzziness of similarity search,
users submitting similarity queries are often satisfied
with “good enough” answers based on a subset of ob-
jects in the network. As an analogy, when a customer
shops for used cars, after seeing a few vehicles at sev-
eral car dealers, even though there could be many “bet-
ter” cars at other dealers not seen by the shopper, she
can still stop shopping and choose the best one from
the set of cars she has seen, provided that she believes
they are not “too far” from the really best ones. Our
techniques make it possible for users to form such a
belief in the process of answering a similarity query in
P2P network. Third, after a query is submitted, it is
important to inform the user about the progress of the
search in terms of the best objects seen so far and their
estimated quality. This will allow her to monitor the
search process and choose when to stop it, as she can
choose among the currently best objects at any time,
and has a clear and continuous confirmation that the
system is actively trying to improve the answer.

The realization of this framework poses several chal-
lenges: How is the quality of objects quantified? What
guarantees can be given about the quality of objects
drawn randomly from all the objects in the system?
What is the effect of the fact that peers contain “clus-
tered” sets of objects similar to each other, rather than
a random sample of all the objects in the network? Fi-
nally, how can an efficient search be implemented on
top of a P2P system to produce an approximate an-
swer of good quality? In our paper, we address these
challenges, making the following specific contributions:

1. We propose a new paradigm to support similarity
queries in P2P networks (Section 3). After the
query is submitted, the best objects seen so far
are presented, along and quality guarantees which
improve progressively as more peers are searched.

2. We develop techniques to estimate the quality of
objects in both the case of having a random sam-
ple of objects and the case where objects are re-
lated within peers (Section 4). Our techniques are
applicable in various P2P networks.

3. We show how P2P search can incorporate the pro-
posed quality estimation methods (Section 5).

4. We demonstrate empirically that regardless of the
network size, a small number of peers suffices to
provide the user with answers of good quality.

2 Related Work

Similarity search has been extensively studied in the
literature of information retrieval [2], data manage-
ment [5], and multimedia systems [7, 21]. Many
similarity search systems are based on a centralized
computing model [7, 21, 22]. Recent studies on sup-
porting similarity queries in distributed environments
are [13, 20]. Papadopoulos and Manolopoulos [20]
study how to answer nearest neighbor queries on mul-
tidimensional databases in distributed environments.
They propose query evaluation strategies that access
all the peers. King et al. [13] propose a system called
DISCOVIR to support content-based visual informa-
tion retrieval in P2P networks. The authors propose
a “firework” query model to limit similarity search
within a subset of peers. Their algorithms do not pro-
vide theoretical guarantees on the quality of an answer.

There are studies on how to provide progres-
sively improving results in the process of answering
a query [8, 17]. For instance, [8] studied how to an-
swer aggregation queries progressively, using random
sampling to provide quality guarantees. Our work dif-
fers in terms of the type of query examined (similar-
ity queries), and setting (P2P systems vs. traditional
databases). [4, 18] study progress indicators for time-
consuming queries, so that users can receive feedback
about the execution progress and the time remaining
to completion. In a P2P system, time to completion is
less meaningful, as the query usually finishes when the
user interrupts it; our work keeps the user informed on
the query’s progress by providing a continuously im-
proving guarantee about the gradually refined answer.

Manku et al. [19] have looked at the problem of com-
puting quantiles for random sampling techniques, uti-
lizing Hoeffding bounds for this purpose; they are thus
able to compute bounds without a priori knowledge of
the size of the dataset. Our work differs from theirs
in that (i) we show how estimation can be achieved if
data is partitioned in several sets of objects distributed
among peers, (ii) we develop techniques for searching
in the P2P network, since objects are not assumed
to all reside in a single place, and (iii) we show how
to progressively improve bounds by exploring the net-
work and sampling more objects.

Similarity search, exclusively for P2P systems has
also been studied, for example in [3, 12]. However,
in [3], the similarity query returns all results in the
system matching a similarity criteria, unlike our work
where the results are progressively refined towards the
top-K. In [12], the work is more focussed towards
efficient support of concurrent similarity queries. Our
work is orthogonal and complementary to it.



3 Formal Setting

We now present our generic framework for supporting
online similarity queries with quality guarantees.

3.1 Similarity Queries

Consider a P2P network, in which each peer contains
a set of objects. An object could be a relational tuple,
an image, an audio file, or any other type of sharable
content. Let B be the bag of all objects in the network.

A similarity query in the P2P network is a triplet
(f, q, k), where k is an integer, q is a query point and f
is a similarity ranking function (related to this query)
that takes an object o and returns a score f(q, o) as
its relevance to the query point q. The answer to the
query are the k best distinct objects in the bag B ac-
cording to the function f . That is, its answer is a
set of distinct objects A ⊆ B, such that |A| = k and
@o ∈ B, o /∈ A : f(q, o) > minp∈A f(q, p). We as-
sume that each peer can evaluate the f function over
its local objects. Notice that computing the answer
to the query requires accessing all the peers in the
network, since unvisited peers can always have better
objects. Since it is impractical to visit all the peers,
it becomes interesting to answer such a query approx-
imately based on the objects in a subset of peers.

3.2 System Framework

We present a system framework that can answer a
similarity query approximately and progressively with
quality guarantees. In the framework, a user poses a
similarity query (f, q, k) on his own peer, called the
root of the query. After the search process starts, the
system computes an approximate answer to the query
based on the objects seen so far in the search.

