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Abstract processing requirements like processing the stream in one
pass [8].

A variety of real-world applications heavily relies on the  Taking those requirements into account, we address in
analysis of transient data streams. Due to the rigid processhis paper the adaptation of a fundamental building block
ing requirements of data streams, common analysis tecksf many analysis techniques, namely density estimation, to
niques as known from data mining are not applicablethe data stream scenario. The main objective of density es-
A fundamental building block of many data mining and timation is to reveal the unknown probability density func-
analysis approaches is density estimation. It provides on of a distribution, given solely a representative sample
well-defined estimation of a continuous data diStribUtion,of values. A density estimator is a Comprehensive statisti-
a fact which makes its adaptation to data streams dESirablea| model of the process described by the Samp|e values.
A convenient method for denSity estimation utilizes ker'With a well-defined density estimator at hand, a Variety of
nels. However, its computational complexity collides with gata analysis issues can be addresskrgéneral, density
the processing requirements of data streams. In this worlgstimation provides a classical basis across statistics for
we present a new approach to this problem that combinegirtyally any kind of data analysis in principle, including
linear processing cost with a constant amount of allocated|ystering, classification, regression, time series analysis,
memory. We even support a dynamic memory adaptatioRctive learning, and so on’.[11]. We aim to provide a
to changing system resources. Our kernel density estimgpundation for the application of these analysis tasks to data
tors over streaming data are related to M-Kernels, a previstreams by adapting density estimation in compliance with
ously proposed technique, but substantially improve themhe aforementioned processing requirements.
in terms of accuracy as well as processing time. Theresults |\t roai.world applications over streams, we have

of an experimental study with synthetic and real-world datah0 a priori knowledge about the stream. For that reason
streams substantiate the efficiency and effectiveness of OWe class ohonparametricdensity estimation approaches '
approach as we_II as its_superiority to l_\/I-KgrneIs with e is very appealing as they make no assumptions on the un-
spect to estimation quality and processing time. known density; the data speak strictly for themselVes

) [21]. Since data streams often deliver observations of con-
1 Introduction tinuous, real-valued distributions, e.g. temperature, heart

A variety of heterogeneous real-world applications dependgate’ we cpnfme_ the subsequent qonS|derat|ons to contin-
on an adequate online analysis of massive data stream ous density estimators. A theoretically well-founded and

In order to gain insight into the characteristics of those2/5C Practically approved approach for the nonparametric

streams, one could apply data mining and analysis t(:_.Chigstimation of continuous distributions utilizes kernels [20],
nigues. They provide for instance functionality to reveal in- 21]. Kernel-based density estimators can approxiraage

teresting patterns, detect outliers, or classify the data. Thg.istribution arbitrarily good (in pro.babiligti.c terms), pro-

constantly growing volume of data streams as well as thei ided that the assqmated sample is s_uff|C|e.ntIy .Iarge [21].
volatile nature, however, render the direct application of tence, an atljgpk))tatlﬁnholf kerne_l (_jensﬁ/ estlmat;cr)]n tr? data
common 'offline’ mining techniques difficult; the data ar- streams would be highly promising. However, the heavy

rives faster than it can be analyzed. In fact, to be applicablf;cfompm""t'on"’lI cost of kernel density estimators is a se-

to data streams, an analysis technique has to meet stringe\ﬁqre _obstacle; their memory allocation |s_I|near in the sam-
ple size, accompanied by linear evaluation cost. As these

) facts violate the aforementioned processing requirements,
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1.1 Our Contributions also store local statistics to summarize elements, but their

In this work, we tackle the problem of resource-aware ker_appllcatlon and the underlying summary statistics distin-

nel density estimation over streaming data. In [13], Wegwsh both t'echnlques from egch ot.her. . .
will present a short version of this work. While [13] only Another important aspect is the incorporation of differ-

sketches the basic idea, this work presents its detailed di 2Nt mining techmques Into a stream mining system. Stat-
cussion. Generally, our main contributions are: tream [22] for instance is a tool kit for the simultaneous

analysis of multiple time series. Gigascope [7] as another
¢ We redesign and extend the general idea of M-Kernele€xample is a stream database providing mining and analy-
[5], a previously proposed approach for kernel densitysis techniques for network traffic.
estimation over data streams. In fact, our approach Inthis work, we specifically tackle the adaptation of ker-
solves major drawbacks of M-Kernels and providesnel density estimation to data streams. A short version of
sophisticated extensions. this work sketching the basic idea will be presented in [13].
) ) . i In comparison to, this work not only thoroughly discusses
e Our approach complies with the rigid processing re-g| details, but also presents concrete implementation con-
quirements of data streams: We process each elemeggts and evaluation strategies, complemented by an exten-
once in constant time while building an estimator on- ge experimental study.
line. The estimator allocates a constant amount of - Generally, density estimation as research topic in math-
memory and dynamically adapts to changing systemynatical statistics is thoroughly discussed in [20, 21]. In
resources. It can keep pace with evolving streams bYja(5 mining and analysis, it serves as building block for
emphasizing recent data with the help of exponential, piethora of probabilistic learning methods [11]. Biased
smoothing. sampling for instance exploits kernel density estimates to

« For the core operation of the algorithm, the merge ofm&intain its samples [15]. Database research also reaps the
two adjacent kernels, we introduce a new cost meapen_eﬂts of kernel de.n5|ty estimation, e.g. selectivity esti-
sure. It guarantees optimum merge kernels and is inMation of range queries [4], [16]. _ _
expensive to compute. _ The comp.utatlonfal chpIexny of kernel den5|ty_ estima-
tion renders its application to massive data sets difficult. In
e We complement our analytical results by a discus-order to reduce this complexity, [11] provides an approx-
sion of efficient implementation techniques. A tree-imate solution for offline data sets. The basic idea is to
based implementation ensures that the processing cosstablish a dual-tree structure: one tree partitions a given
is logarithmic in the size of the allocated memory; it set of training data and the other one the query set. A set of
also allows an efficient evaluation of an estimator.  query points can be efficiently evaluated with a simultane-
. . . ous traversal of both trees. Another approximate solution
e Athorough experimental study confirms that our esti-o o tidimensional data relies on a multi-pole based algo-
mators perform well for synthetic and real-world data jthm [18]. This technique provides online computable ker-
streams and that they are superior to M-Kernels. | gensity estimators by maintaining a multivariate Taylor

