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Abstract

In this paper we propose a new framework for
dynamic distributed query processing based
on so-calledHyperQuerieswhich are essen-
tially query evaluation sub-plans “sitting be-
hind” hyperlinks. We illustrate the flexibil-
ity of this distributed query processing archi-
tecture in the context of B2B electronic mar-
ket places. Architecting an electronic market
place as a data warehouse by integratitlg
the data fromall participating enterprises in
one centralized repository incurs severe prob-
lems. Using HyperQueries, application in-
tegration is achieved via dynamic distributed
query evaluation plans. The electronic market
place serves as an intermediary between clients
and providers executing their sub-queries ref-
erenced via hyperlinks. The hyperlinks are em-
bedded within data objects of the intermedi-
ary’s database. Retrieving such a virtual object
will automatically initiate the execution of the
referenced HyperQuery in order to materialize
the entire object. Thus, sensitive data remains
under the full control of the data providers.

Introduction

requires highly flexible, distributed query processing ca-
pabilities. Architecting such an electronic market place
as a data warehouse by integrataipthe data fromall
participating enterprises in one centralized data reposi-
tory incurs severe problems:

Security and privacy violations: The participants
of the market place have to relinquish the control over
their data and entrust sensitive information (e.g., pricing
conditions) to the market place host.

Coherence problems:The coherence of highly dy-
namic data, such as availability and shipping informa-
tion, may be violated due to outdated materialized data
in the market place’s data warehouse.

Schema integration problemdJsing the warehouse
approach all relevant data from all participants have to
be converteda priori into the same format. Often, it
would be easier to leave the data inside the participant’s
information systems, e.g., legacy systems, within the
local sites, and apply local wrapper/transformer oper-
ations. This way, data is only converted demandnd
the most recent coherent state of the data is returned.

Fixed query operators: In a fully integrated (data
warehouse-like) electronic market place, all information
is converted into materialized data. This is often not
desirable in such complex applications like electronic
procurement/bidding. For example, in pricing offers one
would like to have vastly different choices:

o fixed pricing via materialized data

e operators which calculate the prices based on a
multitude of local and global parameters (identity
of the consumer company, availability, local plant
utilization, sub-contractor prices, etc.)
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embedded as attribute values within data objects of the ?e'edl\ﬁ’-PLOdd“FftD(;?SC”p“Og' C-?“pp'ﬁr’ E-Pglce
intermediary’s database. Retrieving such a virtual object ™M NeededProducts p, Catalog@MarketPlace ¢

. o . where p.ProductDescription = c.ProductDescription
automatically initiates the execution of the referenced order by p.ProductDescription, c.Price

HyperQuery in order to materialize the entire object. expires Friday, May 18, 2001 5:00:00 PM CET
Thus, sensitive data can remain under the full control ' '

of the data providers. Instead of replicating the data atFigure 1: Example Query of the Car Manufacturer
the intermediary, only the hyperlink is embedded. _
In summary, the HyperQuery framework allows td-2 Running Example

blur the distinction between the allocation schema apgt yemonstrate the HyperQuery technique with a sce-
the data—as it is found in clear separation in traditiongl iy of the car manufacturing industry. We as-
distributed databases. _In_our prototype impI_ement:_:lti(g@],me a hierarchical supply chain of suppliers and sub-
called QueryFlow, we distinguish between hierarchical oniractors. A typical process of e-procurementto cover
and broadcast processing of HyperQueries. In the hi§hscheduled demands of the production is to query a
archical processing mode the initiator of a HyperQuepy, ket place for these products and to select the incom-
is in charge of collecting the processed data. Unggh offers by price, terms of delivery, etc. The price
t_)roadcast processing the data objects containing hyQ_ﬁrthe needed products can vary by customer/supplier-
links are sent to corresponding HyperQueries which will e cific sales discounts, duties, plant utilization, etc.
then be in charge of routing the processed objects to they, taditional distributed query processing systems
query_initiatpr orto furthgr HyperQueries, if the objectg cpy 4 query can only be executed if a global schema
contain additional hyperlinks. exists or all databases are replicated at the market place.
Considering an environment, where hundreds of suppli-
1.1 Related Work ers participate in a market place, one global query which

