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Abstract

A variety of real-world applications heavily relies on the
analysis of transient data streams. Due to the rigid process-
ing requirements of data streams, common analysis tech-
niques as known from data mining are not applicable.
A fundamental building block of many data mining and
analysis approaches is density estimation. It provides a
well-defined estimation of a continuous data distribution,
a fact which makes its adaptation to data streams desirable.
A convenient method for density estimation utilizes ker-
nels. However, its computational complexity collides with
the processing requirements of data streams. In this work,
we present a new approach to this problem that combines
linear processing cost with a constant amount of allocated
memory. We even support a dynamic memory adaptation
to changing system resources. Our kernel density estima-
tors over streaming data are related to M-Kernels, a previ-
ously proposed technique, but substantially improve them
in terms of accuracy as well as processing time. The results
of an experimental study with synthetic and real-world data
streams substantiate the efficiency and effectiveness of our
approach as well as its superiority to M-Kernels with re-
spect to estimation quality and processing time.

1 Introduction

A variety of heterogeneous real-world applications depends
on an adequate online analysis of massive data streams.
In order to gain insight into the characteristics of those
streams, one could apply data mining and analysis tech-
niques. They provide for instance functionality to reveal in-
teresting patterns, detect outliers, or classify the data. The
constantly growing volume of data streams as well as their
volatile nature, however, render the direct application of
common ’offline’ mining techniques difficult; the data ar-
rives faster than it can be analyzed. In fact, to be applicable
to data streams, an analysis technique has to meet stringent
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processing requirements like processing the stream in one
pass [8].

Taking those requirements into account, we address in
this paper the adaptation of a fundamental building block
of many analysis techniques, namely density estimation, to
the data stream scenario. The main objective of density es-
timation is to reveal the unknown probability density func-
tion of a distribution, given solely a representative sample
of values. A density estimator is a comprehensive statisti-
cal model of the process described by the sample values.
With a well-defined density estimator at hand, a variety of
data analysis issues can be addressed: ”In general, density
estimation provides a classical basis across statistics for
virtually any kind of data analysis in principle, including
clustering, classification, regression, time series analysis,
active learning, and so on...” [11]. We aim to provide a
foundation for the application of these analysis tasks to data
streams by adapting density estimation in compliance with
the aforementioned processing requirements.

In most real-world applications over streams, we have
no a priori knowledge about the stream. For that reason,
the class ofnonparametricdensity estimation approaches
is very appealing as they make no assumptions on the un-
known density; ”the data speak strictly for themselves”
[21]. Since data streams often deliver observations of con-
tinuous, real-valued distributions, e.g. temperature, heart
rate, we confine the subsequent considerations to contin-
uous density estimators. A theoretically well-founded and
also practically approved approach for the nonparametric
estimation of continuous distributions utilizes kernels [20],
[21]. Kernel-based density estimators can approximateany
distribution arbitrarily good (in probabilistic terms), pro-
vided that the associated sample is sufficiently large [21].
Hence, an adaptation of kernel density estimation to data
streams would be highly promising. However, the heavy
computational cost of kernel density estimators is a se-
vere obstacle; their memory allocation is linear in the sam-
ple size, accompanied by linear evaluation cost. As these
facts violate the aforementioned processing requirements,
we cannot directly build kernel density estimators over data
streams.



1.1 Our Contributions

In this work, we tackle the problem of resource-aware ker-
nel density estimation over streaming data. In [13], we
will present a short version of this work. While [13] only
sketches the basic idea, this work presents its detailed dis-
cussion. Generally, our main contributions are:

• We redesign and extend the general idea of M-Kernels
[5], a previously proposed approach for kernel density
estimation over data streams. In fact, our approach
solves major drawbacks of M-Kernels and provides
sophisticated extensions.

• Our approach complies with the rigid processing re-
quirements of data streams: We process each element
once in constant time while building an estimator on-
line. The estimator allocates a constant amount of
memory and dynamically adapts to changing system
resources. It can keep pace with evolving streams by
emphasizing recent data with the help of exponential
smoothing.

• For the core operation of the algorithm, the merge of
two adjacent kernels, we introduce a new cost mea-
sure. It guarantees optimum merge kernels and is in-
expensive to compute.

• We complement our analytical results by a discus-
sion of efficient implementation techniques. A tree-
based implementation ensures that the processing cost
is logarithmic in the size of the allocated memory; it
also allows an efficient evaluation of an estimator.

• A thorough experimental study confirms that our esti-
mators perform well for synthetic and real-world data
streams and that they are superior to M-Kernels.

The outline of this paper is as follows. In Section 2, we
discuss related work. We prepare the ground for our ap-
proach by introducing our data stream model, its process-
ing requirements, kernel density estimation, and M-Kernels
in Section 3. In Section 4, we discuss the details of our ap-
proach. Section 5 presents the results of an experimental
study. Finally, we conclude with a summary and an out-
look on our future work in Section 6.

2 Related Work
The analysis and mining of transient data streams has come
to the fore in recent years. [9] gives a comprehensive
overview of arising questions, challenges, and associated
techniques for mining data streams. For an adaptation
to data streams, mining algorithms have to meet specific
processing requirements [8]. Up to now, several core al-
gorithms of data mining were successfully adapted to data
streams, e.g. classification [2].

In [1], the authors address the problem of clustering
evolving data streams. They use so-called microclusters
to periodically store local and temporal summary statistics
of the current clusters. The kernel entries we later present

also store local statistics to summarize elements, but their
application and the underlying summary statistics distin-
guish both techniques from each other.

Another important aspect is the incorporation of differ-
ent mining techniques into a stream mining system. Stat-
Stream [22] for instance is a tool kit for the simultaneous
analysis of multiple time series. Gigascope [7] as another
example is a stream database providing mining and analy-
sis techniques for network traffic.

In this work, we specifically tackle the adaptation of ker-
nel density estimation to data streams. A short version of
this work sketching the basic idea will be presented in [13].
In comparison to, this work not only thoroughly discusses
all details, but also presents concrete implementation con-
cepts and evaluation strategies, complemented by an exten-
sive experimental study.