The outline of this paper is as follows. In Section 2, we sc_e_ries expansion of the estimator. Concern_ing their applica-
discuss related work. We prepare the ground for our apbility to data streams, both approaches did not address a
proach by introducing our data stream model, its process\1ar|able,.llm|ted amount of available memory as well as
ing requirements, kernel density estimation, and M-Kernel$he tracking of evolving streams (see also Section 3.1).
in Section 3. In Section 4, we discuss the details of our ap- There are also initial approaches for kernel density es-
proach. Section 5 presents the results of an experimentiimation over data streams. [19] presents a kernel-based
study. Finally, we conclude with a summary and an out-Solution for the selectivity estimation of range queries over

date local variances with a kd-tree-like structure on top of a
2  Related Work continuously maintained sample. This approach has prob-

lems with capturing evolving streams. As already men-

The analysis and mining of transient data streams has comfyned in Section 1, M-Kernels are another technique for
to the fore in recent years. [9] gives a comprehensivecomputing kernel density estimators over one-dimensional
overview of arising questions, challenges, and associategata streams. Due to their relevance for this work, we take
techniques for mining data streams. For an adaptation closer look at them in Section 3.5.
to data streams, mining algorithms have to meet specific
processing requirements [8]. Up to now, several core aI3 Preliminaries
gorithms of data mining were successfully adapted to data
streams, e.g. classification [2]. In this section, we first present our underlying data stream

In [1], the authors address the problem of clusteringmodel and its processing requirements. Then, we give a
evolving data streams. They use so-called microclusterbrief introduction to kernel density estimation. We point
to periodically store local and temporal summary statisticsout the problems of its adaptation to data streams, followed
of the current clusters. The kernel entries we later preserty a detailed discussion of M-Kernels.



3.1 Data Stream Model Density estimation, a core topic in mathematical statistics,

A one-dimensional data stream consists of an unbounde%ttends to this problem and provides suitable methods to es-

sequenceX,, X,. ... of numbers withX; € R for i € N. timate a pdf with the help of a representative sample. Para-

Except otherwise stated, we assume the stream to be at ear(r:hetnc approaches assume tidalls in a specific paramet-

time instant a sample with independent and identically dis—C family, e.g. Gaussian densities. In contrast to, nonpara-

tributed ¢id) observations of an unknown continuous ran-rTnheégg prrrgggrr::: zgr?a Cg: a;su(rar;lair?ng Ss,f;]icmsf)lgmg':sf eon
dom variableX. The premise of independence of two ar- pp y app 9 y y

) . the sample. Hence, they avoid specifying the wrong para-

bitrary stream elements is reasonable as data sources Oftﬁqnetric familv as it can occur with parametric aporoaches

send their elements autonomously, e.g. traffic sensors. The y P IC app ¥
A theoretically well-founded and practically approved

premise of an identical distribution also holds for most ap'nonparametric approach is kernel density estimation [21]

plications. The case of a stream whose distribution chang . : X i
will be separately discussed in Section 4.5. e[.ao]' A kernel den_srty es(trllgn_ator(}_(DE) with kernel func
tion K andbandwidth h'™ is defined as

In general, these assumptions allow us to apply a variety

of statistical analysis techniques to determine meaningful sn) o . L "1 x—X;
models of a stream, e.g. cluster, decision trees. (z) := n Z ) B(n) e e R (1)
i=
3.2 Processing Requirements for independent and identically distributed observations

To keep pace with transient data streams, an online analysgigl’ ., Xn drawn from a continuous distribution with un-

; : : 2“Known pdf f. Essentially, a KDE is the overall sum of
:eecat?rlg;%r:]tis[g]? meet the following stringent processin bumps’ centered at each observati&n While the band-

width (") determines the width of each bump, the kernel

1. Each element is processed only once. function determines its shape. In the following, we refer to
those bumps deernels. Figure 1 displays two KDEs based

. The per-element processing time is constant. on different bandwidths for a sample consisting of 7 obser-

. vations and with the Gaussian kernel as kernel function.
. The amount of allocated memory is constant.

2
3
4. Avalid model is available anytime.
5. The models incorporate changes in the data stream. .,
6

. The provided models should be equivalent to their of-"|
fline counterparts.

As the practical applicability of an analysis technique alsg of———4ast e

depends on whether it can be integrated into complex sys-

tems, we add another processing requirement: Figure 1: Kernel density estimators and underlying kernels

_ _with (left) (") = 0.2 and (right)n(™ = 0.4

7. A model can adapt its allocated memory to changing
system resources anytime. The KDEs in this figure indicate that the bandwidth sig-

With respect to these requirements, we specifically alimn|f|cantly affects the shape of a KDE. In fact, an adequate

to provide kernel density estimators over data streams setting of the bandwidth is of utmost importance for the
P y " quality of a KDE and considerable research effort has been

spent for the development of appropriate bandwidth strate-
gies [20]. Figure 1 provides a grasp of the effects that arise
One of the core concepts in mathematical statistics is th&rom varying the bandwidth. If the bandwidth is chosen
probability density function (pdf). Essentially, each con- too low, the KDE is undersmoothed and introduces spuri-
tinuous random variabl& has a unique pdf. A pdfisa ous details. If the bandwidth is chosen too high, the KDE
positive, real-valued function which integrates to one. Itis oversmoothed and hides important details. To guarantee
provides a comprehensive summary %f we know the probabilistic convergence, the bandwidth has to decrease
probability of each possible outcome &f. Hence, the with the sample size [21]. For sample sizes converging to
knowledge off is crucial to the analysis ok. Let for infinity, the bandwidths tend to zero. Then, the KDE is a
instanceX describe the heart rate of a patient. Grantedsum of Dirac delta functions at the sample points [21].
that the associated pdf is known, we can compute amongst In contrast to the bandwidth, the setting of the kernel
other characteristics mean and variance or determine thi@nction is minor [20]. It mostly suffices to choose a ker-
probability that the heart rate lies above a certain thresholdhel function that is a density itself, e.g. Gaussian kernel,
In real-world scenarios, however, neithgrnor its pdf ~ Uniform kernel, Epanechnikow kernel. Note that a KDE
is known. Typically, we only have observations &fin as sum of kernels inherits among other properties continu-
form of a sampleXy, ..., X,, with X; e Rfori =1,...,n. ity and differentiability from its kernel function. From a