Distributed databases have been studied since the iafggrates the sub-queries for all participants would be
seventies [WDH81, Sto85). Middleware systemsl00 complexand error-prone. . .
[TRV96, HKWY97] try to overcome the heterogene- Follpwmg our approach the suppliers have to regis-
ity faced when data is dispersed across different d&@4 their products at the market place, which they want
sources. [SL90] discusses reference architectures ¥@Participate in, and specify, by which sub-plans the
federated DBMSs from system and schema vieRIice information can be computed teir sites. This
points. Our distributed query processor ObjectGlo@lculation can be arbitrarily complex and involve their
[BKK T01] integrates dispersed data sources and pgslo-contractors, too. The allocation schema given by
vides the dynamic loading of functionality from externdh€ data at the market place is exploited for execution.
code repositories. Cohera [HSC99], based on the ecofigure 1 shows an SQL-like query, that returns the
nomic model of Mariposa [SAL96], integrates hetero-Prices and suppllers of aII_ needed prodgcts. Figure 2
geneous databases using replication tools. Continuf}§Ws two possible execution traces of this query—both
queries in NiagaraCQ [CDTWOO] allow users to receiV@€ Supported by our evaluation technique. In the hier-
new results when they become available. In [MMMg7rchical execution of Figure 2(a) the resulting objects
WebSQL is used to “query the Web” in navigationd/oW back to the sites, where the original input objects
style. [GWO0O0] combines the query facilities of tradic@me from, whereas in the broadcast execution of Fig-
tional databases with existing search engines on the e 2(0) the objects do not flow all the way through in-
ternet. [LSK95] queries a central mapping informatioWrm?d'ates back to the client, but are routed directly to
of all participating, distributed data sources. the client.

Stonebraker et.al. [SAHR84] propose a related ap- i
proach to our HyperQueries. But their work is rel-3 Overview

stricted to stored queries in centralized databases. SOff2 rest of this paper is organized as follows. Section 2
[BEK™*00] provides a mechanism for exchanging infodefines HyperQueries. Section 3 illustrates the execu-
mation between distributed appliC&tiOﬂS USing XML. tion of HyperQueries in our distributed guery proces-
[YPOQ] describes a reference architecture for intesor and shows different kinds of query operators in sub-
operable e-commerce applications. Virtual enterprisgins. In Section 4 we develop some optimization tech-
and B2B e-commerce environments present an impffques for HyperQuery execution and discuss some de-
tant application domain for our new technique: the autgils of our implementation. We show first experimental

mobile industry’s electronic market place endeavor “Cererformance results of our approach in Section 5 and
visint” [Cov] and SAP’s “mySAP.com” [SAP99] marketconclude in Section 6.

places are among the well known examples.

1The name of our system was derived framery processing 2 HyperQueries: Syntax and Semantics

and worKlow systems because processing queries with HyperQuerigs . . .
bears some similarities with processing distributed workflows by rod@Ur @pproach is based on virtual attributes whose val-

ing documents to the appropriate tasks. ues are determined by evaluating remote sub-queries
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Figure 2: Flow of Control and Flow of Objects
(Dashed lines indicate the flow of control and intermediate results, solid lines indicate the flow of result objects)

on demand. In contrast to [SAHR84] we do not stofeost and have to contain enough information, to calcu-

the queries, i.e., the sub-plans to be executed at date the actual value of the virtual attribute at the remote

providers, within virtual attributes. Instead, hyperlinksite. All entries of the virtual attribute with the same

referencing the sub-plans are embedded as virtual @RI prefix must have the same parameter structure.

tributes within the data. The queries themselves are |°'Figure 4 shows a simple extension of Batalog

cated at the distributed data providers (remote hostgk e of the electronic market place example of Sec-

We refer to hosts that manage data with virtual attributgs, 1 2. The virtual attributé®rice  of the first tu-

as intermediaries. _ ple denotes, that the price is calculated at the host
In the following we show how hyperlinks and Hypergpplieri.com  for an object with the key attribute

Queries can be incorporated into the database desigfhdiD and valueCB1232 by using the sub-plan

We chose a relational schema for the market place a{¢hedElectrical/Price . The fourth tuple re-
XML as data model for all data being exchanged Q}’uires the additional global parame@urrency .

HyperQueries, as XML is the emerging standard for
data exchange and relational and object-relational data
sources can easily be integrated.
2.3 Syntax of HyperQueries
2.1 Metadata for HyperQuery Processing

. . . A HyperQuery is the counterpart of the hyperlinks of
We introducevirtual attributesto encapsulate hyper- . al attributes. These query plans are executed on

links and the results of the corresponding sub-plans @g,te hosts and may be arbitrarily complex, integrate
columnsin a database table. The hyperlinks are repla%l lications, ERP- and legacy systems, and may even

by the result values of the sub-plans, whereby a certafii,rise user interaction. The most comfortable way
schema, that is defined and publicly available at the ig—r