Generally, density estimation as research topic in math-
ematical statistics is thoroughly discussed in [20, 21]. In
data mining and analysis, it serves as building block for
a plethora of probabilistic learning methods [11]. Biased
sampling for instance exploits kernel density estimates to
maintain its samples [15]. Database research also reaps the
benefits of kernel density estimation, e.g. selectivity esti-
mation of range queries [4], [16].

The computational complexity of kernel density estima-
tion renders its application to massive data sets difficult. In
order to reduce this complexity, [11] provides an approx-
imate solution for offline data sets. The basic idea is to
establish a dual-tree structure: one tree partitions a given
set of training data and the other one the query set. A set of
query points can be efficiently evaluated with a simultane-
ous traversal of both trees. Another approximate solution
for multidimensional data relies on a multi-pole based algo-
rithm [18]. This technique provides online computable ker-
nel density estimators by maintaining a multivariate Taylor
series expansion of the estimator. Concerning their applica-
bility to data streams, both approaches did not address a
variable, limited amount of available memory as well as
the tracking of evolving streams (see also Section 3.1).

There are also initial approaches for kernel density es-
timation over data streams. [19] presents a kernel-based
solution for the selectivity estimation of range queries over
multidimensional spatial streams. Its basic idea is to up-
date local variances with a kd-tree-like structure on top of a
continuously maintained sample. This approach has prob-
lems with capturing evolving streams. As already men-
tioned in Section 1, M-Kernels are another technique for
computing kernel density estimators over one-dimensional
data streams. Due to their relevance for this work, we take
a closer look at them in Section 3.5.

3 Preliminaries

In this section, we first present our underlying data stream
model and its processing requirements. Then, we give a
brief introduction to kernel density estimation. We point
out the problems of its adaptation to data streams, followed
by a detailed discussion of M-Kernels.



3.1 Data Stream Model

A one-dimensional data stream consists of an unbounded
sequenceX1, X2, ... of numbers withXi ∈ R for i ∈ N.
Except otherwise stated, we assume the stream to be at each
time instant a sample with independent and identically dis-
tributed (iid) observations of an unknown continuous ran-
dom variableX. The premise of independence of two ar-
bitrary stream elements is reasonable as data sources often
send their elements autonomously, e.g. traffic sensors. The
premise of an identical distribution also holds for most ap-
plications. The case of a stream whose distribution changes
will be separately discussed in Section 4.5.

In general, these assumptions allow us to apply a variety
of statistical analysis techniques to determine meaningful
models of a stream, e.g. cluster, decision trees.

3.2 Processing Requirements

To keep pace with transient data streams, an online analysis
technique has to meet the following stringent processing
requirements [8]:

1. Each element is processed only once.

2. The per-element processing time is constant.

3. The amount of allocated memory is constant.

4. A valid model is available anytime.

5. The models incorporate changes in the data stream.

6. The provided models should be equivalent to their of-
fline counterparts.

As the practical applicability of an analysis technique also
depends on whether it can be integrated into complex sys-
tems, we add another processing requirement:

7. A model can adapt its allocated memory to changing
system resources anytime.

With respect to these requirements, we specifically aim
to provide kernel density estimators over data streams.

3.3 Kernel Density Estimation

One of the core concepts in mathematical statistics is the
probability density function (pdf). Essentially, each con-
tinuous random variableX has a unique pdff . A pdf is a
positive, real-valued function which integrates to one. It
provides a comprehensive summary ofX; we know the
probability of each possible outcome ofX. Hence, the
knowledge off is crucial to the analysis ofX. Let for
instanceX describe the heart rate of a patient. Granted
that the associated pdf is known, we can compute amongst
other characteristics mean and variance or determine the
probability that the heart rate lies above a certain threshold.

In real-world scenarios, however, neitherX nor its pdf
is known. Typically, we only have observations ofX in
form of a sampleX1, ..., Xn with Xi ∈ R for i = 1, ..., n.

Density estimation, a core topic in mathematical statistics,
attends to this problem and provides suitable methods to es-
timate a pdf with the help of a representative sample. Para-
metric approaches assume thatf falls in a specific paramet-
ric family, e.g. Gaussian densities. In contrast to, nonpara-
metric approaches do not assume any specific form off .
Those approaches are very appealing as they solely base on
the sample. Hence, they avoid specifying the wrong para-
metric family as it can occur with parametric approaches.

A theoretically well-founded and practically approved
nonparametric approach is kernel density estimation [21],
[20]. A kernel density estimator(KDE) with kernel func-
tion K andbandwidth h(n) is defined as

f̂ (n)(x) :=
1
n

n∑
i=1

1
h(n)

K

(
x − Xi

h(n)

)
, x ∈ R (1)

for independent and identically distributed observations
X1, ..., Xn drawn from a continuous distribution with un-
known pdf f . Essentially, a KDE is the overall sum of
’bumps’ centered at each observationXi. While the band-
width h(n) determines the width of each bump, the kernel
function determines its shape. In the following, we refer to
those bumps askernels. Figure 1 displays two KDEs based
on different bandwidths for a sample consisting of 7 obser-
vations and with the Gaussian kernel as kernel function.

Figure 1: Kernel density estimators and underlying kernels
with (left) h(n) = 0.2 and (right)h(n) = 0.4

The KDEs in this figure indicate that the bandwidth sig-
nificantly affects the shape of a KDE. In fact, an adequate
setting of the bandwidth is of utmost importance for the
quality of a KDE and considerable research effort has been
spent for the development of appropriate bandwidth strate-
gies [20]. Figure 1 provides a grasp of the effects that arise
from varying the bandwidth. If the bandwidth is chosen
too low, the KDE is undersmoothed and introduces spuri-
ous details. If the bandwidth is chosen too high, the KDE
is oversmoothed and hides important details. To guarantee
probabilistic convergence, the bandwidth has to decrease
with the sample size [21]. For sample sizes converging to
infinity, the bandwidths tend to zero. Then, the KDE is a
sum of Dirac delta functions at the sample points [21].