3.3 Kernel Density Estimation



practical point of view, it is advisable to choose a boundedkernel with mean Xi(”) and bandwidth’zf;") that is addi-

kernel function as it reduces for a given point the number Oftionally weighted withe™ . The overall sum of M-Kernels
kernels to evaluate. If the kernel function has an unboundeggnstitutes the current KDE after processed stream ele-

support, each kernel must be evaluated. ments:
As already mentioned in Section 2, kernel density esti-
mation has become highly relevant in various application 2(n) 1 & cl(.") x — Xi(”)
scenarios. Apart from the histogram, the kernel estima- F@) = n Z W W @
tor is probably the most commonly used estimator and is =1 i
certainly the most studied mathematicdll21]. Its broad with cl(n) — . While n, the number of

acceptance results from the combination of simplicity with ; :
convenient mathematical properties [20]. First, a KDEproqessed stream elements, contlr)uously.mcreases, the
: ' maximum number of M-Kernels is restricted ton.

strictly relies on the sample without a priori distribution as-
sumptions, e.g., membership of a family of standard distri-TO keep the number of M-Kernels and therefore the

butions. Second, a KDE is asymptotically unbiased. Third amount O; allor(]:ated memo:y confstant, M-Kernels cand
a KDE is consistent in terms of the mean integrated square ? merged. The accuraf)y 0SS 0 é Merge 1S measure
error, i.e., the more sample points, the better the estimatiolith merge costsL1costs; *. The entirety of M-Kernels
quality. Fourth, compared to histograms, the common settX ™ 1™ ™ Licosts(™),i = 1,...,m is organized in
ting in database systems, KDEs have a higher rate of cory Jist sorted bei(n)-
vergence, can produce smooth estimates, and do not need
to know the range of the support in advance. 3.5.1 Parameter Settings

Finally, let us mention that kernel density estimation

was also discussed for the case of dependent data [12], b-LIJ—Pe Gaussian kerr_1e| is used as underlying k.el’l’.le.| .function
in the context of stochastic processes. In (2). The bandwidth as second parameter is initially set

to 1 for a new M-Kernel, but, as we will see, it changes in

3.4 Kernel Density Estimation over Streaming Data ~ @Se of amerge.

The aforementioned benefits of kernel density estimatior8.5.2 Processing of M-Kernels
recommend its adaptation to data streams as we could ga&l v f hi . | M
meaningful insights into the characteristics of the stream >SNe'aly, or eac mcomln%Herl?memnﬂ, a new -
A suitable adaptation can also serve as foundation for thiernel < Xy, 1,1, Llcosts > is inserted, pro-
application of common offline, density-based mining tech-\l\//'ldsd th?t)li;”rhl IIS trt]ot _ethrJ]aI to the rgfan OI an eX|s.t|ng
niques to streams. (n)erne. e latter |§ e cas_e, |.”)z_ e {1,...,m} :
Since we assume a data stream to beidrsample of X; ~ = X1, the associated We'ghi is incremented.
an unknown continuous distribution (see Section 3.1), the |f the total number of M-Kernels exceeds
adaptation of kernel density estimation seems straightforthe maximum numberm after an insertion, the
ward. But the computational cost of KDEs collides with two  M-Kernels (XM, 0, ™ Licosts™)  and
the processing requirements presented in Section 3.2: AC{'XJ(-"), R elm) Llcosts(.”)> closest to each
cording to (1), a KDE requests memory linear in the sam-other are ~ substituted by their merge kernel
ple size, i.e. in the size of the stream. Even if large amount X+ h*,cg”) + ci.’b),Llcosts(”)). The meanX* and

of data could be stored, the use of KDEs will become UNthe bandwidth* of this merge kernel minimize theerge

feasible due to high evaluation cost. Furthermore, commoR ¢t function Llcosts(X, h) which measures the mean
bandwidth strategies require access to the complete samplg, < ;|te deviation betweén two M-Kernels:

i.e., we must store each processed element. Hence, kerne

density estimation in its original form can not be directly 0 (n) ()
applied to data streams. Llcosts(X,h) := / LK(u)
A naive approach for an adaptation is to continuously hﬁ") hE”)

— 00

maintain a constant-size sample of the already processed (n) (n) (n) (n)
elements. Then, one can build a KDE anytime on top ofthe  ¢; (w - X; ¢t K(:L’ - X)

current sample elements. However, the estimation quality + B B - h L da.

will not significantly improve anymore after the sample has J J 3

been initialized since the consistency of KDEs presupposes ®)

an increasing sample size. As it suffices to consider merges between adjacent

M-Kernels, an M-Kernel only stores.lcosts” :=
Llcosts(X*, h*) which denotes the merge costs with its
In [5], the authors proposed M-Kernels for computing successor. In case of a merge, the M-Kernel with overall
KDEs over one-dimensional data streams. This techniqueninimum merge costs is merged with its list successor. Af-
only partially complies with the processing requirementster a merge, the merge costs of the merge kernel as well as
presented in Section 3.1. Essentially, [drKernel is a  of its left neighbor are updated.

3.5 M-Kernel Approach



The lack of a closed formula fdt1costs(X, h) renders  overall minimum merge costs by theimerge ker-
the computation of its minima difficult. The authors pro- nel.  The merge kernel is defined a@(*,aﬁ") +
pose to overcome this problem with numerical approxima- (») . . (n) (n)

: c; ', min{min; -
tions. J ¢ v
L2costs™).