In order to answer a query approximately, our sys-
tem has two modules running simultaneously: a search
module and a quality estimation module. The search
module propagates the query to other peers using a
sampling method and retrieves the best k distinct ob-
jects from those peers. The sampling method adds
each visited peer to a set V, and produces an approxi-
mate answer. We study how to implement this module
in Section 5. The quality estimation module, whose
implementation is described in Section 4, generates a
quality estimate for each retrieved object in the an-
swer. Our framework continuously presents the cur-
rent best k objects to the user along with their qual-
ity estimates, measured with the well-known statistical
concept of a “quantile”:

Definition 1 (Quantile) Consider a query (f, q, k)
with a ranking function f . The quantile of an object
o w.r.t. the bag B of all the objects in the network,
denoted as R(o,B), is the maximum value φ such that
the score f(q, o) is greater than or equal to exactly dφ ·
|B|e elements in the bag.

For example, let the bag B = {o1, o2, o3, o4}. Given
a ranking function f , assume f(o1) < f(o2) = f(o3) <
f(o4)). The quantile of o4 is 1.0, since its score is
greater than or equal to all the objects (including it-
self). Similarly, the quantiles of o3, o2, and o1 are 0.75,
0.75, and 0.25, respectively. Intuitively, the quantile
R(o, N) of an object o represents its relative position
among all the objects in terms of their scores. Thus it
can be used to indicate the goodness of the object.

The quantile of an object is defined on the bag B of
all objects in the network. Assume we have accessed
a sub-bag B′ ⊂ B of objects in the network and com-
puted the best k objects in B′. We need to estimate
the quantile of these k objects in terms of where they
stand among all the objects B, even though we do not
have the full knowledge about B. To solve the prob-
lem, we use a probabilistic model to estimate quality.

Definition 2 (Quality Estimate) Given a query
(f, k), the quality estimate of a seen object o in the
search is a pair (φ, p), in which φ is a quantile and p
is a probability. It means that, with at least probability
p, the quantile of object o amongst all the objects in B
is at least φ.

We discuss the computation of quality estimates
from a bag of samples of B in Section 4. One important
feature of such a measurement is that, as the search
continues and more peers are explored, the quality es-
timates of the current best k objects keep improving.
As a result, the user can stop the search when she is
satisfied with the estimated quality for the best ob-
jects seen so far. In our framework, a user can either
explicitly specify a quality threshold (τφ, τp) and let
the search terminate automatically, or keep that in-
formation in mind and stop the search as soon as he
observes that the threshold has been reached.

Figure 1 shows the user interface, for similarity
queries over image files. The best 3 objects are dis-
played in a ranked order. The interface also shows
additional information about each object, such as its
ranking score and a confidence interval. For instance,
the first image has the highest score of 0.99. The sys-
tem has a 95% level of confidence that this image is
better than 99.2% of the objects in the system.

Search Results


Figure 1: Query Interface

Our framework can also be used to alleviate the cost
of exact search. We can estimate a similarity thresh-



old using the proposed sampling techniques, broadcast
this threshold and prune the network while performing
an exact search. Since our interest is in approximate
search, we don’t discuss this extension further.

4 Quality Estimation Using Quantiles

We now show how to compute quality estimates (φ, p)
of an object o in bag B, given a bag objects B′ ⊂ B.

4.1 Quality Estimation Under Random Sam-
pling

We first study how to compute the (φ, p) pair, assum-
ing objects in B′ are random samples from the entire
population B, based on the following theorem:

Theorem 1 (Hoeffding’s Tail Inequality) [10]
Let X1, X2, . . . , Xn be independent bounded random
variables such that Xi is within the interval [ai, bi] with
probability 1. Let Sn =

∑n
i=1 Xi. Let E(Sn) be the ex-

pectation of Sn. For any t > 0, we have:

Pr{Sn − E(Sn) ≥ t} ≤ e−2t2/
Pn

i=1(bi−ai)
2
,

where “Pr” stands for “probability” or “confidence.”

From Theorem 1, we have the following corollary.

Corollary 2 Let X1, X2, . . . , Xn be independent ran-
dom variables with 0 ≤ Xi ≤ 1 for i = 1, 2, . . . , n. Let
Sn =

∑n
i=1 Xi. Let E(Sn) be the expectation of Sn.

Then, for any t > 0, we have

Pr[Sn − E(Sn) ≥ t] ≤ e
−2t2

n .

The following lemma helps us decide how to esti-
mate the quality of top-k objects from a sample.

Lemma 3 Let 0 ≤ δ, ε ≤ 1 be two values. A total of

M >
log (δ−1)

2ε2

random samples from a population are enough to guar-
antee the following. A φ-quantile of these M samples
is greater than the (φ − ε)-quantile of the population
with probability at least 1− δ.

Proof: Let Sφ be the score of a φ-quantile element
in the M samples. Let Nφ−ε be the score of a (φ− ε)-
quantile element in the entire population. By Defin-
ition 1, Sφ is the dφ · Me-th smallest element in the
samples S. So if there are more than dφ ·Me elements
with a score smaller than Nφ−ε, then Sφ will become
smaller than Nφ−ε. In other words, the property men-
tioned in the lemma does not hold if and only if more
than dφ ·Me elements are chosen from the population
whose score is no greater than Nφ−ε. The probability
to draw such an element is φ− ε.