In contrast to the bandwidth, the setting of the kernel
function is minor [20]. It mostly suffices to choose a ker-
nel function that is a density itself, e.g. Gaussian kernel,
Uniform kernel, Epanechnikow kernel. Note that a KDE
as sum of kernels inherits among other properties continu-
ity and differentiability from its kernel function. From a



practical point of view, it is advisable to choose a bounded
kernel function as it reduces for a given point the number of
kernels to evaluate. If the kernel function has an unbounded
support, each kernel must be evaluated.

As already mentioned in Section 2, kernel density esti-
mation has become highly relevant in various application
scenarios. ”Apart from the histogram, the kernel estima-
tor is probably the most commonly used estimator and is
certainly the most studied mathematically.” [21]. Its broad
acceptance results from the combination of simplicity with
convenient mathematical properties [20]. First, a KDE
strictly relies on the sample without a priori distribution as-
sumptions, e.g., membership of a family of standard distri-
butions. Second, a KDE is asymptotically unbiased. Third,
a KDE is consistent in terms of the mean integrated squared
error, i.e., the more sample points, the better the estimation
quality. Fourth, compared to histograms, the common set-
ting in database systems, KDEs have a higher rate of con-
vergence, can produce smooth estimates, and do not need
to know the range of the support in advance.

Finally, let us mention that kernel density estimation
was also discussed for the case of dependent data [12], but
in the context of stochastic processes.

3.4 Kernel Density Estimation over Streaming Data

The aforementioned benefits of kernel density estimation
recommend its adaptation to data streams as we could gain
meaningful insights into the characteristics of the stream.
A suitable adaptation can also serve as foundation for the
application of common offline, density-based mining tech-
niques to streams.

Since we assume a data stream to be aniid sample of
an unknown continuous distribution (see Section 3.1), the
adaptation of kernel density estimation seems straightfor-
ward. But the computational cost of KDEs collides with
the processing requirements presented in Section 3.2: Ac-
cording to (1), a KDE requests memory linear in the sam-
ple size, i.e. in the size of the stream. Even if large amounts
of data could be stored, the use of KDEs will become un-
feasible due to high evaluation cost. Furthermore, common
bandwidth strategies require access to the complete sample,
i.e., we must store each processed element. Hence, kernel
density estimation in its original form can not be directly
applied to data streams.

A naive approach for an adaptation is to continuously
maintain a constant-size sample of the already processed
elements. Then, one can build a KDE anytime on top of the
current sample elements. However, the estimation quality
will not significantly improve anymore after the sample has
been initialized since the consistency of KDEs presupposes
an increasing sample size.

3.5 M-Kernel Approach

In [5], the authors proposed M-Kernels for computing
KDEs over one-dimensional data streams. This technique
only partially complies with the processing requirements
presented in Section 3.1. Essentially, anM-Kernel is a

kernel withmean X
(n)
i and bandwidthh(n)

i that is addi-

tionally weighted withc(n)
i . The overall sum of M-Kernels

constitutes the current KDE aftern processed stream ele-
ments:

f̂ (n)(x) :=
1
n

m∑
i=1

c
(n)
i

h
(n)
i

K

(
x − X

(n)
i

h
(n)
i

)
(2)

with
∑m

i=1 c
(n)
i = n. While n, the number of

processed stream elements, continuously increases, the
maximum number of M-Kernels is restricted tom.
To keep the number of M-Kernels and therefore the
amount of allocated memory constant, M-Kernels can
be merged. The accuracy loss of a merge is measured
with merge costsL1costs

(n)
i . The entirety of M-Kernels

〈X(n)
i , h

(n)
i , c

(n)
i , L1costs

(n)
i 〉, i = 1, ...,m is organized in

a list sorted byX(n)
i .

3.5.1 Parameter Settings

The Gaussian kernel is used as underlying kernel function
in (2). The bandwidth as second parameter is initially set
to 1 for a new M-Kernel, but, as we will see, it changes in
case of a merge.

3.5.2 Processing of M-Kernels

Generally, for each incoming elementXn+1, a new M-
Kernel < Xn+1, 1, 1, L1costs(n+1) > is inserted, pro-
vided thatXn+1 is not equal to the mean of an existing
M-Kernel. If the latter is the case, i.e.,∃i ∈ {1, ...,m} :
X

(n)
i = Xn+1, the associated weightc

(n)
i is incremented.

If the total number of M-Kernels exceeds
the maximum numberm after an insertion, the
two M-Kernels 〈X(n)

i , h
(n)
i , c

(n)
i , L1costs

(n)
i 〉 and

〈X(n)
j , h

(n)
j , c

(n)
j , L1costs

(n)
j 〉 closest to each

other are substituted by their merge kernel
〈X∗, h∗, c

(n)
i + c

(n)
j , L1costs(n)〉. The meanX∗ and

the bandwidthh∗ of this merge kernel minimize themerge
costs function L1costs(X, h) which measures the mean
absolute deviation between two M-Kernels:

L1costs(X, h) :=

∞∫
−∞

∣∣∣∣ c(n)
i

h
(n)
i

K
(x − X

(n)
i

h
(n)
i

)

+
c
(n)
j

h
(n)
j

K
(x − X

(n)
j

h
(n)
j

)
−

c
(n)
i + c

(n)
j

h
K
(x − X

h

)∣∣∣∣dx.

(3)

As it suffices to consider merges between adjacent
M-Kernels, an M-Kernel only storesL1costs

(n)
i :=

L1costs(X∗, h∗) which denotes the merge costs with its
successor. In case of a merge, the M-Kernel with overall
minimum merge costs is merged with its list successor. Af-
ter a merge, the merge costs of the merge kernel as well as
of its left neighbor are updated.



The lack of a closed formula forL1costs(X, h) renders
the computation of its minima difficult. The authors pro-
pose to overcome this problem with numerical approxima-
tions.

3.5.3 Drawbacks of M-Kernels

The following drawbacks of M-Kernels severely limit their
applicability:

• The unbounded support of the Gaussian kernel, which
is used as underlying kernel function, exacerbates an
efficient evaluation of M-Kernels.

• There is no theoretical foundation for the proposed
bandwidth computation. It is not ensured that the
bandwidth decreases with the sample size; but this is a
fundamental prerequisite for the consistency of KDEs
[21].