Before we discuss the computation &f*, we present
the parameter settings of a KDE based on kernel entries.
The following drawbacks of M-Kernels severely limit their
applicability: 4.2 Parameter Settings

, min§-n)}, max{maz; ", max;n)},

3.5.3 Drawbacks of M-Kernels

e The unbounded support of the Gaussian kernel, Whid?gr:at:(arl)o/iioal\ﬁ_efﬁgl]?ﬁiggf?wﬁ%gﬂ;gic?ggssg? lfgarrr;gl,
is used as underlying kernel function, exacerbates aﬁlmcti pn with unbounded support lead to hipfl evlaluation
efficient evaluation of M-Kernels. ons €d support le g

cost as every kernel contributes to the result (see equation
e There is no theoretical foundation for the proposed(1)): In this work, we decided to use tiigpanechnikow
bandwidth computation. It is not ensured that thekemel:
bandwidth decreases with the sample size; but this is a o 12y
fundamental prerequisite for the consistency of KDEs K(z):=075-(1=2%) Aay(@),z €R (4)

[21]. Not only has this kernel function a simple form, its ef-
. L . . ficiency is also asymptotically optimal among all kernels
e The numerical approximation of the minima in (3) 111}, As we will see, the computation of the merge costs as

causes additional computational effort and leads Q|| a5 the evaluation of a KDE strongly rely on the simple
less accurate values. form of this kernel.

As already mentioned in Section 3.3, the bandwidth as
4 Our Approach second parameter of a KDE is vital to the estimation qual-
ity. Theoretically well-founded and practically approved

In the folrl10wmg, :/lve prop%s_,et_ou; rgdes:gn .Of the I';A'f.err}el&andwidth strategies [20] often assign a global bandwidth
approach as wetl as sophisticated extensions. Farticliarngy o yemels, However, these strategies depend on the

with regard to the above drawbacks, we present suitable P%’omplete sample, which corresponds in our scenario to all

" : . . ! rngocessed stream elements. Thus, the one-pass paradigm is
steps. Addltlonally, we discuss extensions in form_ of eff"violated. We overcome this problem with an approximate
cient algorithms and a strategy to cope with evolving datasolution that complies with the processing requirements of
streams. data streams. We concretely consider a simple but con-

) ) ) venient bandwidth strategy, namely thermal scale rule
4.1 Kernel Entries and their Processing [21]. For a sample witm elements and standard deviation

Instead of M-Kernels, we use kernel entries for KDEsc ", this rule defines the bandwidth as
over streaming data. An M-Kernel - see Section _
) ) ) R :=1.06-0™ .n"5. 5
3.5 - is characterized byx™ h™ ™ Licosts™). oo ®)
On the contrary, akernel entry is characterized For the sake of an online computation/gf”), we have to
by <Xi(”),cE"),nLinE"),maxE”), L2costs§")>. Like M-  estimate the standard deviatiof® of the data stream in
Kernels, a kernel entry stores me}i’lﬁ") and weightcg"). an .onllne fash|o_n in amortized constant time. A swta}ble
estimate ofs(™ is the sample standard deviation, which
) ) i itself can be estimated in one pass with a numerically stable
maximumsmaz; . In comparison to M-Kernels, we use a algorithm presented in [6]. Given this estimat&", we
global bandwidth for all kernel entries and a new definition 5, compute an approximate global bandwilith) while
of merge costi2costs§”). consuming the data stream:
For an incoming elemen¥,,  ;, we establish a new ker-

T n) =% ~ h(n) . 5 -3
nel entry(X, 11,1, Xy 41, Xpi1, L2costs™ ™), provided h™ =1.06-0 -n"5 ~ A" :=1.06- 6™ -n"5. (6)
X,+1 is not equal to the mean of an existing kernel entry. ) .
If this is the case, we only increment the associated weight-3  Evaluation Strategies

S

Additionally, they are equipped with minimumin.™ and

n

of this kernel entry. . The entirety of kernel entries combined with the upper pa-
In case the total number of kernel entries exceedsameter settings allows us to establish a KDE anytime.
the current maximum numbem, we perform anal- Analogous to the M-Kernel approach, we define the cur-

ogous to M-Kernels a merge step. More preciselyrent KDE aftern processed elements as
we determine and substitute the pair of adjacent ker-

nel entries <X§n'),cgn'),nLinz(7’),maxz(."),L2005ts§7")> FO () = 1 i an) 1°d i Xl-(n) @
and <X](v"),c§-"),min§"), max;n), LQCostsgn)> with " on ’




In the following, we refer to this evaluation strategyos®-  merge of two kernel entries:
value-evaluation For infinite data streams, this strategy is

not suitable as the resulting KDE will become a summof Q) r— x™
Dirac delta functions, i.e., it will consist of. singularities L2costs(X) == / (Bl(n) (Tn;)
Xi(”),z' = 1,...,m. This is the consequence of the band- —oo
width tending to zero for increasing sample sizes. e x ™ MM\ 2

We circumvent this problem with oumin-max- = K( ) K( = ) dx

. h(n) h(n) h(n) h(n)
evaluation strategy. Remember that each kernel entry -
stores a counter;”) for the number of 'incorporated’ el- _ 0.75 / (C(n) (1_ <£C — Xi(n))Q) ) (ac — Xz-(n))
ements and, additionally, the elements’ minimumn§”> h() ’ () AN
and maximumnaxlg.”). We gain advantage of these local oo x™ . x™
statistics by evaluating™ elements equidistantly distrib- + cﬁ") (1 — (Tn;) )1[71,1] (ﬁ)
uted over{mz'ngn), mawz(-")] for each kernel entry: ) 5
— (C(n) +C(n))(1— (xA_X) )1[_1 1](xA_X> dx
! J B ’ h(n)

)

R 1N 1 1 . (n)
fM@) = = g E AK(A r —min;
N = h() () ( (9)
(n) (n)

(- l)maa:i — min; ) ®) with X as theonly variable. The M-Kernel approach, in
M ) contrast, includes the bandwidth as second variable at the
‘ expense of a more complicated (and inaccurate) computa-
) _tion of the minimum. As mean of the merge kernel, we set
This strategy ensures that the complete data range will bgye minimumXx* of L2costs(X). Thus, we minimize the
covered with elements, i.e., it has an inherent smoothingaccuracy loss of the merge: the merge is optimum with re-
Due to that smoothing, the problem of singularities for in-gpect to the mean squared deviation. It is important to note
finite data streams can not occur anymore. A necessamyat the closer two kernels are with respect to their means,
requirement for the application of this strategy is that theyhe smaller are their merge costs. Hence, it suffices to con-
inner sum in (8) can be converted into a closed formulagiger only the merge of adjacent kernel entries. For that

otherW|se,.the overall evaluation cost Wou[d(bez). The reason, we defind2costs(™ = L2costs(X*) as cost of
Epanechnikow kernel allows us to determine a closed for- ¢

mula with rather simple algebraic conversions. Due to .99 the’-th and the(i + 1)-th kernel entry.