X . stating HyperQueries is to use our SQL dialect. A
termediary, has to be obeyed. This schema covers [\ e oyery using SQL accesses a virtual table called

public intermediary’s tables and the values that are ¢ yperQuerylnputStream that serves as a receiver

culated by the HyperQueries when following the hypegs e input data objects that “flow through” the hy-

links. It further defines application specific parametersa jinks. The schema of this virtual table is composed
e.g.,Quantity , that can be used by remote hosts

A ) all object specific parameters of the corresponding
calculate the actual value of virtual attributes. hyperlink and application specific parameters that are

o . transmitted during hyperlink processing but not con-
2.2 Specification of Hyperlinks tained within the hyperlink. Additional attributes of an

We specify hyperlinks by defining a Uniform ResourclPUt Qata object are not accessible within the Hyper-
Identifier (URI) schema (see Figure 3). The individQUery: they are passed through. [RS97] describes how

ual components of these URIs have the following meaffloré complex data sources can be queried using SQL by
ing: the leadindhq denotes ouHyperQueryprotocol, defining views over legacy systems. In our ngryFIow
<HostDNS> is the DNS name of the host, on which théYStem, alternatively, a HyperQuery could consist of ar-
sub-plan is executed, ancPathToPlanld>  is the bitrarily complex Java operations which have to imple-

name of the stored sub-plan within a repository of pIaHE‘.e”t the iterator interface of [Gra93] (cf. Section 3.5).

The <HostDNS> and the<PathToPlanld> are re- Figure 5 shows the SQL formulations of two ex-
ferred to as URI prefix. Both the optional global paample HyperQueries, both determining the price of
rameter list and the object specific parameters &'e “ the specified products. Note thgtPrice  and
separated key-value lists. The former parameterize pp€ComponentPrice  in both HyperQueries can be
mote sub-plans, e.gGurrency for payment. The lat- virtual attributes, i.e., further HyperQueries on other
ter represent foreign keys on a virtual table at the remdtests could be executed to compute the value.



<hgschema> :="hq://"<HostDNS>"/"<PathToPlanld> ["I"<GlobPL>] "?"<ObjPL>
<GlobPL> .= <GlobPN>"="<GlobPVal> {"&"<GlobPN>"="<GlobalPVal>}
<ObjPL> .= <ObjPN>=<ObjPVal> {"&"<ObjPN>"="<ObjPVal>}

Figure 3: URI Schema of thélyperQueryProtocol

[ ProductDescription [ Supplier | Price

Battery, 12V 32 A Supplier 1| hq://supplierl.com/Electrical/Price?ProdID=CB1232
Battery, 12V 55 A Supplier 1| hq://supplierl.com/Electrical/Price?ProdID=CB1255

Tires 175/65TR14 | Supplier 2| hq://supplier2.com/Price?ProdKey=175/65TR14

Spark Plug VX Supplier 3| hq://supplier3.com/PriceForUSA!Currency=USD?ID=1234
Alternator 50 A Supplier 4| hq://supplier4.com/RegularPrice?SerialNo=Alt50

Figure 4: Sample Extension of th€atalog@MarketPlace  Table

selecth.*, (h.Quantity *sum(p.ComponentPrice)) as Price
from HyperQuerylnputStream h, BillOfMaterial b, Parts p
from HyperQuerXInputStream h, Products Pwhere h.SerialNo = b.SerialNand b.ComposedOf = p.PartID
where h.ProdID = p.ProdID group by h.*

(a) Electrical/Price at Supplier 1 (bRegularPrice  at Supplier 4

selecth.*, p.Price as Price

Figure 5: Two Example HyperQueries in Our SQL Dialect

2.4 Interface to HyperQueries 4

If an object is sent to a HyperQuery, the URI of the vif- T
tual attribute is replaced by the actual value. This valye
is calculated from the object specific and the application
specific parameters. The former are given by the URL,

@4,

b — 5
the latter stem from the globally available schema defi Tt :
nition at the intermediary. Other attributes of the object
cannot be used for the computation within the Hyper- \ ‘ i
Query and are passed through. (a) Nesting (b) Sequencing (@) Inner

The type of the actual value of the virtual attribute
has to match the schema definition given at the intdrigure 6: The Three Possible Templates for Sub-Plans
mediary; objects of incompatible type are discarded. If
the type is single-valued and multiple values for the vir-
tual attribute are computed, multiple objects have to Bel  Templates for Sub-Plans

returned. Users of the QueryFlow system specify HyperQueries
using our SQL dialect as described in Section 2.3. A