If we define the event of drawing an element with
a score no greater than Nφ−ε in the population as a
“success,” then the process of drawing M samples from
the entire population can be viewed as M independent
Bernoulli trials with probability φ − ε. We use a se-
quence of numbers X1, X2, . . . , XM to present the re-
sult of such a sequence of trials. Xi = 1 means that
the ith trial is a success, and Xi = 0 otherwise. Thus
Sn =

∑n
i=1 Xi represents the total number of success-

ful trials, i.e., the total number of elements whose score
is no greater than Nφ−ε. Since the expected number
of successful trials E(Sn) = (φ− ε) ·M , we can get the
following inequality based on Corollary 2:

Pr[Sn ≥ dφMe] ≤ Pr[Sn ≥ φM ] (1)
= Pr[Sn − E(Sn) ≥ εM ] (2)

≤ e−2ε2M (3)
Pr[Sφ ≥ Nφ−ε] = 1− Pr[Sn ≥ dφMe] (4)

≥ 1− e−2ε2M (5)

The last inequality implies that, as long as we have:

1− e−2ε2M = 1− δ (6)

the probability that Sφ ≥ Nφ−ε is at least (1 − δ).
Based on the above equation, we have

M =
log(δ−1)

2ε2
(7)

Therefore, in order to achieve the property in the
lemma, the number of samples needed is log(δ−1)

2ε2 . Also,
we can get the following from Equation (6):

δ = e−2ε2M (8)

ε =

√
log(δ−1)

2M
(9)

Lemma 3 tells us that if the quantile of object o is φ
in the M samples, then with probability at least 1− δ
the quantile of o is φ− ε in all objects in the network,
where δ and ε are computed from Equations (8) and
(9). In other words, we can estimate the quality of
o to be {φ − ε, 1 − δ}. From Equation (8), we know
that, if ε is fixed, the confidence (1−δ) becomes higher
as more objects are sampled. From Equation (9), we
know that, if δ is fixed, the quantile (φ− ε) is getting
higher as more objects are sampled.

The following lemma suggests how to estimate the
quality of an approximate answer to a similarity query.

Lemma 4 Let B′ = {oi} be a bag of random samples
from a population B. Let φi be the quantile of object
oi in B′. Let τp = (1 − δ) be a probability. Then the

quality for oi in B, is (φi−ε, τp), where ε =
√

log(δ−1)

2|B′| .



We use an example to show how to use Lemma 4 to
estimate the quality of approximate results. Suppose
that during the search to answer a similarity query
with k = 2, we have seen a set B′ of 100 random
objects from the population B so far. The best two
distinct objects in B′ are {oa, ob}, where f(oa) > f(ob).
Assume the predefined confidence is τp = 1−δ = 0.95,
i.e., δ = 0.05. Based on Equation (9), we have ε =
0.12. Since the quantile of object oa in B′ is 1.0, we
claim that its quality is (0.88, 95%) in B, i.e., with a
probability at least 95%, object oa is better than 88%
of the objects in the entire population. Similarly, we
can show that the quality for ob is (0.87, 95%).

There are two variables φ and p in our quality es-
timate. During a search, we generally fix one variable
by setting φ = τφ or p = τp. Figure 2 shows a proce-
dure that takes samples and outputs the current top-k
objects with their quality estimate.

function: EstimateQuality
Input: bag of samples(B′), random sample
size(S), confidence(τp), int(k)
Output: best k distinct objects({oi}),
quality ( {(φi, τp)} ) (1 ≤ i ≤ k)
1. extract best k distinct objects {oi} from B′;
2. compute the quantile φi

∗ of oi w.r.t. B′;
3. δ = 1− τp;
4. for i = 1 to k

5. φi = φi
∗ −

q
log(δ−1)

2S
;

6. endFor
7. return {oi} and {(φi, τp)};

Figure 2: Quality Estimate

4.2 Estimating Quality with Related Objects

If we randomly sample a subset of peers from the net-
work, then we have access to all the objects in each of
these peers. However we should not treat these as ran-
dom samples from the entire population, because ob-
jects within each peer could be related, because, e.g.,
users are interested in content of a certain type.

This presents a problem, because the quality es-
timation approach of Section 4.1 requires a random
sample of objects. To overcome this, we might try a
naive approach, picking a single object from each sam-
pled peer and repeating this step until enough objects
are accumulated to attain the desired quality. This
method, though statistically valid, is impractical. We
employ a more workable approach, using statistical
methods developed in the context of clustering sam-
pling to determine an “effective” random sample size
for each peer. The intuition is to analyze the variabil-
ity of object scores within peers (denote this variance
σ2

w) and the variability of object scores between peers
(denote this variance σ2

b ). By comparing σ2
w and σ2

b ,
we have a measure of the “relatedness” of the objects
drawn from a single peer. If σ2

w is small compared to
σ2

b , then this indicates the presence of strong correla-

tion within peers, so treating the objects from a peer
as a random sample from the total object bag is ex-
tremely inaccurate and the contribution of each peer
is better viewed as equivalent to only a few random
samples. Conversely, if σ2

w is very large compared to
σ2

b , the samples from each peer may in fact be treated
as a random sample from the total object bag.

Cluster sampling is used often in data collection
when it is impossible or impractical to obtain a ran-
dom sample. Suppose that a survey is to be done in
a large town and that individuals need to be given a
questionnaire. Suppose further that the town contains
20,000 people and a sample of size 200 is needed. A
simple random sample of 200 could well spread over
the whole town incurring high costs and much incon-
venience (e.g., travel) for the researcher. Instead, he
might choose to randomly sample 40 streets and then
randomly sample 5 individuals on each of those streets.