space constraints, we have to omit a detailed discussion For illustrative purposes, we present in Figure 2 the
P ' " shape ofL2costs(X) for two kernel entries. The left

Besides the evaluation, the Epanechnikow Kernel alsg-axis describes the weighted kernels and the right one
plays an important role in the computation of the merger.2¢osts(X), while the x-axis describes the support of the

costs. kernel functions as well as the possible means of the merge
kernel.
kernels L2costs

4.4 Merge Costs Computation
- 00 10

Our definition of the merge costs between two kernel en-
tries also bases on the inherent objective in (2): Consider

the sum of two kernels weighted wit" and cé") over

L2costs(X*)

(0

T @+ ) KX

meansX ™ andX](.") respectively. Their merge kernel is

the kernel with weight\" + c§"), whose suitably cho- |
sen mean ensures an optimum approximation of the sum o ‘
Thus, the means and the weights are the crucial factors X X"
during merge. For the sake of completeness, let us men- A
tion that, given the min-max-evaluation strategy, we could Figure 2: Merge of kernel entries witii”) = 1
additionally incorporate the generated points in the merge

costs computation; but this would complicate the subse- Concerning the existence and the computation of the
guent Computa’[ions massi\/e]y_ minimum OfL2COStS(X), the following theorem holds:

In the following, we examine the mean squared devia- THEOREM 1. For two arbitrary kernel entries, the min-
tion, a common measure for the similarity of real-valuedimum of L2costs(X) exists and can be computed in con-
functions, to quantify the accuracy loss induced by thestant time.



In the following proof, we only present the essential stepgnterval of a summand whose integrand is the product
because the Computation of the minimum is rather tEChniof kernels overX and Xl(n) ([7 ana|ogous withX and
cal. In the proof, we benefit again from the simple form of '

(n) o ) ;
the Epanechnikow kernel, Xj ). In order to determind; and;, we slide a kernel

with continuously varying suppoftX — A X + h(")]
PrROOF. We consider two arbitrary kernel entries with over the x-axis and examine simultaneously the effects on

meansX; and X;. In case ofX; = X, the minimum [; and I; by evaluating the intersection of the supports,
of L2costs(X) equalsX;. In the following, we assume o X — A X 4 ]Al(n)} N [X.(") _ ;L(n)’X(n) + il(n)]
Xiﬁ\f%mit;%% lngLSQ(Zfogggig?“ctg.rres onds to the roots and[X —h"), X +h(V]N [XJ(‘H) —h, X](TL) +h™]. For

P k = 0, Figure 3 displays the different cases of intersections,

of its first derivative. To compute the first derivative, we the resulting support partitioning fdi2costs(X ), as well

have to transform (9) into a closed formula via integra—aS the integration intervalg and I within each support
tion. We start with converting the integral of the squared 9 J PP

sum in (9) into a sum of integrals over separate progPartiion. ForX e X — 2h(™ X"}, the computa-
ucts. We refer to the resulting integrals ssmmands  tion of /; andJ; is illustrated as an example. The support
Their integrands are products of two kernels with mean?ag't'onts f(?lﬂf ; 1,2,3 Catn betil_erl\_/ed gnlz_alogously. _
(n) (n) 2 (n 2 (n ventually, the support partitioning delivers a piecewise
X’();)i " of Xj(n) anfj supports([i)( _Ah( )’)((n;_ hA( ) definition of L2costs(X), so that the integration interval of
[X;" = b0 X7+ A, or [X;™ — M, X7 + h™]  each summand in (9) is uniquely defined. Given the primi-
respectively. Hence, the intersection of the associated paive of the Epanechnikow kernel, we integrdtcosts(X)
of supports determines the integration borders of a sumon each support partition and finally receive a closed for-
mand. However, each summand that incorpordfelas  mula. Actually, it is a polynomial of degree 5 in each par-
integration borders varying iX. Thus, the integration of tition. We determine the minima of those polynomials by
the summands is not straightforward due to the dependencyiculating the roots of their derivatives, which requires to
on the variableX. We overcome this problem by partition- splve quartic equations. Then we compare the 'local’ min-
ing the support ofL2costs(X) appropriately, so that the jma in each partition and get the uniquely defined overall
integration borders of each summand are uniquely defineghinimum of L2costs(X).
for an arbitraryX'. Overall, the support partitioning as well as the sub-
For this partitioning, we examine the relative position sequent computation of the minimum requires constant
of the kernel support$X™ — (W X" 4 {(W] and  time. O
m) _ 7(n) y(n) 7 (n) ; _
P(if) hA(;)Xj + h ) ] t(,) each other. .leerﬁX i Now that we presented the main components of our
ht™, X + h), we distinguish whether this support in- pEs over data streams, we will discuss a convenient ex-
tersects both other supports. We compute the lafgesth  ogjon that allows us to keep pace with evolving data
X](n) — Xi(n) > kh(n), i.e.k = I_(Xj(n) — Xi(n))/h(")J. If streams.
k € {0,1,2,3}, the supports intersect. Otherwise, they do
not. 4.5 Capturing evolving Streams

rad ~ kernel with

An inherent difficulty for stream analysis techniques is that

< kernel with
"

/ mean ymean X, the characteristics of a data stream can vary over time. Fi-

= g L . g o P e -+ - nancial data, for instance, has typically a more volatile na-
DLl ‘ ‘ ’ ture rather than being stable over time. In the following, we
-7 kernel with: ™~ _ kernel with

, i X show how an optional extension of our technique allows us
/ : \ ’ to focus on recent trends of an evolving stream.