3 HyperQuery Execution in our query is transformed into an operator tree that is stored
QueryFlow System as a sub-plan in a local repository. The three possible

templates for sub-plans in our QueryFlow system are il-
In this section we illustrate the execution of Hypetustrated in Figure 6 and can be characterized as follows:
Queries in our QueryFlow system. The QueryFlow Nesting Sub-Plans:As shown in Figure 6(a) these
system is a distributed and open query processor fmb-plans contain Bispatch  operator that splits one
data sources on the Internet. The whole systemimgut stream into multiple output streams that serve as
written in Java for two reasons: First, Java is portableput streams for the nested sub-plans. This operator
so that our system can be installed with very little efforis the basic operator for processing HyperQueries (cf.
hosts need to install the QueryFlow system and can thgection 3.2 and Section 4). Thmion (re-)mergesthe
very easily join a market place by inserting hyperlinksutput streams of the nested sub-plans and produces one
at the intermediary and providing the correspondirautput stream. Thus, the flow of objects is totally en-
sub-plans. Second, Java provides secure extensibiligpsulated inside a sub-plan of this pattern. The client
Like the QueryFlow system itself, user-defined quenuery is always transformed into a plan of this kind.
operators are written in Java. They could be loaded Sequencing Sub-Plans: Sequencing sub-plans as
from remote sites (e.g., the market place host shown in Figure 6(b) contain the initiBlispatch op-
third-party vendors) on demand. For security reasoesator that splits one input stream into multiple output
they are executed in their own Java “sandbox”. streams; no findUnion is given, so a surrounding sub-



ProductDescription | Quantity | object for Supplier 1 passes tlizispatch operator

Battery, 12V 32 A | 500 which sends an instantiation requefdr the sub-plan
Battery, 12V 55 A | 750 Electrical/Price to Supplier 1. Basically this
Tires 175/65TR14 | 1000 sub-plan consists of a join with a local table as shown
Spark Plug VX 8000 in the HyperQuery of Figure 5(a). All objects that be-

long to this sub-plan are routed to it by tBéspatch

Figure 7: Needed Products of the Car ManufacturerOperator (Figure 8(c)/(d)). Figure 8(d) also shows the

plan with aUnion is required to which the objects ofProcessing of thdl object at the market place. As its

the sub-plans can be routed. Thus, objects that are oRE&NY information is calculated at Supplier 2, the in-

sent to the next sub-plan are never sent back to the gfntiation of the corresponding sub-plan is requested.

egating sub-plan. So the further processing of the ddtdiS Sub-plan involves a complex application to calcu-
objects is beyond the control of the initiating sub-plant€ the price of the input objects. Concurrently the price
as been added to t(I object at Supplier 1 and the re-

Inner Sub-Plans: Figure 6(c) shows sub-plans that“>. . . .
have one input stream and one output stream. Th&sdingM object can be forwarded to the finalnion .

sub-plans form the innermost parts of the query execel? @n additionalinput stream is requested atthin .
tion where the actual values of virtual attributes are de- Having registered the new input stream at the

termined. As already mentioned above multiple outptfion » the M object is sent to the market place. The
objects may be generated for one input object. price is inserted into the next data objdlstand gener-
ated aA object (Figure 8(e)). Th{l object is routed

to Supplier 2. The market place requests the instantia-
tion of the sub-plan name@riceForUSA for the last

In our QueryFlow system processing hyperlinks is dofgput object® at Supplier 3 and sets the global param-
by an operator, calleBispatch , that splits one input eterCurrency to USD In this sub-plan a human user
stream into multiple output streams. If a hyperlink is erenters the pricing information, e.g., using a GUI. In Fig-
countered, the actual value is computed by “followingjre 8(f) the® object is routed to Supplier 3. Supplier 2
the hyperlink according to this procedure: has inserted the pricing information into ill object

and generated @ object, which is sent to its target. So

1. The hyperlink is split into its components, i.e., th : ; . )
DNS of the remote host, the identifier for the su S_”fgrrtf(ra(;lljr:g:?t;treoa:)rjllcsé {g?ﬁﬁ;?gnat Yreion . Sup

plan, the global parameters, and the object s e'Supplier 2 sent it® object to theUnion and Sup-
;f;crﬁ:rraergevtv?trﬁ .thgr(]:ﬁr?:#te?rtl iﬁ%%fgcfarameteﬁﬁer 3 has inserted the pricing information for {5 ob-
9 P ject. ject and generated® object (Figure 8(g)). Figure 8(h)

2. If the referenced sub-plan has not yet been inst&€picts the result, where the actual value of all input ob-
tiated at the remote host, an instantiation requd@€ts has been inserted and the resulting objects have
containing the global parameters is sent. reached théJnion . Based on these data objects the

query is processed further, i.e., the sorting is done.
3. Once the sub-plan has been instantiated, all objects
with the same URI prefix are routed to it, wherebg.4  Processing Complex Queries
whole objects as produced by step 1 are sent.