Clustered sampling has several advantages over ran-
dom sampling: (i) the sampling cost is reduced as only
a few peers must be seen; (ii) it is applicable even if no
complete list of objects is available at the outset—as
long as a complete list of clusters (peers) is available
and each peer maintains a list of all the objects con-
tained therein. The disadvantage of cluster sampling
is that units within a cluster (e.g., people on a street in
our example) may be more alike than randomly sam-
pled units, so that the cluster sample is not as effective
as a random sample of the same size. In the following
discussion we quantify this drop in “effectiveness.”

To keep our argument straightforward, we frame
our discussion in terms of the average object score.
The result is applicable to our setting because the
quantile of a particular object score is in fact the av-
erage of binary scores of all sampled objects (1 if the
sampled object is less than or equal to the object score
at hand; 0 otherwise). To develop our “effective” sam-
ple size we require more detailed notation than in the
earlier sections. Let Yij denote the score of the jth

sampled object in peer i. The scores within a cluster
(peer) are modeled as following a probability distribu-
tion with cluster mean µi and within cluster variance
σ2

w. Further, the cluster means are assumed to follow a
probability distribution with overall mean µ (the mean
of the total object bag) and between cluster variance
σ2

b . The theorem and lemma below are given for the
special case in which the number of objects in each
peer is the same, M , and the within cluster variance
σ2

w is the same for each peer. The consequences of
relaxing these assumptions are described at the end
of this subsection. A further simplification is that we
present formulas for the case of an infinite population
of objects, thereby ignoring the so-called “finite popu-
lation correction”. This simplifies the expressions for
the variances in the formulas that follow without af-
fecting the determination of the effective sample size.

Theorem 5 [6] Suppose an infinite population of



units is divided into disjoint clusters of M units
each, and clusters are selected with cluster-level ran-
dom sampling. Suppose we have sampled n ran-
dom clusters, containing nM units, the sampling
variance of the mean of all sampled objects (Y =

1
nM

∑n
i=1

∑M
j=1 Yij) is:

V (Y ) =
σ2

b + σ2
w

n M
(1 + (M − 1)ρ) (10)

where ρ is the within-cluster correlation, defined as:

ρ =
σ2

b

σ2
b + σ2

w

(11)

σ2
b is the variance between clusters;

σ2
w is the variance within clusters.

From Theorem 5, we get the effective random sam-
ple size, corresponding to a cluster sample of size nM .

Lemma 6 Suppose an infinite population of units is
divided into disjoint clusters of M units each, and clus-
ters are selected with cluster-level random sampling.
Suppose we have sampled n random clusters, contain-
ing nM units in total. These samples are as effective
as nM/λ independent random samples, where:

λ = (1 + (M − 1)ρ) (12)

Proof: If all S = nM samples are independently
drawn, then the variance of the mean is as follows:

V (Y ) =
σ2

b + σ2
w

N
(13)

If the S = nM samples are from n clusters, then the
variance of the mean is:

V (Y ) =
σ2

b + σ2
w

n M
(1 + (M − 1)ρ) (14)

By comparing Equation 13 and Equation 14, it is easy
to show that nM samples from cluster sampling cor-
respond to nM

1+(M−1)ρ random samples.

We can develop some intuition about Lemma 6 by
examining three cases.

Low Correlation: If σw is very large such that
σw À σb, then ρ → 0 and λ → 1. If units within each
cluster are quite random, then the nM cluster samples
can be regarded as nM independent samples.

High Correlation: If σw is very small such that
σw ¿ σb, then ρ → 1 and λ → M . If units within each
cluster are strongly correlated, then nM cluster sam-
ples correspond to only n independent ones (we need
to examine only one object per sampled cluster/peer).

Medium Correlation: If σw is comparable to σb,
then ρ takes an intermediate value in (0, 1) and λ takes
an intermediate value in (1,M). This indicates that

the set of objects built with cluster sampling yields the
same effectiveness (i.e., the same variance) as a smaller
set selected with object-level random sampling.

To apply the above Lemma we require an estimate
of ρ (also known as the intraclass (or intracluster) cor-
relation) using the samples at hand. We estimate σ2

b
and σ2

w and then use these estimates to construct an
estimate of ρ. Let Yij denote the score of the jth object
from peer i, Y i the average score of the objects from
peer i, and Y the overall average of the objects from all
peers. We can compute the between-cluster (between-
peer) mean Square(Jb) and the within-cluster (within-
peer) mean Square(Jw) as follows:

Jb =
n∑

i=1

M (Yi − Y )2/(n− 1) (15)

Jw =
n∑

i=1

M∑

j=1

(Yij − Yi)2/(nM − n) (16)

The expectation of Jb and Jw can be represented using
σ2

b and σ2
w as [15] (The detail of the derivations of

Equation 15-18 can be found in the full version [1]):

E(Jb) = σ2
w + M σ2

b (17)
E(Jw) = σ2

w (18)

As a result, we can estimate σ2
b , σ2

w via the Method
of Moments by equating the observed Jb and Jw with
their expectations to yield (x̂ is the estimate of x):

σ̂2
w = Jw (19)

σ̂2
b =

Jb − Jw

M
(20)

ρ̂ =
σ̂2

b

σ̂2
b + σ̂2

w

=
Jb − Jw

Jb + (M − 1)Jw
(21)

The above algorithm is fully distributed and can
be computed incrementally. We don’t need to store
and sort all the accessed objects each time. Instead,
we only need to know the best k distinct objects from
the peer and the two summary statistics required to
compute the mean squares, the sample sum of squares∑M

j=1(Yij − Yi)2, and the sample mean, Y i. The mean
squares Jb and Jw and hence the effective sample size
can be computed at the query source given these sum-
maries. Procedure UpdateEffectiveSampleSize() (Fig-
ure 3) implements this scheme. It is running on the
query node and gets invoked whenever the summary
from a newly sampled peer arrives. When it completes,
the total number of effective samples is updated.