• The numerical approximation of the minima in (3)
causes additional computational effort and leads to
less accurate values.

4 Our Approach

In the following, we propose our redesign of the M-Kernel
approach as well as sophisticated extensions. Particularly
with regard to the above drawbacks, we present suitable pa-
rameter settings and improvements of essential processing
steps. Additionally, we discuss extensions in form of effi-
cient algorithms and a strategy to cope with evolving data
streams.

4.1 Kernel Entries and their Processing

Instead of M-Kernels, we use kernel entries for KDEs
over streaming data. An M-Kernel - see Section
3.5 - is characterized by〈X(n)

i , h
(n)
i , c

(n)
i , L1costs

(n)
i 〉.

On the contrary, a kernel entry is characterized
by 〈X(n)

i , c
(n)
i ,min

(n)
i ,max

(n)
i , L2costs

(n)
i 〉. Like M-

Kernels, a kernel entry stores meanX
(n)
i and weightc(n)

i .

Additionally, they are equipped with minimummin
(n)
i and

maximummax
(n)
i . In comparison to M-Kernels, we use a

global bandwidth for all kernel entries and a new definition
of merge costsL2costs

(n)
i .

For an incoming elementXn+1, we establish a new ker-
nel entry〈Xn+1, 1, Xn+1, Xn+1, L2costs

(n+1)
i 〉, provided

Xn+1 is not equal to the mean of an existing kernel entry.
If this is the case, we only increment the associated weight
of this kernel entry.

In case the total number of kernel entries exceeds
the current maximum numberm, we perform anal-
ogous to M-Kernels a merge step. More precisely,
we determine and substitute the pair of adjacent ker-
nel entries 〈X(n)

i , c
(n)
i ,min

(n)
i ,max

(n)
i , L2costs

(n)
i 〉

and 〈X(n)
j , c

(n)
j ,min

(n)
j ,max

(n)
j , L2costs

(n)
j 〉 with

overall minimum merge costs by theirmerge ker-
nel. The merge kernel is defined as〈X∗, c

(n)
i +

c
(n)
j ,min{min

(n)
i ,min

(n)
j },max{max

(n)
i ,max

(n)
j },

L2costs(n)〉.
Before we discuss the computation ofX∗, we present

the parameter settings of a KDE based on kernel entries.

4.2 Parameter Settings

Contrary to M-Kernels, which rely on the Gaussian Kernel,
we exploit a kernel function with bounded support. Kernel
functions with unbounded support lead to high evaluation
cost as every kernel contributes to the result (see equation
(1)). In this work, we decided to use theEpanechnikow
kernel:

K(x) := 0.75 · (1 − x2) · 1[−1,1](x), x ∈ R. (4)

Not only has this kernel function a simple form, its ef-
ficiency is also asymptotically optimal among all kernels
[11]. As we will see, the computation of the merge costs as
well as the evaluation of a KDE strongly rely on the simple
form of this kernel.

As already mentioned in Section 3.3, the bandwidth as
second parameter of a KDE is vital to the estimation qual-
ity. Theoretically well-founded and practically approved
bandwidth strategies [20] often assign a global bandwidth
to all kernels. However, these strategies depend on the
complete sample, which corresponds in our scenario to all
processed stream elements. Thus, the one-pass paradigm is
violated. We overcome this problem with an approximate
solution that complies with the processing requirements of
data streams. We concretely consider a simple but con-
venient bandwidth strategy, namely thenormal scale rule
[21]. For a sample withn elements and standard deviation
σ(n), this rule defines the bandwidth as

h(n) := 1.06 · σ(n) · n− 1
5 . (5)

For the sake of an online computation ofh(n), we have to
estimate the standard deviationσ(n) of the data stream in
an online fashion in amortized constant time. A suitable
estimate ofσ(n) is the sample standard deviation, which
itself can be estimated in one pass with a numerically stable
algorithm presented in [6]. Given this estimateσ̂(n), we
can compute an approximate global bandwidthĥ(n) while
consuming the data stream:

h(n) = 1.06 ·σ(n) ·n− 1
5 ≈ ĥ(n) := 1.06 · σ̂(n) ·n− 1

5 . (6)

4.3 Evaluation Strategies

The entirety of kernel entries combined with the upper pa-
rameter settings allows us to establish a KDE anytime.

Analogous to the M-Kernel approach, we define the cur-
rent KDE aftern processed elements as

f̂ (n)(x) :=
1
n

m∑
i=1

c
(n)
i

ĥ(n)
K

(
x − X

(n)
i

ĥ(n)

)
. (7)



In the following, we refer to this evaluation strategy asone-
value-evaluation. For infinite data streams, this strategy is
not suitable as the resulting KDE will become a sum ofm
Dirac delta functions, i.e., it will consist ofm singularities
X

(n)
i , i = 1, ...,m. This is the consequence of the band-

width tending to zero for increasing sample sizes.

We circumvent this problem with ourmin-max-
evaluation strategy. Remember that each kernel entry
stores a counterc(n)

i for the number of ’incorporated’ el-

ements and, additionally, the elements’ minimummin
(n)
j

and maximummax
(n)
j . We gain advantage of these local

statistics by evaluatingc(n)
i elements equidistantly distrib-

uted over[min
(n)
i ,max

(n)
i ] for each kernel entry:

f̂ (n)(x) =
1
n

m∑
i=1

c
(n)
i∑

j=1

1

ĥ(n)
K

(
1

ĥ(n)

(
x − min

(n)
i

−(j − 1)
max

(n)
i − min

(n)
i

c
(n)
i − 1

))
. (8)

This strategy ensures that the complete data range will be
covered with elements, i.e., it has an inherent smoothing.
Due to that smoothing, the problem of singularities for in-
finite data streams can not occur anymore. A necessary
requirement for the application of this strategy is that the
inner sum in (8) can be converted into a closed formula;
otherwise, the overall evaluation cost would beO(n). The
Epanechnikow kernel allows us to determine a closed for-
mula with rather simple algebraic conversions. Due to
space constraints, we have to omit a detailed discussion.