1 } 1 | |
T : T T T T

XU x P X xR Let us examine an evolving stream from a formal point
' of view. Remember that we consider a data stream as sam-

< B
L8 XX DR XX XX @ ; :
o 5 Do o] Do o] e o] o) o PIe of an unknown random variable (see Section 3.1). Up
- ; ' ; ; ; . . . to now, we assumed the stream to be stable, i.e., all stream
X 20 X" 20 X’ x" X4 25 X 2K elements follow the same distribution. In case of evolving

streams, their underlying distribution will change over time

Figure 3: Integration borders fér = 0 based on the sup- and, as a consequence, also the underlying pdf we want to

port partitioning forL2costs(X) estimate. In order to emphasize current trends in the den-
sity estimate, we couple our online KDEs wékponential

In case ofc ¢ {0, 1,2, 3}, the mean of the merge kernel smoothing[10], a weighting scheme from the area of time
is the mean of the kernel with higher weightcff’ = ¢\, series analysis and forecasting.
The basic idea of this coupling is to give older data less
: weight in the evaluation of an online KDE. For reasons
either tOXi(n) or Xj(n)- of simplicity, we limit the following considerations to the
In case ofk € {0,1,2,3}, let I; be the integration one-value-evaluation strategy. Let us consider the current

Xi(”) ande(.”) both minimize (9), i.e., we can set the mean



KDE after an insertion of a new elemekit, and before the plex systems for the analysis of multiple data streams will
merge step is performed (the element shall not be a duplirun many analysis tasks simultaneously, given only a lim-

cate): ited amount of computational resources. Hence, the tech-
1. D) (1) niques that address these tasks must be able to adapt to

f(n)(m) _ = Z Cz; K(Z ) changing resources. Our technique meets this requirement

n = p h(n) due to its inherent mechanisms for a seamless resource

1 1 r— X adaptation. Since evaluation as well as storage cost are de-
+— —K < - "> (10) fined in terms of kernel entries, we only discuss the adap-
n h(m) tation to a changing amount of available memory. If the

2 1 X available amount of memory increases, we establish new
forn = 2andf")(x) = o K ( RO ) Hence, each ker- kernel entries for new elements - except duplicates - with-
nel entry is equally weighted with/n. With exponential  out merging until the new maximum capacity is reached. If
smoothing, these equal weights are substituted by exponefhe memory decreases, we simply perform the merge step
tially decreasing ones. Concretely, givere (0,1), each  sufficiently often to reduce the total number of kernel en-
new element receives weightand triggers a re-scaling of  tries until they fit in the available memory.
older weights by a factofl — «):

4.7 Implementation Aspects
A~ ~ 1 - Xn
Ji ) = (1—a)fé”‘”(w)+0‘K(x ) (11)

o) B For practical purposes, we present two suitable implemen-
1) tations of our approach. While one implementation bases
forn >2andfs’(z) = ﬁ[( (Th‘(ffl) on a sorted list, the other one bases on trees. Besides the

For illustration purposes, we assume the maximuninderlying data structures, their policies for the update of
numbern of kernel entries to be unbounded and determinghe merge costs distinguish the implementations from each

the resulting weighting sequence. Foe> 2 holds other.
f@) = 1-a)t. A(ln)K (IA(n))(l) 4.7.1 List-based Implementation
- b h Similar to M-Kernels, we can organize the entirety of ker-
+ Z(l Q)" 2 - 1 K <xA_ Xi) nel entries(Xi(”), cgn), minl(»"), maxl(»n), LQCostsEn)>,i =
i—2 h(r) h() 1,...,m, in alinked list sorted by meah’i(").
1 z— X,
—K | — . 12 i
+a o ( e > (12)  Insertion Step

Instead of equal weiahté for each kernel. we now have If a new arriving element equals the mean of an existing
.- ’q iah gntz o9 ’n_lf | kernel entry, we increment its weight. If not, we insert a
discounted’ weight¢l — )" *a-and(1—a) or o.der. new kernel entry in compliance with the ordering by mean.
kernels and for the new kernel. Generally, the weighting A ey element also affects our bandwidth setting due to
sequence sums to 1for eacte N. Th|s ISanecessary pre- o dependency on the number of processed elements. As
requisite for each KDE as otherW|§e t_he integration of they,q panqwidth is part of our merge costs function - see (9) -
?df to 1, al funldamental proper_tyh IS wglated. M—Kferr}elds, the merge costs of all kernel entries are also affected. Con-
or example, also support a weighting by means of a fa eéequently, we have to update all merge costs for each new
out function [5], but the resulting weighting scheme vio- giement.” wile performing this update, we can determine

lates this prerequisite._ . . , the current kernel entry with overall minimum merge costs
An aspect not yet discussed is the settingeofVith «, to simplify the merge step

we can control the impact of old and new data respectively.
The highera is set, the higher recent data is weighted inMerge Step
the current KDE. The lower it is set, the higher older data
is weighted. In case of a merge due to an exceeded maximum capac-
Let us mention that this weighting scheme models a kindty m, we substitute the adjacent kernel entries with overall
of 'smooth’ sliding window. Sliding windows are a popular minimum merge costs by their merge kernel. The merge
technique in data stream processing [3] where queries afernel is located between its associated kernel entries, i.e.,
often answered with respect to recent data as older data tyhe merge step does not violate the list ordering. After the
ically can not be stored due to limited system resources. lfinerge, we update the merge costs between the merge ker-
contrast to common sliding windows, where older elementg$iel and its left neighbor (if existent) and that between the
are "abruptly’ discarded, we smoothly fade them out. merge kernel and its right neighbor (if existent).