3.2 Processing Hyperlinks

So far we have demonstrated the incremental instan-

3.3 Processing a Simple Query tiation of sub-plans for simple one-level HyperQuery
_ _ _ processing. The HyperQuery concept is, of course,

On the basis of our running example we illustrate th@yt restricted to one level. While processing a Hyper-
process of incremental plan generation and plan exe@izery, other hyperlinks may be encountered which ini-
tion. Figure 7 shows theededProducts  table. tiate nested HyperQueries. Figure 9 illustrates our
Dueto Clarity we substituted in Figure 8 the Concre&mponent_based QUerFlOW System on more Comp|ex
data objects by symbols, whel} and A denote the example applications. We only show the complete query
two battery objectsD denotes the tires object, akd plans (after all sub-plans have been instantiated) and

denotes the spark plug object. Figure 8(a) shows t9git both concrete data objects and the sequences of the
start of the query execution: The user-stated plan is &tepwise instantiation of the sub-plans.

stantiated with a scan of tiéeededProducts table

at the client. The attributeBrice andSupp.hgr o_f 3.4.1 Hierarchical HyperQuery Execution

theCatalog table at the market place are joined (indi-

cated byx_) with the input objects. The vertical hatcHf @ remote host encounters a virtual attribute that is
indicates the enriched objects in the following figuresheeded for the further execution of the HyperQuery,

As Price s a virtual attribute, eDispaich  op- 2Note, that all sub-plans are instantiated only once for a query.

erator splits the resulting stream of objects is split 3opjects with fully materialized virtual attributes are visualized in
into multiple output streams. In Figure 8(b) the firstolid black.
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Figure 8: Routing of Objects & Instantiation of Sub-Plans
(solid lines indicate the routing of objects, dashed lines indicate the instantiation of sub-plans)

the host acts as intermediary and initiates a nested sl
guery at another remote host using the pattern of Fi
ure 6(a). After pre-processing the data objects, thé
flow from the surrounding sub-plan to the nested sulbt
plans, where the value of the virtual attribute is com
puted. Then the complete objects are sent back to
surrounding sub-plan, where they are processed fur-

2

~—
Supplier 1
larket F'Iac3J

i

ther. Figure 9(a) shows an example. Supplier 4 exe= aret Plac—
cutes the HyperQuery of Figure 5(b) and accesseslthe Glent O Glent

virtual attributeComponentPrice . Thus, the right (a) Hierarchical (b) Broadcast
hand sub-plan instantiates further nested sub-plans at
sub-contractors. Note, that the virtual attributes at the  Figure 9: Kinds of HyperQuery Execution

levels of the nesting need not be the same, e.g., the _ _
outer virtual attribute could bBrice , while the inner ized at some goods, and forwards the received objects to

is ComponentPrice . them, without post-processing the results.

The main advantage of broadcast processing is the
quick forwarding of data objects without the need of
handling them again at the delegating site. The trade-
If a hyperlink is encountered within a HyperQuery angffs are (1) that the virtual attributes must coincide in
the resulting objects need not be processed any furthg@rsequencing sub-plans and (2) that many connections,
the evaluation can be delegated to other HyperQuerigave to register at the mergitnion . We want to em-
Using sub-plans of the pattern of Figure 6(b) data ophasize that it is a local decision of each participating
jects are (after a pre-processing step) forwarded to #jge, what kind of sub-plan is executed, and this deci-
sequencing sub-plans. It is the task of the further suflon is not affected by other sites. Thus, it is possi-
plans to determine the value of the virtual attribute amgle to have both hierarchical and broadcast execution of
to send the resulting objects back to the initiator of th@yperQueries within the execution of one query.
query. The prerequisite is that the virtual attributes are
the same for both levels of HyperQuery execution. T
Union of the surrounding sub-plan merges the results
of the broadcast-like inner sub-plans. Figure 9(b) shows mentioned before, our QueryFlow system provides
an example for the broadcast execution, where Sextensibility. This capability is important, as each par-
plier 4 has two subsidiary companies, each one spectadipating site has several alternatives for implement-