The algorithm uses point estimates of the various
parameters to generate the estimated effective sample
size. It is natural to wonder how errors in the esti-
mated variance components propagate through to the



estimated effective sample size. In general we expect
σ2

w to be well estimated since it combines information
from all sampled peers. The variability in our estimate
of σ2

b depends on the number of sampled peers. It is
possible to derive a confidence interval giving upper
and lower limits of plausible values for ρ (one method
is given in [15]). These limits could also be integrated
with our quality estimation procedure if desired.

function: UpdateEffectiveSampleSize
Input: number of objects at new peer
(objNum), average score at new peer (s),
variance of scores at new peer (v)
Output: updated effective random sample
size(S∗)
1. static n = 0, totalObjNum = 0, S = 0, S2 = 0, V = 0;
2. n++;
3. totalObjNum += objNum;
4. S+ = objNum ∗ s;
5. S2+ = s2;
6. V + = v;
7. Jb = M ∗ (S2− S2/(n ∗M2))/(n− 1);
8. Jw = V/(nM − n);
9. ρ = (Jb − Jw)/(Jb + (M − 1)Jw);
10. λ = 1 + (M − 1)ρ;
11. return S∗ = totalObjNum/λ;

Figure 3: Estimate the Number of Random Samples

4.3 Discussion

The results above have assumed that the number of
units in each cluster is the same and that the within
peer variance of objects is the same across all peers.
Relaxation of these assumptions is discussed next, fo-
cusing first on the number of units in each cluster/peer.
If the number of units within each peer varies greatly,
then randomly sampling peers is not optimal. One
can still get reasonable estimates of the quantile rank
of an object but the variance tends to be high (i.e.,
the estimated quantile rank will vary greatly depend-
ing on whether peers with large numbers of objects
have been included in the random sample). For such
cases alternative sampling strategies such as sampling
peers with probability proportional to the number of
objects is sometimes used (see, for example, [6]). If we
do opt to use random sampling, then the unequal clus-
ter sizes effect our calculations in two ways. First, the
expressions in Lemma 6 for defining the effective sam-
ple size change and second, the procedure for estimat-
ing the variance parameters that determine ρ must also
change. The way in which they change depends on how
we choose to estimate the overall average y. If we let
the number of objects in peer i be Mi, then one natural
definition of the average in the case of unequal clusters

is y =
Pn

i=1
PMi

j=1 YijPn
i=1 Mi

. This just totals up the scores for
all the objects in the total object bag and computes
the average. It clearly gives more weight to peers with
large numbers of objects as seems appropriate in this
case. (An alternative estimate of the overall average

is obtained by averaging the peer averages as in y =
1
n

∑n
i=1

(
1

Mi

∑Mi

j=1 Yij

)
but we don’t pursue this case

here). An appropriate modification of the Lemma (de-
tails in the full version [1]) yields the conclusion that
the

∑n
i=1 Mi object scores in the sample correspond to∑n

i=1 Mi/
(
1 + (

Pn
i=1 M2

iPn
i=1 Mi

− 1)ρ
)

random samples. If
the Mi’s vary greatly then there is a much more sub-
stantial reduction in the effective sample size. Estima-
tion of ρ must also be changed to reflect the unequal
number of objects within peers. The usual estimate of

σ2
w is essentially unchanged, σ̂2

w =
Pn

i=1
PMi

j=1(Yij−Ȳi)
2Pn

i=1 Mi−n

except that the expression for the total number of ob-
jects in the denominator now reflects the unequal sam-
ple size. We can still compute a version of Jb, specif-
ically Jb =

∑n
i=1 Mi(Ȳi − Ȳ )2/(n − 1), but it turns

out that E(Jb) = σ2
w + σ2

b

Pn
i=1 Mi−

Pn
i=1 M2

iPn
i=1 Mi

n−1 . The final
modification then is to construct an estimate of σ2

b by
setting this last expression to Jb. The formulas match
those in (19)-(21) except that the common cluster size
M is replaced by 1

n−1

(∑n
i=1 Mi −

Pn
i=1 M2

iPn
i=1 Mi

)
.

Another possible complication occurs if the varia-
tion of object scores within peers differs among peers.
This impacts the assumption of a single correlation
parameter that we use to “correct” the sample size.
There are a number of approaches that can be used to
address this issue. It may be that there are types of
peers, with within peer variance similar among nodes
of a given type but differing across types. If so, the
effective sample size calculation might be done sepa-
rately for each type. In the limit it is possible to adjust
each peer’s output to reflect that peer’s local varia-
tion, i.e., using ρi = σ2

b/(σ2
b + σ2

w,i) to compute the
effective number of objects from that peer, assuming
that it is still reasonable to treat the peers as provid-
ing information about the same population of interest.
Unfortunately for peers with a small number of ob-
jects the local estimate of the variation is likely to be
highly uncertain itself thus we prefer to avoid single
peer corrections of this type.