4.6 Resource-awareness Algorithm Analysis

To run within a system with limited resources, the resource-The insertion of a new element has complexitym) due
awareness of an analysis technique is a crucial factor. Comte the update of all merge costs. If the kernel entry with



minimum merge costs is determined, the merge step haSomparison with list-based Implementation
O(1). Overall, the complexity of the list-based implemen-

tation isO (m). Due to the upper procedure, only kernel entries locally af-

fected by an insertion or a merge receive an update of their
4792 Tree-based Imol . merge costs with respect to the current bandwidth. For
o ree-based Implementation that reason, the tree-based implementation gives an approx-

The tree-based implementation has a substantially lowefmate solution. On the contrary, the list-based implementa-
complexity compared to the list-based one. This imple-tion recomputes all merge costs in case of an updated band-
mentation is approximate because we do not recompute tHéidth at the expense of higher processing costs. However,
merge costs of all kernel entries after an update of the bandnerges are mostlikely to occur in dense data regions where
width; we only recompute the merge costs of those entrie§he probability for new elements will be higher than in
that are 'locally’ affected by an insertion or a merge. sparse regions. For the tree-based implementation follows
Let us examine the requirements for an efficient processthat the merge costs in these regions are with a high proba-
ing of a set of kernel entries. On the one hand, an orderin§ility up-to-date, i.e., this implementation is virtually self-
by mean would facilitate the efficient insertion and searcrfdaptive. The results of our experimental study showed that
of kernel entries. On the other hand, an ordering by mergdh€ l0ss in accuracy by this approximation only had minor
costs would facilitate the efficient detection of the kernel&ffécts on the overall quality of the resulting KDEs whereas
entry with minimum merge costs. We satisfy both require_t_he processing time substantially improved compared to the
ments simultaneously with a data structure consisting of dSt-based implementation.
binary search tree and a priority search tree. We store the

kernel entries in a binary search trEEHE(an tree with the 4.7.3 |mp|ementation of Exponentia| Smoothing

meanXi(") as underlying ordering criterion. Additionally, _ , ,

we maintain a priority search tree termeerge costs tree 10 implement the exponential smoothing, we have to
. . (n) (n) weight a new kernel entry with weiglt and rescale the

with entries(L2costs; ’, X;"’) and the merge costs as or- h iahts wi | . h

dering criterion. / other weights with(1 — «) (see also equation (11)). Thus,

smoothed KDEs have insertion cost@{m) for the list-
. based and the tree-based implementation. This deteriorates
Insertion Step the processing cost of tree-based KDEs frOtfiog m) to

For a new element, either an already inserted kernel entrg(m)'

will be updated or a new entry is inserted into the mean

tree. In both cases, we recompute the merge costs between  Experimental Evaluation

the associated kernel entry and its predecessor (if existent)

and that between this entry and its successor (if existentMVe scrutinized our approach in a thorough experimental

In order to keep both trees consistent, we remove the astudy whose core results are presented in the following.

sociated 'old’ merge costs from the merge costs tree andlVith the experiments, we primarily addressed the follow-

insert the new merge costs. ing questions: How do our KDEs perform for different real-
world data streams? How is their runtime behavior in terms

Merge Step of pro_cessipg time? How do they react to sudden changes
of their available amount of memory?

If the overall number of kernel entries exceedsafter an

insertion, we merge the adjacent kernel entries with mini- .

mum merge costs. We remove the minimum merge costg'1 Settings

from the merge costs tree and determine the associated ke§-1 1 Techniques

nel entry in the mean tree. In compliance with the mean

tree ordering, we substitute this kernel entry by its mergeAccording to Section 4, we can construct different vari-

kernel and remove its successor. Finally, we update th@nts of KDEs with our approach. On the one hand, we

merge costs between the merge kernel and its predecesgen use list-based KDEs, and, on the other hand, tree-based

(if existent) and that between the merge kernel and its newnes. For both, we can apply the one-value-evaluation or

successor (if existent). While doing so, we keep the mergéhe min-max-evaluation strategy. As list-based KDEs with

costs tree consistent by removing and inserting the assodinin-max-evaluation did not significantly differ from the

ated merge costs. other techniques, we do not present their results for the

sake of clarity. In order to get an impression of the per-

formance of our KDEs, we included M-Kernels as com-

petitive technique in our experiments. In the subsequent

The insertion of a new element as well as the merge stepharts, we associated each technique with a specific line

both have complexitp (log m). Hence, the overall perfor- type as displayed in Figure 4. All techniques were imple-

mance of the tree-based implementatioi§og m) per  mented with PIPES [17], our Java library for advanced data

stream element, compared@jm) of the list-based one.  stream processing and analysis.

Algorithm Analysis



— | List-based KDE with one-value-evaluation indicated by an increased MSE. This can be explained with

Tree-based KDE with one-value-evaluation the temporary emphasis on features that receive less weight
— —  Tree-based KDE with min-max-evaluation in the best offline KDE. Overall, our KDEs achieved excel-
M-Kemnel lent rates of convergence and succeeded in estimating the

densities underlying the examined data streams.

Figure 4: Line types of the techniques 529 Performance of M-Kernels

5.1.2 Data Sets M-Kernels were clearly inferior to our KDESs; they mostly
In order to assess these techniques, we considerdgiled to capture the unknown density. M-Kernels exhib-
synthetic as well as real-world data streams.  Weited a mostly constant MSE with high absolute values, i.e.,
chose a set of heterogeneous real-world data streaniey did not improve anymore. A closer examination re-
from the time series archive of UC Riverside [14]: vealed that they basically suffered from an inappropriately
BURSTIN, NETWORK, FLUIDDYNAMICS, PACKET, chosen bandwidth. This mostly induced an oversmoothed
and POWERDATA. Those data streams originate from estimation that hid important details.

diverse fields like facility monitoring or networking

and exhibit different characteristics, e.g. noisy/smoothg 2 3 [jst- vs. tree-based KDEs
stationary/non-stationary. We additionally included a syn-

thetic data set, called Claw, whose underlying density is &Vhile list-based KDEs ensure that the kernel entries are al-

mixture of Gaussian densities. ways up-to-date with respect to the bandwidth, tree-based
KDEs only update locally affected kernel entries. How-
5.1.3 Quality Measure ever, the differences in quality between tree- and list-based

) ) . KDEs were only marginal; their performance was almost
While processing a data stream, we continuously evaluatégientical. If we take the higher processing costs of list-
the quality of the current KDE ™) by comparing it with  pased KDEs into account, we can state that tree-based
the best offline KDEf,,:. For the real-world streams, the KDEs are the better choice for practical purposes.
best offline KDE uses the Epanechnikow kernel and the For tree-based KDEs, we additionally examined the
normal scale rule and relies on the complete stream. Famin-max-evaluation strategy. For BURSTIN, this strategy
the synthetic stream, the best offline KDE refers to the trueyas superior to one-value-evaluation. We traced this ef-
density. We measured the quality 6f*) with respect to  fect back to the smoothing of this strategy in sparse data
fopt in terms of the mean squared error: regions.