3.4.2 Broadcast HyperQuery Execution

Query Operators



ing the HyperQueries. So query plans can perfectly besult, that are not needed for the calculation of the vir-
adapted to the companies’ local systems. The queugl attribute at a remote host, they can be projected out
plans may contain different kinds of operators whiclwhen passing thBispatch operator. These attributes
can be characterized by the origin of data. are sent to the findUnion and are re-merged to the
SQL Database Queries: The simplest kind of lo- resulting objects after the virtual attribute has been cal-
cal sub-plans are SQL-like queries as shown in Seatilated. Especially in multi-level HyperQuery execu-
tion 2.3. The queries are transformed into a tree contaiien this decreases the amount of data transferred over
ing physical operations of the relational algebra with tréhe network and reduces the execution time in slow and
ditional database operators, e.g., joins, selections, ppo¥rsty networks. During the stripping off the bulky at-
jections, and sorting. Dynamic loading of operators thibutes a unique sequence number is added both to the
our QueryFlow system enables the administrator of thelk objects and the remaining data objects. Using these
local host to integrate new and more efficient databaggguence numbers the bulk objects can be joined to the
operations into the query execution. One example @drresponding data objects. This optimization method
such a new database operation is a wrapper that acceisssinilar to bulk bypassing ([BCKK00, CKKWO0Q]) in
a relational database system using JDBC. central databases. Figure 10(a) illustrates the bypassing
Applications: If complex business applications, e.g 9f bulk_objects around the sub-plans in the market place
ERP systems like SAP R/3, etc., or legacy systems hagenario.
to be accessed, wrappers for these applications have t@redicate Migration: Predicates on virtual attributes
be integrated into the query plan. This is done the sa@iethe user-stated query cannot be evaluated before the
way as database systems are integrated. All we requitétual value has been computed. To reduce the amount
is that the wrappers obey the iterator interface. The casftransferred data, these predicates can be pushed from
nection of the QueryFlow system to legacy systems ke user-stated query “into” the HyperQueries at the re-
wrappers means that data is only converted on demanéte hosts. Thus, only relevant data objects are re-
and the most coherent state of the data is returned. turned. The implementation of this optimization is
Human Interaction: Determining the values of vir- straightforward: The selection predicate is sent to the re-
tual attributes in sub-plans can even be done by humante site during the instantiation of the sub-plan. When
interaction. In this case a user enters the value opassing objects through tt&end operator, the selec-
virtual attribute through a Java applet or a GUIL. Agon is performed. Additional profit can be drawn, if the
these operators are executed at the sites of the owrggnote hosts incorporate the possibility of predicate mi-
of the data, sensitive data remains under their full cogeation into their HyperQueries, e.g., the remote hosts
trol. These operators have two main parts: a server padn place &election  operator into their sub-plans,
which implements the iterator interface, is specified imhose predicate is set during the instantiation. Fig-
the query execution plan, and runs as a part of the querg 10(b) illustrates the migration of predicates.
execution. The corresponding client part acts as an inpUtMuItipIe Virtual Attributes:  If a query requests

interface. multiple virtual attributes the ne& execution strategy
would request at first the value of the first virtual at-
3.6 Security Issues tribute, then that of the second virtual attribute, etc. If

foty i f th ol i , all virtual attributes of an object are evaluated at the
Safety is one of the crucial issues in an open and digyne site, the requests can easily be bundled. A plan

tributed query processing system. Our QueryFlow sy§-ganerated that contains oBéspatch  operator for
tem provides a security system for authentication, i-6y yirtal attributes whose evaluation can be combined.
verifying the identity of a user, authorization, i.e., Vein ring the execution thBispatch  operator sends the
ifying, if a user has the permission to execute a SURs of 4|l requested virtual attributes with the instanti-
plan or an operation, and privacy, i.e., denying unauthgs | request for one remote sub-plan. When an ob-
rized sites access to sensitive data._ We extended stape passes thBispatch operator, it is routed to the
dard methods to fit the needs of multi-level HyperQuely,, njan, where the actual values of all virtual attributes
processing technique. Due to a lack of space we Ol determined at once. This avoids sending one ob-
the details that can be found in [KWO1]. ject multiple times to the same host. If not all virtual
attributes can be evaluated at the same site, e.g., if the
4 Optimization and Implementation De- price and the rating by an independent organization are
tails requested, the calculation can be parallelized as follows:
TheDispatch operator sendsneinput object with a
So far we have demonstrated the basic techniques di@ique sequence number &l its corresponding sub-
the evaluation of HyperQueries. Now we discuss sorptans. TheUnion re-merges the resulting data objects
optimization approaches and implementation details. of different sub-plans using the sequence number. Ob-
Bypassing of Attributes:If “bulky” attributes, such jects are passed to the next operator, when all virtual
as images or product descriptions, are requested in #itieibutes have been inserted by theion .
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Figure 10: lllustrating Optimization Techniques