5 Supporting Quality Estimation in
P2P search protocols

In this section we show how similarity queries can be
implemented in P2P systems. We propose a two-level
approach: (i) a generic protocol that is independent
of the actual P2P system (Section 5.1) and (ii) cus-
tomization of the protocol for various P2P systems
(Section 5.2). This approach allows easy portability
of the protocol to various P2P systems. To customize
the protocol, a way to sample peers uniformly in a
specific P2P system is needed. This is not straightfor-
ward and recent research has suggested several ways
in which it can be done. In Section 5.2, we will ex-



plain random-sampling approaches for three important
classes of P2P networks.

5.1 Generic Protocol: SiQueL

Our protocol (SiQueL for Similarity Query protocoL)
is fully distributed and decentralized. SiQueL consists
of a Request-Response pair of messages called Sim-
QueryMsg and SimQueryHitMsg respectively:

SimQueryMsg: Carries information about a sim-
ilarity query (f, q, k), Time-To-Live (TTL), and the
query-initiator, root.

SimQueryHitMsg: Carries information about
the k best distinct objects o1, . . . , ok at a peer, their
number of copies {(oj , cj)}, and a summary of all local
objects (objNum, average score(s), score variance(v)).

An initiator-peer (root for short) starts SiQueL by
sending a SimQueryMsg (with the necessary parame-
ters) to another peer chosen uniformly at random with
a specified TTL. The receiving peer (target for short)
performs appropriate processing on its local objects
(Figure 5) and sends a SimQueryHitMsg back to the
root. While processing the query on its local objects,
the target concurrently forwards the SimQueryMsg
(after decreasing the TTL by 1) to another peer, cho-
sen uniformly at random . Thus, while the original
query is propagated in the P2P overlay, the root re-
ceives responses from target peers and continually up-
dates the quality measure.

When the TTL hits zero, the target peer that re-
ceives this zero-TTL message, replies with a special
type of SimQueryHitMsg to the root. The reply mes-
sage has a TTL EXPIRED field set to true. When
the root receives this message, it checks to see if the
appropriate quality bound has been achieved, failing
which, it picks a new random target and starts the
whole protocol again. The full SiQueL protocol is de-
scribed in Figure 4. Two important sub-procedures,
UpdateEffectiveSampleSize and EstimateQuality, are
defined in Section 4.

Discussion: SiQueL is flexible and can be ex-
tended to trade speed for message overhead. We can
forward SimQueryMsg, instead of one peer at a time,
to c peers simultaneously. The number of peers tar-
geted at each round increases exponentially; thus c and
TTL must be chosen carefully.

SiQueL can also be applied to query for the exact
top-k matches of a similarity query. Initially, SiQuel
is run to form an estimate of the lower bound (thresh-
old) of the top-k objects in the entire network with
a certain confidence. This should only require con-
tacting a few random peers. Once this is complete, a
flooding of the network can be done with the similar-
ity query along with the threshold. A node receiving
this flooding query computes its top-k-object set, but
transmits only those objects which exceed the thresh-
old: if every object is below the threshold, no reply
needs to be transmitted, saving some messaging cost.

Each peer can also use this threshold to optimize its lo-
cal search by limiting a local k-nearest neighbor search
within a bound computed from the threshold.

function: DoSimQuery
Input: time-to-live(ttl), query ((f, q, k)),
threshold({τφ, τp})
Output: approximate answers and their
qualities to interface
1. qMsg = new SimQueryMsg(ttl,(f, q, k), self);
2. Bag B′ = {};
3. Peer peer = SAMPLE();
4. send qMsg to peer;
5. while(min1≤i≤kφi < τφ )
6. REPLY = WaitForMsg();
7. if(REPLY is TTL EXPIRED)
8. peer = SAMPLE();
9. send qMsg to peer;
10. else if (REPLY is SimQueryHitMsg)
11. merge REPLY.{(oj , cj)} into B′;
12. S∗ = UpdateEffectiveSampleSize(REPLY.objNum,

REPLY.s, REPLY.v);
13. ({oi}, {φi, τp}) = EstimateQuality(B′, S∗, τp, k);
14. update interface;
15. endIf
16. endWhile

Figure 4: The Main Thread on Querying Node

function: AnswerSimQuery
Input: SimQueryMsg (query)
Output: SimQueryHitMag (hit)
1. if ( query.ttl = 0)
2. send TTL EXPIRED to query.root
3. else
4. query.ttl −−;
5. Peer peer = SAMPLE();
6. forward query to peer;
7. count number of objects objNum;
8. get k best distinct objects with # of copies {(oj , cj)};
11. s = 1

objNum

PobjNum
i=1 f(oi);

12. v =
PobjNum

i=1 (f(oi)− s)2;
13. SimQueryHitMag hit({(oj , cj)}, objNum, s, v);
14. send hit to query.root;
15. endIf

Figure 5: Query Propagation

5.2 Uniform Random Sampling of Peers

SiQueL assumes a method, SAMPLE(), that every
peer uses to find a new random peer. We explain
how SAMPLE() can be implemented (1) Decentral-
ized but structured and (2) Decentralized and unstruc-
tured P2P systems. For a (logically) centralized sys-
tem, SAMPLE() can be implemented easily by re-
turning the address of a peer, uniformly at random.