500

1 . . 2
MSE() =z >~ (fo(w) = [ @) (13)
i=1 An aspect of utmost importance is the processing time of an

online technique. We provide a notion of the computational

Whgrexl, ..., T500 IS @n equidistant partition of the support complexity of the examined techniques by comparing the

5.3 Processing Time

of fopt. time they required for processing a complete data stream.
o _ We set the parameters as in the last experiment and mea-
5.2 Estimation Quality sured the time in seconds while the stream was processed.

An important question is whether our KDEs 'converge' in Figure 6 displays the resylts. _They indicate that M-Kemels
terms of a decreasing MSE for an increasing number off@d the longest processing time due to the computational
processed elements, i.e., the better the quality the more efffort for the numerical approximation of the mean of the

ements are processed? In order to answer this question, We'9e kernel. Our list-based KDEs were faster than M-
continuously compare ﬂ(”> and fopt by evaluating the cur- Kernels. However, both were clearly inferior to tree-based

rent MSE always after 500 elements had been processeg.DES.' This effect r_esults from th_e Iogar_|thm|c cost for an
insertion whereas linear costs arise for list-based KDEs.

Generally, the techniques were allowed to store 100 M- : . .
Another aspect we examined is the influence of the eval-

Kernels and 100 kernel entries respectively. Figure 5 dis- ation strategies - see Section 4.3 - on the processing time
lays the experimental results for the different data stream A ) T . )
play P here, the differences between tree-based KDEs with one-

It is worth mentioning that for the case of CLAW, where : . . .
we compared with thérue density, the same trends hold value-evaluation and with min-max-evaluation were mar-
' " ginal.

Specifically, we observed the following trends:

5.2.1 Performance of our KDEs 5.4 Resource-awareness

The results indicate that our KDEs are very robust since th&Ve emphasized in this work the necessity of resource-
MSE decreased for an increasing number of processed ekwareness which is a fundamental prerequisite for the use
ements. In a few cases, the quality temporarily worsenedpf an online analysis technique within a complex system.
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Figure 5: Logarithmically scaled MSE for different data streams
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Eor thr?t reasor;,tr\]/vg exaT'Bled how OLt" fKDES reati;tvto Stugfhe crosses depict the current number of kernel entries. We
den changes of their available amount of memory. We Studg a6 that our KDES react very flexible to changes of the
ied the arising effects for tree-based KDEs with one-value-

. : -~ maximum number of kernel entries. Note that even signif-
evaluation over a stream of Claw data. While processmgirs] 9

the stream. we randomly varied the maximum number o ant decreases of the kernel entry number only caused a
' y omentary loss in accuracy; afterward the KDEs 'recov-

kernel entries from minimum 10 to 'm_aximum 109 eaChered’ again, indicated by a henceforth decreasing MSE.
5000 processed elements. By examining the continuously

computed MSE, we can study the impact of those memory i
modifications on the quality of the KDEs. 6 Conclusions

Figure 7 summarizes the results of this experimentin this work, we tackled the adaptation of kernel-based den-
While the x-axis displays the number of processed elesity estimation to the data stream scenario in compliance
ments, the left y-axis displays the MSE and the right y-axiswith rigid processing requirements. Kernel density estima-
the number of kernel entries. The curve plots the MSE andion is among the most appealing nonparametric estimation



techniques in statistics and its adaptation to data streanjg] C. D. Cranor, T. Johnson, O. Spatscheck, and

provides a sophisticated base for further stream analysis. V. Shkapenyuk. Gigascope: A Stream Database for
We proposed a new solution whose basic idea is to sum-  Network Applications. InProc. of ACM SIGMOD

marize processed elements with simple statistics. These 2003.

statistics are stored in kernel entries which are the essen- .

tial building blocks of an estimator. An intelligent merge [8] P- Domingos and G. Hulten. A general framework for

scheme for those kernel entries allows us to adapt to chang- Mining massive data streamsJournal of Computa-

ing system resources. To emphasize recent trends and drifts tional and Graphical Statistic2003.

in the stream, we presented an optional weighting strateggg]

to fade out the weight of older data. Besides these basi

principles of our technique, we discussed suitable imple-

mentations. While the list-based estimator has the highf10] I. Gijbels, A. Pope, and M. Wand. Automatic fore-

est accuracy at the expense of linear processing cost, the casting via exponential smoothing: Asymptotic prop-

tree-based estimator has logarithmic processing cost at the erties, 1997.

expense of a slight inaccuracy. Our experimental results . ]

for real-world streams indicate that both methods providd11] A. Gray and A. W. Moore. Nonparametric Density

a high degree of accuracy which improves constantly the —Estimation: Toward Computational Tractability. In

more elements they process. In comparison to M-Kernels, Proc. of ICDM 2003.

a previous kernel method for data streams, our tree-baSng] P. Hall, S. N. Lahiri, and Y. K. Truong. On bandwidth

estimators were superior as they combined much high ch;)ice f’or aehsity eétimati(;n With depéndantda!)ta—

accuracy (on average two orders of magnitude) with sub- nals of Statistics23, 1995 '

stantially lower processing cost (also roughly two orders of ' '

magnitude). [13] C.Heinz and B. Seeger. Resource-Aware Kernel Den-

In our future work, we will generalize our approach to - sjty Estimators over Streaming Data.Rroc. of CIKM
multidimensional data streams. This requires to develop  (to appear in) 2006.

new data structures which support an efficient storage of

M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining
data streams: a revieBIGMOD Record34(2), 2005.

kernel entries as well as a fast evaluation of the estimatof14] E. Keogh and T. Folias. The UCR
Another aspect we will address is the coupling of our  Time Series Data Mining Archive.
technique with change point detection methods as known www.cs.ucr.edu/"eamonn/TSDMA  , 2002.
Igo(r;r:)r?éc;(;rtl%srit;fspi)rr]()t(r:]ees;rtggr%ry in order to locate and rea?15] G. Kollios,_ D Gunopulps, N Koudas, and S. Berqh-

told. An efficient approximation scheme for data min-
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