Caching of Results: Due to duplicates (which may Support of Long-Running QueriesTo limit the du-
be produced by preceding joins) the same virtual attion of queries, we introduced tlexpires -clause,
tributes have to be evaluated multiple times. This can imhich allows us to give a time-to-live (TTL) for queries.
avoided by caching. The evaluation of virtual attributdsach instantiated sub-plan is annotated with this TTL
is similar to the invocation of expensive methods, but end is monitored on expiry. If the TTL elapses, the sub-
contrast to [HN96] this is done asynchronously, i.e., oplans are aborted and only the objects gathered so far are
jects are sent to sub-plans, before the results of previaoesisidered for the (approximate) result. As the TTL can
objects are returnetl. Thus it is not sufficient to storeamount to days and open network connections are error-
only the returned values. We also have to keep bopkone, connections that have not transferred data for a
of objects that were sent to sub-plans and have not gettain time but are still active, are closed temporarily,
produced a result. Figure 10(c) depicts the hash talli#ghout affecting the query execution itself.
based caching of virtual attributes. On any input object Fault Tolerance: If a host does not respond to any
the Dispatch  operator probes the hash table (1). fequest, either a network failure occurred or the host is
cache hit is directly sent to thegnion , bypassing the down. As this could only be a short-term break and the
HyperQueries (2). Otherwise the object is inserted inpoocessing of a query lasts longer, we store all objects
the hash table as a request. If it was the first request foat belong to the failure host and periodically re-try to
this URI, the object is sent to the corresponding Hyperennect to the host. If the remaining query has finished
Query. If a result from a HyperQuery is received bigefore the host responds, it is no longer waited for, and
theUnion , it is inserted into the hash table (3) and thihe client is informed about the incomplete result. If the
pending objects with the same URI are returned (4). Hbst is accessible again while the remaining query runs,
assuming that the results are highly dynamic and for dbre sub-plan is instantiated at the host, and the stored
herence reasons cannot be re-used in another querygpthjects are sent to the host where query processing con-
hash table has to be discarded when the query executinoes as regular.
has finished. But if the remote hosts give runs of validity
for their results, this approach can be extended to intgr- Performance Investigation

query caching, where results are cached until expiry. ) i o
In this section we present a few initial benchmark re-

i Iani}ipIerr;r:entapotn :):: t?e:}lsg:;icnh %perg:c()gtr:aerizsois; tf§ults obtained from our QueryFlow system. In particu-
sighificant operator for pro g Fyp {%t, we concentrate on investigating the scalability of our

Dispatch operator which splits the input stream int% proach in a distributed environment and show the ef-

multiple output streams. As the 'numpe'r of resulti ctiveness of the combination of multipEspatch
output streams cannot be determirgegriori, we have operators

to fork oneDispatch operator for each new output
stream. The first instantiatddispatch operator also
acts as the coordinator for the other forked operators
keeps book of them. Eadbispatch operator runs in Our test scenario constitutes a market place with 26 sup-
a separate thread; dlispatch operators share onepliers. The data for our databases was taken from the
common input stream, from which eabispatch op- TPC-D [TPC99] benchmark suite of scale factor 1.0. To
erator selects its relevant objects. Thus we obtain thait our limited benchmark environment, we converted
concurrent and independent routing of objects to thiee 10000 suppliers round robin IBUUPPKEYto only
sub-plans on all participating hosts. 26 suppliers, each being allocated to an individual host.
The PARTSUPRable represented the market place and
p= ) the PART table was partitioned horizontally to obtain
or the same reason sorting on the URI does not work well in .
HyperQuery processing, as this would be the worst case for the asygVErAIPART@SURRables that contained those parts
chronous approach. that the supplief produced. Thus, each supplier offered

a?i(]J Experimental Environment
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Figure 11: Running Times

approximately 30000 parts, whereby each part was pad-100 parts and 10000 parts of Figure 11(b) shows that
duced by 4 suppliers which lead to 800000 entries &ith an increasing number of requested objects the aver-
the market place and 200000 distinct pa®&JPPLY- age time per object decreases by orders of magnitudes.
COSTand AVAILQTY became virtual attributes. TheThis results from the fact that the fixed costs of the plan
databases were stored in commercial relational databerstantiation and the authentication overhead amortize
systems. Each participant of the market place ran wdth increasing number of processed objects.

database server on a separate host, whereby the mar-

ket place was placed on a Sun Enterprise 450 with fdbu3 Evaluating Multiple Virtual Attributes