In Decentralized and Structured P2P networks, such
as Distributed-Hash-Table (DHT) based P2P systems1
(e.g. [23]), implementing SAMPLE() requires more
sophistication. Theoretical properties guaranteed by

1eDonkey, http://www.edonkey2000.com, is a commercial
system based on this approach



these overlays must be used to derive the sampling
scheme. We will describe two schemes to show the
overhead involved (See [14, 16] for details). In [14],
the authors present an algorithm which chooses a peer
uniformly at random from the set of all peers in a
DHT. In a network of n peers, a peer p is chosen with
probability exactly 1/n, sending, in the average case,
O(log n) messages. In [16], the authors propose a de-
centralized method to create and maintain a random
expander network wherein random sampling can be
achieved with O(log n) messages.

In Decentralized and Unstructured P2P networks,
there are neither central servers nor known theoret-
ical overlay properties that can be applied directly
for random sampling. However, in [11], the authors
evaluate (empirically) several gossip policies, showing
that an approximate random graph can be constructed
from non-random graphs, by running a gossip proto-
col. Each peer maintains a cache of other peers and
this is cache is gossiped and updated. The graph
of the peers’ caches is approximately random. The
SAMPLE() method can be implemented via a simple
lookup in the cache; no messaging cost is paid for sev-
eral SAMPLE() calls which are locally handled, and
the overhead is limited to maintaining the cache.

6 Experiments

In this section we perform an empirical evaluation of
the techniques developed in this paper. In Section
6.1 we discuss our methodology in terms of network
topology, data sets, and performance measures. In
Section 6.2 we discuss the results obtained from our
experiments. Our goal is to show that a significant
quality-performance tradeoff can be realized when ap-
proximate similarity queries are executed over a P2P
network, and high quality answers can be obtained at
a fraction of the cost needed for exhaustive search.

6.1 Simulation Methodology

We study the effectiveness of our methods, varying
P2P topology, data types, and performance metrics.

6.1.1 P2P Network Topology

As seen previously, the way in which peers are sampled
randomly depends on the network structure. We deal
with both structured and unstructured decentralized
networks. We have also performed experiments for a
centralized network, in which sampling is implemented
with a single message to a central sampling service;
results can be found in [1]. Unless stated otherwise, we
use networks of size N = 10, 000 in our experiments.

(1) Unstructured: We implemented a gossip pro-
tocol with the (rand, rand, pushpull) policy which was
shown to perform well in the empirical evaluation pre-
sented in [11]. We started with a Power-Law network

and ran the gossip protocol for 100 rounds: this pop-
ulates the local caches in all the peers of the network.
The SAMPLE() function is then implemented as a
lookup in each node’s cache as previously explained.

(2) Structured: We built a Random Expander
Graph [16]. Each node has exactly 2d edges, and dupli-
cated edges are allowed. The bag of edges is composed
of d Hamilton cycles: every node has d successive and
d preceding nodes, one for each of these cycles. Such
a graph is known as a HN,2d-graph [16]; we follow the
protocol described in [16] to construct it.

A random walk of length t = 4logd/2N + 4 is guar-
anteed [16] to reach peer v with probability |Pr{reach
v} - 1

N | ≤ 1
N2 . We set d = 20 in our experiments,

and therefore a random walk of length 20 will gener-
ate random peers with high probability.

6.1.2 Data types

We used both synthetic and real data:
(1) Synthetic data: The similarity score of ob-

jects is randomly allocated. For simplicity, every peer
is assumed to host the same number of objects. Differ-
ent distributions of scores may be observed in practice,
and we examine two of them, Uniform Allocation and
Cluster Allocation, which serve to test our algorithms
in the case where scores within each peer are not cor-
related or are similar to each other respectively.

(1.1) Random Allocation: 20 scores uniformly
drawn from [0, 10000] are assigned to each peer.

(1.2) Clustered Allocation: For each node ni, we
first pick its mean score µi ∼ N(µ, a). Then 20 scores
are generated for ni, following a Gaussian distribution
N(µi, b). We set µ = 5, 000, a = 500, and vary b:
this controls the “tightness” of the clusters, with b

a
capturing the intensity of correlation. All scores are
limited to be in [0, 10, 000].

(2) Real data: 68, 040 images in 708 categories
from the Corel Image Features data set in UCI KDD
Archive [9] were used. Each image is represented as a
32-d color histogram [24], one of the most widely used
visual features in image retrieval and is provided with
the data set. If H(o) is the color histogram of image o
and H(q) is the color histogram specified in the query,
the similarity between q and o is defined as:

f(q, o) =
32∑

i=1

min(Hi(q),Hi(o)) (22)

where Hi is the ith value of vector H. As with our
synthetic data, we use two methods to allocate images:

(2.1) Random Allocation: Each peer is assigned 20
images randomly from the full dataset.

(2.2)Clustered Allocation: For each node, a category
is first randomly selected, and then images from that
category are randomly assigned to it. This results in
similar images being assigned to each node.
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Figure 6: Cost in Power-Law Random Graph with Synthetic Data (τp = 0.95)
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Figure 7: Cost in Power-Law Random Graph with Image Data (τp = 0.95)

We assume that the distribution of objects is fixed
during query evaluation. In practice, objects are added
and deleted from peers, but this is assumed to be neg-
ligible during the short time of query execution.

6.1.3 Query Formulation and Performance
Metrics

For each simulation run, we pick a node as the source of
the query. The scores are generated either artificially
in our synthetic data, or using Equation 22 with one
randomly selected image in the dataset as the query.
The search algorithm is terminated when the quality
requirement (τφ, τp) is reached. The confidence τp is
always fixed to be 0.95 and the quantile τφ varies from
0.75 to 0.95. We invoke the quality estimation mod-
ule after the 5th peer is accessed, so as to build a
non-trivial initial sample size. For each τφ level, the
following performance measures are included:

Number of Messages: The total number of mes-
sages generated during the search, including Sim-
QueryMsg, SimQueryHitMsg, TTL EXPIRED and
SAMPLE messages. This is a measure of the network
activity generated by the query.