Besides the evaluation, the Epanechnikow Kernel also
plays an important role in the computation of the merge
costs.

4.4 Merge Costs Computation

Our definition of the merge costs between two kernel en-
tries also bases on the inherent objective in (2): Consider
the sum of two kernels weighted withc(n)

i and c
(n)
j over

meansX(n)
i andX

(n)
j respectively. Their merge kernel is

the kernel with weightc(n)
i + c

(n)
j , whose suitably cho-

sen mean ensures an optimum approximation of the sum.
Thus, the means and the weights are the crucial factors
during merge. For the sake of completeness, let us men-
tion that, given the min-max-evaluation strategy, we could
additionally incorporate the generated points in the merge
costs computation; but this would complicate the subse-
quent computations massively.

In the following, we examine the mean squared devia-
tion, a common measure for the similarity of real-valued
functions, to quantify the accuracy loss induced by the

merge of two kernel entries:

L2costs(X) :=

∞∫
−∞

(
c
(n)
i

ĥ(n)
K
(x − X

(n)
i

ĥ(n)

)
+

c
(n)
j

ĥ(n)
K
(x − X

(n)
j

ĥ(n)

)
−

c
(n)
i + c

(n)
j

ĥ(n)
K
(x − X

ĥ(n)

))2

dx

=
0.75

ĥ(n)

∞∫
−∞

(
c
(n)
i

(
1−
(x − X

(n)
i

ĥ(n)

)2)
1[−1,1]

(x − X
(n)
i

ĥ(n)

)

+ c
(n)
j

(
1 −

(x − X
(n)
j

ĥ(n)

)2)
1[−1,1]

(x − X
(n)
j

ĥ(n)

)
− (c(n)

i + c
(n)
j )
(
1 −

(x − X

ĥ(n)

)2)
1[−1,1]

(x − X

ĥ(n)

))2

dx

(9)

with X as theonly variable. The M-Kernel approach, in
contrast, includes the bandwidth as second variable at the
expense of a more complicated (and inaccurate) computa-
tion of the minimum. As mean of the merge kernel, we set
the minimumX∗ of L2costs(X). Thus, we minimize the
accuracy loss of the merge: the merge is optimum with re-
spect to the mean squared deviation. It is important to note
that the closer two kernels are with respect to their means,
the smaller are their merge costs. Hence, it suffices to con-
sider only the merge of adjacent kernel entries. For that
reason, we defineL2costs

(n)
i := L2costs(X∗) as cost of

merging thei-th and the(i + 1)-th kernel entry.
For illustrative purposes, we present in Figure 2 the

shape ofL2costs(X) for two kernel entries. The left
y-axis describes the weighted kernels and the right one
L2costs(X), while the x-axis describes the support of the
kernel functions as well as the possible means of the merge
kernel.

Figure 2: Merge of kernel entries witĥh(n) = 1

Concerning the existence and the computation of the
minimum ofL2costs(X), the following theorem holds:

THEOREM 1. For two arbitrary kernel entries, the min-
imum ofL2costs(X) exists and can be computed in con-
stant time.



In the following proof, we only present the essential steps
because the computation of the minimum is rather techni-
cal. In the proof, we benefit again from the simple form of
the Epanechnikow kernel.

PROOF. We consider two arbitrary kernel entries with
meansXi and Xj . In case ofXi = Xj , the minimum
of L2costs(X) equalsXi. In the following, we assume
Xi < Xj without loss of generality.

The minimum ofL2costs(X) corresponds to the roots
of its first derivative. To compute the first derivative, we
have to transform (9) into a closed formula via integra-
tion. We start with converting the integral of the squared
sum in (9) into a sum of integrals over separate prod-
ucts. We refer to the resulting integrals assummands.
Their integrands are products of two kernels with means
X, X

(n)
i , or X

(n)
j and supports[X − ĥ(n), X + ĥ(n)],

[X(n)
i − ĥ(n), X

(n)
i + ĥ(n)], or [X(n)

j − ĥ(n), X
(n)
j + ĥ(n)]

respectively. Hence, the intersection of the associated pair
of supports determines the integration borders of a sum-
mand. However, each summand that incorporatesX has
integration borders varying inX. Thus, the integration of
the summands is not straightforward due to the dependency
on the variableX. We overcome this problem by partition-
ing the support ofL2costs(X) appropriately, so that the
integration borders of each summand are uniquely defined
for an arbitraryX.

For this partitioning, we examine the relative position
of the kernel supports[X(n)

i − ĥ(n), X
(n)
i + ĥ(n)] and

[X(n)
j − ĥ(n), X

(n)
j + ĥ(n)] to each other. Given[X −

ĥ(n), X + ĥ(n)], we distinguish whether this support in-
tersects both other supports. We compute the largestk with
X

(n)
j − X

(n)
i ≥ kĥ(n), i.e.k = b(X(n)

j − X
(n)
i )/ĥ(n)c. If

k ∈ {0, 1, 2, 3}, the supports intersect. Otherwise, they do
not.

Figure 3: Integration borders fork = 0 based on the sup-
port partitioning forL2costs(X)

In case ofk /∈ {0, 1, 2, 3}, the mean of the merge kernel
is the mean of the kernel with higher weight. Ifc

(n)
i = c

(n)
j ,

X
(n)
i andX

(n)
j both minimize (9), i.e., we can set the mean

either toX
(n)
i or X

(n)
j .

In case ofk ∈ {0, 1, 2, 3}, let Ii be the integration

interval of a summand whose integrand is the product
of kernels overX and X

(n)
i (Ij analogous withX and

X
(n)
j ). In order to determineIi andIj , we slide a kernel

with continuously varying support[X − ĥ(n), X + ĥ(n)]
over the x-axis and examine simultaneously the effects on
Ii and Ij by evaluating the intersection of the supports,

i.e. [X − ĥ(n), X + ĥ(n)] ∩ [X(n)
i − ĥ(n), X

(n)
i + ĥ(n)]

and[X− ĥ(n), X + ĥ(n)]∩ [X(n)
j − ĥ(n), X

(n)
j + ĥ(n)]. For

k = 0, Figure 3 displays the different cases of intersections,
the resulting support partitioning forL2costs(X), as well
as the integration intervalsIi and Ij within each support

partition. ForX ∈ [X(n)
j − 2ĥ(n), X

(n)
i ], the computa-

tion of Ii andIj is illustrated as an example. The support
partitions fork = 1, 2, 3 can be derived analogously.