400 MHz UltraSparc Il processors and 4 GB_yte MeNk this experiment we demonstrate the benefits of
ory. The other database servers ran on machines of tyagqling requests for multiple virtual attributes. All
Sun Ultra 10 with 1 UltraSparc lli processor at 333 MHzg syppliers were incorporated in this experiment. The
and 128 MByte memory. All hosts were in the sam@st query accessing the two virtual attribugdPPLY-
100 MBIt LAN, running Solaris 2.7 and using Sun'sCOSTandAVAILQTY was:
JDK 1.2.2 as the basis for our QueryFlow system.

select PARTKEY, SUPPKEY, COMMENT, ’[ virtualattrs |’

il i from PARTSUPP

5.2 Scalability of HyperQuery Processing where PARTKEY <[ sel
For the first test we varied the number of requested sup-

pliers in our market place from 1 to 26. The query issued We varied the selectivity ‘[sel]’ of the query, i.e.,
by the client was: the number of requested data objects from 100 up to

20000. The naie plan had two sequencimjspatch
select PARTKEY, COMMENT, SUPPKEY, SUPPLYCOST gperators requesting at fir@UPPLYCOSTand then
from PARTSUPP AVAILQTY, the optimized variant combines the eval-
where PARTKEY <’[sel ] and SUPPKEY< " supps ] uation of both virtual attributes in one request. For a

We used [supps]’ to limit the number of requestegécond query we extended the schema of RIART-
suppliers. Further we varied '[sel]’ and requested 108UPPtable by adding an additional virtual attribute
1000 and 10000 parts. As the parts were distribut&!lPCOSTand queried three virtual attribut&JpP-
among 26 suppliers and each part was offered by 4 s@i-Y COSTAVAILQTY, andSHIPCOST
pliers, 4 - sel - supps/26 objects were returned. The Figure 11(c) shows the running times for the queries.

following HyperQuery was invoked at Supplier The optimized variants are about a factor of 2 (3)
select h.*, RETAILPRICE faster than the naé plans with two (three) sequencing
from PART@SUPR, HyperQuerylnputStream h Dispatch operators, as the objects are sent only once.
where PARTKEY = h.PARTKEY Figure 11(c) shows only one plot of the optimized query,

as we found out, that it is neglectable, if the HyperQuery

As the number of resulting objects varied with thging two or three attributes to the input objects.
number of requested suppliers, we normalized the re-

su]ts to th(_e average tlme_. The absolute running times @r. Conclusions
this experiment, shown in Figure 11(a), are as expected:

the more suppliers take part, the bigger the market pldoehis paper we proposed a framework for dynamic dis-
is, and the longer a query runs. But Figure 11(b) prov&guted query processing based on HyperQueries which
that the average running time per resulting object dare essentially query evaluation plans “sitting behind”
creases with a higher number of suppliers. This is agperlinks. We illustrated the flexibility of this dis-
indication that the increase of costs caused by additiotrébuted query processing architecture in the context of
registered suppliers is sub-linear because of the paraB2B electronic market places. Architecting an elec-
HyperQuery processing. Comparing the average tintesnic market place as a data warehouse by integrat-



ing all the data from all participants in one centra|[HSC99] J. M. Hellerstein, M. Stonebraker, and R. Caccia.
ized repository incurs severe problems. Using Hyper- Independent, Open Enterprise Data IntegratigitE Data
Queries, application integration is achieved via dis- Engeneering Bulletir22(1):43—-49, March 1999.
tributed query evaluation plans. Now the electronic mgthio0] A. Jhingran. Moving up the food chain: Supporting
ket place serves as an intermediary between clients an&-Commerce Applications on DatabasesCM SIGMOD
providers executing their sub-queries referenced by hy-Record 29(4):50-54, December 2000.
perlinks. We demonstrated how these hyperlinks cgaw01] A. Kemper and C. Wiesner. HyperQueries:
be embedded in the intermediary’s database as so-calle@ynamic Distributed Query Processing on the Inter-
virtual attributes. Further we illustrated the execution net. Technical report, Universit'Passau, Fakait fiir
of HyperQuerieS and pointed out more Comp|ex Scena_Mathematik und Informat_ik, .OCtOber 2001. Avail-
rios that can be divided into hierarchical and broadcast@ble at http://www.db.fmi.uni-passau.de/
HyperQuery execution. Further we demonstrated somePuPlications/papers/HyperQueries.pdf
effective optimization techniques for HyperQuery prdLSK95] A. Y. Levy, D. Srivastava, and T. Kirk. ~Data
cessing, described some important implementation de-{\"f’deI j‘“d Query lEt‘"lall.“at'ct"} o G'O?a' 'gor:nat'o'z Jﬁg
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