Number of Peers Queried: The total number
of peers that have processed the query locally. This
measures the number of other computers which must
do some work in response to the query.

Real Quantile: The quantile of the kth best object
in the approximate answer, in terms of all network
objects.

To assess the quality of our approximate answer we
use the real quantile instead of a measure such as re-
call, i.e., the fraction of our best k objects that are also

in the best k over all the objects of the network. This
is a better measure, because it captures the proximity
of scores in the approximate answer to those in the ex-
act one. Recall cannot capture this, as it penalizes all
objects which are not in the global best k, irrespective
of their closeness to the best ones.

Each query is repeated 20 times with different start-
ing peers, and results are averaged over these runs. We
use the performance of an exact similarity query an-
swering system as a comparative baseline. This must
send and receive a message from each peer in the net-
work. So, in a network of N peers, all N must be
accessed and 2N messages must be transmitted.2

6.2 Experimental Results

The results for the unstructured-network can be seen
in Figures 6, 7. The quantile τφ is shown on the
horizontal axis and different performance metrics are
plotted on the vertical axis.

Figures 6a,b and 7a,b show the cost for varying
threshold τφ. Better quality requires higher cost, but
as τφ approaches unity, the cost starts to rise rapidly,
indicating that increasingly lower gains are expected
for the same additional effort. The cost of the exact
answer would be 10, 000 peers and at least 20, 000 mes-
sages, which greatly exceeds the range shown for the
approximate evaluation. These results illustrate the
great potential performance benefits that approximate
answering can achieve, and the smooth improvement
in quality as more effort is expended. It also confirms

2In a real network even more messages must be exchanged,
since the querying node cannot contact all the N nodes, and
hence some nodes may be contacted more than once.
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Figure 8: Cost in Expander Graph with Synthetic Dataset (τp = 0.95)
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Figure 9: Cost in Expander Graph with Image Dataset (τp = 0.95)

our intuition that, after a certain number of peers have
been retrieved, quality improves more slowly, and the
user will be inclined to terminate the query.

Furthermore, we observe that cost is related to the
“correlation,” with higher cost corresponding to more
correlated distributions. Our effective random sample
size factor λ increases when within-peer correlation ex-
ists, and this results in more peers being sampled to
achieve the same quality guarantee.

Figures 6c, 7c demonstrate the relationship between
the real and estimated quantiles. All curves are above
line x = y, indicating that the real quality of the ap-
proximate answer is actually higher than its reported
value. Thus, if a user accepts an approximate answer
and terminates his search, he will obtain an answer
which is actually even better than promised.

In Figures 8a, b and 9a, b, we study the cost-quality
tradeoff in the expander network. Since we have to rely
on a random walk to obtain a random peer, the num-
ber of messages is higher than in the previous case.
To retrieve a single random sample peer, a random
walk of length O(log N) must be performed and thus
O(log N) SAMPLE messages are sent during sampling.
However, the number of nodes needed to process the
query remains relatively small compared to the total
number of nodes in the network, since peers on the
random walk path only need to relay SAMPLE mes-
sages instead of processing the query. Figures 8c and
9c verify that our quantile estimate is the lower bound
of the real quantile in this case as well.

An interesting observation, applicable to both net-
work topologies, is the high cost when peers contain
objects from a single category, a case of extreme corre-
lation. In real-life settings, peers will probably contain

objects from multiple categories. Thus, the cost will
be between that of random assignment and the single-
category assignment used in our experiments.
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Figure 10: Real and approximate score threshold.

We also test the closeness of our approximate an-
swer to the real one using synthetic data in Power-law
network; results were similar for the other tested cases.
In Figure 10 the score of the kth object in the approx-
imate answer is compared to the score of the real kth

best object. This shows how our answer progressively
approaches the exact one. The score of the kth object
is 9720 when φ is 0.92, very close to the exact score
which happens to be 9994 in this case.

Finally, we test the scalability of our system in Fig-
ure 11. Synthetic data with with power-law random
networks of varying size are used. As expected, the
quality-cost curves are very similar irrespective of the
underlying network size. This is due to the nature
of our quality estimation method which makes no as-
sumptions about the network size, but treats objects
as samples from an underlying distribution. This con-
trasts with the cost of exact search which increases
with larger network size. Thus, our algorithm will re-
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Figure 11: Network size impact on scalability.

main useful even as P2P networks grow in size.

6.3 Summary of Results

From our experiments, we conclude that: (i) our algo-
rithm trades quality for cost efficiently; (ii) high qual-
ity is achieved with low cost irrespective of network
size; (iii) correlation within peers results in higher cost;
(iv) the real quality of the approximate answer given
by the system is higher than our provable bounds.

7 Conclusions

This paper presents a framework to support approxi-
mate similarity queries in a P2P network. The advan-
tage of such a system is that the user may monitor the
progress of the query and tune its cost according to
his quality needs. Since objects are grouped in peers,
obtaining a random sample for the purpose of quality
estimation is problematic, and we show how this can
be produced, and how its quality can be assessed.

We assumed that the network topology and content
distribution change slowly compared to the duration
of query execution; an extension is to study similarity
queries when this assumption does not hold, either be-
cause of a highly dynamic network or a long-standing
continuous similarity query.
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