Eventually, the support partitioning delivers a piecewise
definition ofL2costs(X), so that the integration interval of
each summand in (9) is uniquely defined. Given the primi-
tive of the Epanechnikow kernel, we integrateL2costs(X)
on each support partition and finally receive a closed for-
mula. Actually, it is a polynomial of degree 5 in each par-
tition. We determine the minima of those polynomials by
calculating the roots of their derivatives, which requires to
solve quartic equations. Then we compare the ’local’ min-
ima in each partition and get the uniquely defined overall
minimum ofL2costs(X).

Overall, the support partitioning as well as the sub-
sequent computation of the minimum requires constant
time.

Now that we presented the main components of our
KDEs over data streams, we will discuss a convenient ex-
tension that allows us to keep pace with evolving data
streams.

4.5 Capturing evolving Streams

An inherent difficulty for stream analysis techniques is that
the characteristics of a data stream can vary over time. Fi-
nancial data, for instance, has typically a more volatile na-
ture rather than being stable over time. In the following, we
show how an optional extension of our technique allows us
to focus on recent trends of an evolving stream.

Let us examine an evolving stream from a formal point
of view. Remember that we consider a data stream as sam-
ple of an unknown random variable (see Section 3.1). Up
to now, we assumed the stream to be stable, i.e., all stream
elements follow the same distribution. In case of evolving
streams, their underlying distribution will change over time
and, as a consequence, also the underlying pdf we want to
estimate. In order to emphasize current trends in the den-
sity estimate, we couple our online KDEs withexponential
smoothing[10], a weighting scheme from the area of time
series analysis and forecasting.

The basic idea of this coupling is to give older data less
weight in the evaluation of an online KDE. For reasons
of simplicity, we limit the following considerations to the
one-value-evaluation strategy. Let us consider the current



KDE after an insertion of a new elementXn and before the
merge step is performed (the element shall not be a dupli-
cate):

f̂ (n)(x) =
1
n

m∑
i=1

c
(n−1)
i

ĥ(n)
K

(
x − X

(n−1)
i

ĥ(n)

)

+
1
n
· 1

ĥ(n)
K

(
x − Xn

ĥ(n)

)
(10)

for n ≥ 2 andf̂ (1)(x) = 1
ĥ(1) K

(
x−X1

ĥ(1)

)
. Hence, each ker-

nel entry is equally weighted with1/n. With exponential
smoothing, these equal weights are substituted by exponen-
tially decreasing ones. Concretely, givenα ∈ (0, 1), each
new element receives weightα and triggers a re-scaling of
older weights by a factor(1 − α):

f̂ (n)
α (x) = (1−α)f̂ (n−1)

α (x)+α
1

ĥ(n)
K

(
x − Xn

ĥ(n)

)
(11)

for n ≥ 2 andf̂
(1)
α (x) = 1

ĥ(1) K
(

x−X1

ĥ(1)

)
.

For illustration purposes, we assume the maximum
numberm of kernel entries to be unbounded and determine
the resulting weighting sequence. Forn ≥ 2 holds

f̂ (n)
α (x) = (1 − α)n−1 · 1

ĥ(n)
K

(
x − X1

ĥ(n)

)
+

n−1∑
i=2

(1 − α)n−2α · 1

ĥ(n)
K

(
x − Xi

ĥ(n)

)
+α · 1

ĥ(n)
K

(
x − Xn

ĥ(n)

)
. (12)

Instead of equal weights1n for each kernel, we now have
’discounted’ weights(1−α)n−2α and(1−α)n−1 for older
kernels andα for the new kernel. Generally, the weighting
sequence sums to 1 for eachn ∈ N. This is a necessary pre-
requisite for each KDE as otherwise the integration of the
pdf to 1, a fundamental property, is violated. M-Kernels,
for example, also support a weighting by means of a fade-
out function [5], but the resulting weighting scheme vio-
lates this prerequisite.

An aspect not yet discussed is the setting ofα. With α,
we can control the impact of old and new data respectively.
The higherα is set, the higher recent data is weighted in
the current KDE. The lower it is set, the higher older data
is weighted.

Let us mention that this weighting scheme models a kind
of ’smooth’ sliding window. Sliding windows are a popular
technique in data stream processing [3] where queries are
often answered with respect to recent data as older data typ-
ically can not be stored due to limited system resources. In
contrast to common sliding windows, where older elements
are ’abruptly’ discarded, we smoothly fade them out.

4.6 Resource-awareness

To run within a system with limited resources, the resource-
awareness of an analysis technique is a crucial factor. Com-

plex systems for the analysis of multiple data streams will
run many analysis tasks simultaneously, given only a lim-
ited amount of computational resources. Hence, the tech-
niques that address these tasks must be able to adapt to
changing resources. Our technique meets this requirement
due to its inherent mechanisms for a seamless resource
adaptation. Since evaluation as well as storage cost are de-
fined in terms of kernel entries, we only discuss the adap-
tation to a changing amount of available memory. If the
available amount of memory increases, we establish new
kernel entries for new elements - except duplicates - with-
out merging until the new maximum capacity is reached. If
the memory decreases, we simply perform the merge step
sufficiently often to reduce the total number of kernel en-
tries until they fit in the available memory.

4.7 Implementation Aspects

For practical purposes, we present two suitable implemen-
tations of our approach. While one implementation bases
on a sorted list, the other one bases on trees. Besides the
underlying data structures, their policies for the update of
the merge costs distinguish the implementations from each
other.

4.7.1 List-based Implementation

Similar to M-Kernels, we can organize the entirety of ker-
nel entries〈X(n)

i , c
(n)
i ,min

(n)
i ,max

(n)
i , L2costs

(n)
i 〉, i =

1, ...,m, in a linked list sorted by meanX(n)
i .

Insertion Step

If a new arriving element equals the mean of an existing
kernel entry, we increment its weight. If not, we insert a
new kernel entry in compliance with the ordering by mean.

A new element also affects our bandwidth setting due to
the dependency on the number of processed elements. As
the bandwidth is part of our merge costs function - see (9) -
the merge costs of all kernel entries are also affected. Con-
sequently, we have to update all merge costs for each new
element. Wile performing this update, we can determine
the current kernel entry with overall minimum merge costs
to simplify the merge step.

Merge Step

In case of a merge due to an exceeded maximum capac-
ity m, we substitute the adjacent kernel entries with overall
minimum merge costs by their merge kernel. The merge
kernel is located between its associated kernel entries, i.e.,
the merge step does not violate the list ordering. After the
merge, we update the merge costs between the merge ker-
nel and its left neighbor (if existent) and that between the
merge kernel and its right neighbor (if existent).

Algorithm Analysis

The insertion of a new element has complexityO(m) due
to the update of all merge costs. If the kernel entry with



minimum merge costs is determined, the merge step has
O(1). Overall, the complexity of the list-based implemen-
tation isO(m).

4.7.2 Tree-based Implementation

The tree-based implementation has a substantially lower
complexity compared to the list-based one. This imple-
mentation is approximate because we do not recompute the
merge costs of all kernel entries after an update of the band-
width; we only recompute the merge costs of those entries
that are ’locally’ affected by an insertion or a merge.

Let us examine the requirements for an efficient process-
ing of a set of kernel entries. On the one hand, an ordering
by mean would facilitate the efficient insertion and search
of kernel entries. On the other hand, an ordering by merge
costs would facilitate the efficient detection of the kernel
entry with minimum merge costs. We satisfy both require-
ments simultaneously with a data structure consisting of a
binary search tree and a priority search tree. We store the
kernel entries in a binary search tree (mean tree) with the
meanX

(n)
i as underlying ordering criterion. Additionally,

we maintain a priority search tree termedmerge costs tree
with entries〈L2costs

(n)
i , X

(n)
i 〉 and the merge costs as or-

dering criterion.

Insertion Step

For a new element, either an already inserted kernel entry
will be updated or a new entry is inserted into the mean
tree. In both cases, we recompute the merge costs between
the associated kernel entry and its predecessor (if existent)
and that between this entry and its successor (if existent).
In order to keep both trees consistent, we remove the as-
sociated ’old’ merge costs from the merge costs tree and
insert the new merge costs.

Merge Step

If the overall number of kernel entries exceedsm after an
insertion, we merge the adjacent kernel entries with mini-
mum merge costs. We remove the minimum merge costs
from the merge costs tree and determine the associated ker-
nel entry in the mean tree. In compliance with the mean
tree ordering, we substitute this kernel entry by its merge
kernel and remove its successor. Finally, we update the
merge costs between the merge kernel and its predecessor
(if existent) and that between the merge kernel and its new
successor (if existent). While doing so, we keep the merge
costs tree consistent by removing and inserting the associ-
ated merge costs.

Algorithm Analysis

The insertion of a new element as well as the merge step
both have complexityO(log m). Hence, the overall perfor-
mance of the tree-based implementation isO(log m) per
stream element, compared toO(m) of the list-based one.

Comparison with list-based Implementation

Due to the upper procedure, only kernel entries locally af-
fected by an insertion or a merge receive an update of their
merge costs with respect to the current bandwidth. For
that reason, the tree-based implementation gives an approx-
imate solution. On the contrary, the list-based implementa-
tion recomputes all merge costs in case of an updated band-
width at the expense of higher processing costs. However,
merges are most likely to occur in dense data regions where
the probability for new elements will be higher than in
sparse regions. For the tree-based implementation follows
that the merge costs in these regions are with a high proba-
bility up-to-date, i.e., this implementation is virtually self-
adaptive. The results of our experimental study showed that
the loss in accuracy by this approximation only had minor
effects on the overall quality of the resulting KDEs whereas
the processing time substantially improved compared to the
list-based implementation.

4.7.3 Implementation of Exponential Smoothing

To implement the exponential smoothing, we have to
weight a new kernel entry with weightα and rescale the
other weights with(1 − α) (see also equation (11)). Thus,
smoothed KDEs have insertion cost ofO(m) for the list-
based and the tree-based implementation. This deteriorates
the processing cost of tree-based KDEs fromO(log m) to
O(m).

5 Experimental Evaluation

We scrutinized our approach in a thorough experimental
study whose core results are presented in the following.
With the experiments, we primarily addressed the follow-
ing questions: How do our KDEs perform for different real-
world data streams? How is their runtime behavior in terms
of processing time? How do they react to sudden changes
of their available amount of memory?

5.1 Settings

5.1.1 Techniques

According to Section 4, we can construct different vari-
ants of KDEs with our approach. On the one hand, we
can use list-based KDEs, and, on the other hand, tree-based
ones. For both, we can apply the one-value-evaluation or
the min-max-evaluation strategy. As list-based KDEs with
min-max-evaluation did not significantly differ from the
other techniques, we do not present their results for the
sake of clarity. In order to get an impression of the per-
formance of our KDEs, we included M-Kernels as com-
petitive technique in our experiments. In the subsequent
charts, we associated each technique with a specific line
type as displayed in Figure 4. All techniques were imple-
mented with PIPES [17], our Java library for advanced data
stream processing and analysis.



Figure 4: Line types of the techniques

5.1.2 Data Sets

In order to assess these techniques, we considered
synthetic as well as real-world data streams. We
chose a set of heterogeneous real-world data streams
from the time series archive of UC Riverside [14]:
BURSTIN, NETWORK, FLUIDDYNAMICS, PACKET,
and POWERDATA. Those data streams originate from
diverse fields like facility monitoring or networking
and exhibit different characteristics, e.g. noisy/smooth,
stationary/non-stationary. We additionally included a syn-
thetic data set, called Claw, whose underlying density is a
mixture of Gaussian densities.

5.1.3 Quality Measure

While processing a data stream, we continuously evaluated
the quality of the current KDÊf (n) by comparing it with
the best offline KDEf̂opt. For the real-world streams, the
best offline KDE uses the Epanechnikow kernel and the
normal scale rule and relies on the complete stream. For
the synthetic stream, the best offline KDE refers to the true
density. We measured the quality off̂ (n) with respect to
f̂opt in terms of the mean squared error:

MSE(n) :=
1

500

500∑
i=1

(
f̂opt(xi) − f̂ (n)(xi)

)2

(13)

wherex1, ..., x500 is an equidistant partition of the support
of f̂opt.

5.2 Estimation Quality

An important question is whether our KDEs ’converge’ in
terms of a decreasing MSE for an increasing number of
processed elements, i.e., the better the quality the more el-
ements are processed? In order to answer this question, we
continuously compared̂f (n) andf̂opt by evaluating the cur-
rent MSE always after 500 elements had been processed.
Generally, the techniques were allowed to store 100 M-
Kernels and 100 kernel entries respectively. Figure 5 dis-
plays the experimental results for the different data streams.
It is worth mentioning that for the case of CLAW, where
we compared with thetrue density, the same trends hold.
Specifically, we observed the following trends:

5.2.1 Performance of our KDEs

The results indicate that our KDEs are very robust since the
MSE decreased for an increasing number of processed el-
ements. In a few cases, the quality temporarily worsened,

indicated by an increased MSE. This can be explained with
the temporary emphasis on features that receive less weight
in the best offline KDE. Overall, our KDEs achieved excel-
lent rates of convergence and succeeded in estimating the
densities underlying the examined data streams.

5.2.2 Performance of M-Kernels

M-Kernels were clearly inferior to our KDEs; they mostly
failed to capture the unknown density. M-Kernels exhib-
ited a mostly constant MSE with high absolute values, i.e.,
they did not improve anymore. A closer examination re-
vealed that they basically suffered from an inappropriately
chosen bandwidth. This mostly induced an oversmoothed
estimation that hid important details.

5.2.3 List- vs. tree-based KDEs

While list-based KDEs ensure that the kernel entries are al-
ways up-to-date with respect to the bandwidth, tree-based
KDEs only update locally affected kernel entries. How-
ever, the differences in quality between tree- and list-based
KDEs were only marginal; their performance was almost
identical. If we take the higher processing costs of list-
based KDEs into account, we can state that tree-based
KDEs are the better choice for practical purposes.

For tree-based KDEs, we additionally examined the
min-max-evaluation strategy. For BURSTIN, this strategy
was superior to one-value-evaluation. We traced this ef-
fect back to the smoothing of this strategy in sparse data
regions.

5.3 Processing Time

An aspect of utmost importance is the processing time of an
online technique. We provide a notion of the computational
complexity of the examined techniques by comparing the
time they required for processing a complete data stream.
We set the parameters as in the last experiment and mea-
sured the time in seconds while the stream was processed.
Figure 6 displays the results. They indicate that M-Kernels
had the longest processing time due to the computational
effort for the numerical approximation of the mean of the
merge kernel. Our list-based KDEs were faster than M-
Kernels. However, both were clearly inferior to tree-based
KDEs. This effect results from the logarithmic cost for an
insertion whereas linear costs arise for list-based KDEs.

Another aspect we examined is the influence of the eval-
uation strategies - see Section 4.3 - on the processing time.
There, the differences between tree-based KDEs with one-
value-evaluation and with min-max-evaluation were mar-
ginal.

5.4 Resource-awareness

We emphasized in this work the necessity of resource-
awareness which is a fundamental prerequisite for the use
of an online analysis technique within a complex system.



Figure 5: Logarithmically scaled MSE for different data streams

Figure 6: Processing time in seconds

For that reason, we examined how our KDEs react to sud-
den changes of their available amount of memory. We stud-
ied the arising effects for tree-based KDEs with one-value-
evaluation over a stream of Claw data. While processing
the stream, we randomly varied the maximum number of
kernel entries from minimum 10 to maximum 100 each
5000 processed elements. By examining the continuously
computed MSE, we can study the impact of those memory
modifications on the quality of the KDEs.

Figure 7 summarizes the results of this experiment.
While the x-axis displays the number of processed ele-
ments, the left y-axis displays the MSE and the right y-axis
the number of kernel entries. The curve plots the MSE and

Figure 7: MSE of tree-based KDE for a changing number
of kernel entries

the crosses depict the current number of kernel entries. We
observe that our KDEs react very flexible to changes of the
maximum number of kernel entries. Note that even signif-
icant decreases of the kernel entry number only caused a
momentary loss in accuracy; afterward the KDEs ’recov-
ered’ again, indicated by a henceforth decreasing MSE.

6 Conclusions

In this work, we tackled the adaptation of kernel-based den-
sity estimation to the data stream scenario in compliance
with rigid processing requirements. Kernel density estima-
tion is among the most appealing nonparametric estimation



techniques in statistics and its adaptation to data streams
provides a sophisticated base for further stream analysis.

We proposed a new solution whose basic idea is to sum-
marize processed elements with simple statistics. These
statistics are stored in kernel entries which are the essen-
tial building blocks of an estimator. An intelligent merge
scheme for those kernel entries allows us to adapt to chang-
ing system resources. To emphasize recent trends and drifts
in the stream, we presented an optional weighting strategy
to fade out the weight of older data. Besides these basic
principles of our technique, we discussed suitable imple-
mentations. While the list-based estimator has the high-
est accuracy at the expense of linear processing cost, the
tree-based estimator has logarithmic processing cost at the
expense of a slight inaccuracy. Our experimental results
for real-world streams indicate that both methods provide
a high degree of accuracy which improves constantly the
more elements they process. In comparison to M-Kernels,
a previous kernel method for data streams, our tree-based
estimators were superior as they combined much higher
accuracy (on average two orders of magnitude) with sub-
stantially lower processing cost (also roughly two orders of
magnitude).

In our future work, we will generalize our approach to
multidimensional data streams. This requires to develop
new data structures which support an efficient storage of
kernel entries as well as a fast evaluation of the estimator.
Another aspect we will address is the coupling of our
technique with change point detection methods as known
from stochastic process theory in order to locate and react
to concept drifts in the stream.
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